
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

Sys: a Static/Symbolic Tool for Finding Good Bugs
in Good (Browser) Code

Fraser Brown, Stanford University; Deian Stefan, UC San Diego;
Dawson Engler, Stanford University

https://www.usenix.org/conference/usenixsecurity20/presentation/brown

Sys: a Static/Symbolic Tool for Finding Good Bugs in Good (Browser) Code

Fraser Brown
Stanford University

Deian Stefan
UC San Diego

Dawson Engler
Stanford University

Abstract
We describe and evaluate an extensible bug-finding tool, Sys,
designed to automatically find security bugs in huge code-
bases, even when easy-to-find bugs have been already picked
clean by years of aggressive automatic checking. Sys uses a
two-step approach to find such tricky errors. First, it breaks
down large—tens of millions of lines—systems into small
pieces using user-extensible static checkers to quickly find and
mark potential errorsites. Second, it uses user-extensible sym-
bolic execution to deeply examine these potential errorsites
for actual bugs. Both the checkers and the system itself are
small (6KLOC total). Sys is flexible, because users must be
able to exploit domain- or system-specific knowledge in order
to detect errors and suppress false positives in real codebases.
Sys finds many security bugs (51 bugs, 43 confirmed) in well-
checked code—the Chrome and Firefox web browsers—and
code that some symbolic tools struggle with—the FreeBSD
operating system. Sys’s most interesting results include: an
exploitable, cash bountied CVE in Chrome that was fixed in
seven hours (and whose patch was backported in two days); a
trio of bountied bugs with a CVE in Firefox; and a bountied
bug in Chrome’s audio support.

1 Introduction
This paper focuses on automatically finding security bugs,
even in code where almost everything easy-to-find has been re-
moved by continuous checking with every tool implementers
could get their hands on. We check three systems in this
category (§5): Google’s Chrome browser, Mozilla’s Firefox
browser, and the SQLite database. Chrome fuzzers run 24/7
on over 25,000 machines [21] and are combined with dynamic
tools that look for low-level memory errors, while Firefox runs
at least six fuzzers just for its JavaScript engine [88]. Both
browsers run modern static bug finding tools and both pay
cash bounties for security vulnerabilities [51, 103]. Most ex-
tremely, the SQLite database, included in both Chrome and
Firefox and thus checked with all of their methods, also in-
cludes three independent test suites with 100% branch cover-
age which are run on many different architectures and config-
urations (32- and 64-bit, little and big endian, etc.) [22, 116].

Our new bug-finding system, Sys, was born out of our fail-
ure to find security bugs in Chrome and Firefox. One of our

previous static tools—which looks for simple buggy patterns
in source code, along the lines of [39, 60, 85, 121]—found
only three security bugs in browsers [40]. As far as we could
tell, most of the security bugs it was capable of finding were
long gone. Our group’s symbolic execution tool, KLEE [45]—
which conceptually executes programs over all possible in-
puts, a powerful but expensive technique—simply couldn’t
scale to huge browser codebases off-the-shelf, and adapting
such a complex tool was daunting. To address the drawbacks
of both approaches, we combine them: static analysis, cheap
and imprecise, achieves high recall in identifying possible
errorsites, and symbolic analysis, expensive and thorough,
achieves high precision in reasoning about those errorsites.

Sys first uses a static analysis pass to identify potential
errorsites. This pass is not precise, and typically errs on the
side of false positives over false negatives; Sys uses symbolic
execution (symex) to “clean up” these results, as we discuss
below. Users can write their own static extensions to identify
potentially buggy snippets of code, or they can use Sys’s
existing passes to point symex in the right direction.

Next, Sys uses symbolic execution to reason deeply about
each potential errorsite that static analysis (static) iden-
tifies. Symbolic execution generally provides high preci-
sion [47, 124]. For example, it can determine that a certain
value must equal seven on one path and one hundred on the
other. Fine-grained value reasoning means that symex can
find bugs that static can’t, but also makes symex routinely
intractable, even for small programs: it reasons about all pos-
sible values, whereas simple static analysis reasons primarily
about dataflows.

Sys sidesteps the symex bottleneck by only symbolically
executing small snippets of code that the static analysis pass
flags as potentially buggy. Intuitively, this works because
many bugs only require a small amount of context to under-
stand (e.g., finding an infinite loop may just require looking
at the loop’s body and header). This strategy is an adaption of
underconstrained (UC) symbolic execution [63, 115], which
improves the scalability of symex by executing individual
functions instead of whole programs. Sys takes this a step fur-
ther by only executing the snippets of code that static analysis
identifies. Users can write their own symbolic analyses, or
they can use Sys’s existing analyses out-of-the-box.

USENIX Association 29th USENIX Security Symposium 199

Category Number Reference

Sec-high 1 (13 total bugs) [1]
Sec-medium/moderate 4 [2–5]
Sec-low 4 [6–9]
Sec-other 3 [10, 11]
Bounty 3 (17 total bugs) [1–3]
CVE 4 (18 total bugs) [1, 3, 4, 7]
Security audits 2 [1, 12]
Patched functions 27 [1–3, 7, 11, 13, 14]
Patched bugs 16 [1–3, 7, 11, 13, 14]
Already patched 3 -
Mystery patch 5 -
Reported bugs 51 -
Confirmed bugs 43 -
False positives 18 -

Figure 1: This table summarizes the bugs Sys found. We do not
double-count bugs or false positives that appear in both browsers.
Browser vendors classify security bugs as [53, 105]: sec-high, e.g.,
bugs attackers can use to corrupt the browser’s memory and hijack
its control flow to, for instance, steal bank account information;
sec-medium, e.g., bugs attackers can use to leak browser memory
like login cookies; sec-low, bugs whose scope is limited, but would
otherwise be considered higher severity. The bounty row indicates
bugs that received cash rewards from the browsers in which they
appeared, and the CVE row lists bugs that have been listed in a global
vulnerability database. The security audits row lists bug reports that
have prompted developers to “audit” their code for more instances
of the bug we reported. Finally, the mystery patch row indicates
patches that are unaccounted for: they patch bugs that Sys found, but
because of backports, we can’t tell when they were patched.

Finally, we designed Sys to be flexible, because real-world
checking is a game of iterative hypothesis testing: in our ex-
perience, it takes many tries to express a property (e.g., use of
uninitialized memory) correctly, and many more to suppress
false positives—and both tasks often take advantage of ad
hoc, program-specific information. We wanted Sys to com-
bine the flexibility of a standard static checking framework
(e.g., the Clang Static Analyzer [87, 151]) with the power of
a symbolic execution engine.

The challenge of building a flexible symbolic checking
tool is that symex is inherently complicated—it has to reason
about each individual bit in the program under test—but flex-
ibility requires that using and changing the system be easy.
To address this challenge, we created an embedded domain-
specific language (DSL) to abstract some of the complications
of symbolic reasoning (§3). Users write symbolic checkers in
the DSL. The entire Sys symbolic execution engine is written
in the same DSL, which mechanically guarantees that users
have the power to write arbitrary checkers, extend the system,
or replace any part of it.

To the best of our knowledge, Sys is the first system to do
symex on large, complex, automatically tested systems like
browsers. The main contributions of this work are:

1. An implementation of the system and five checkers
that find good security bugs. We used Sys to build five
checkers for uninitialized memory, out-of-bounds access, and

use-after-free (UAF) bugs. Sys found 51 bugs (Figure 1) in
the Chrome browser, the Firefox browser, and the FreeBSD
operating system, many in complicated C++ code. Sys dis-
covered a group of 13 high-severity, exploitable SQLite bugs
in the Chrome browser (CVE-2019-5827), which the SQLite
author patched within seven hours; the patch was backported
to Chrome within two days [1]. Sys also discovered a trio of
bugs with a CVE in Firefox (CVE-2019-9805) [3], two more
browser CVEs [4, 7], a user-after-free bug in Firefox [14], and
a bountied bug in Chrome’s audio support [2]. Finally, Sys is
different enough from other checking tools that it can be used
to check the checkers themselves (and vice versa): one of our
bug reports [12] helped Firefox developers fix a configuration
problem in the Coverity commercial checking tool. Sys is
available at https://sys.programming.systems.

2. An approach for scaling symbolic reasoning to huge
codebases. Fundamentally, full symbolic execution cannot
scale to the browser. Sys’s combination of static analysis and
symbolic execution allows it to check entire browsers and
get meaningful results in human time. The slowest checker
covers all of Chrome in six hours on one (large) machine, and
finds many real bugs.

3. The design of a simple, extensible, DSL-based sym-
bolic checking system that makes it possible to experi-
ment with new checking techniques. As a rough measure of
complexity, Sys is only 6,042 lines of code (§3). It is easy to
write new checkers (our static extensions are < 280 LOC; our
symbolic checkers are ≤ 110 LOC), add false positive sup-
pression heuristics (§5.1,5.2), and even extend the core system
(§3). As one example, building the static checking pass took a
weekend. As others, we were able to add shadow memory to
the system in a few hours and fewer than 20 lines of code, and
Section 6 describes how someone with no checker-writing
experience created a UAF checker that found a Firefox bug.

2 System overview
This section provides an overview of static checking and
symbolic execution, and shows how Sys works in practice
by walking through the steps it took to find a high-severity
Chrome bug in their version of the SQLite database. Figure 2
shows the bug, an exploitable out-of-bounds write caused by
integer overflow of an allocation size. To find the bug, users
provide checkers (described below) and an LLVM IR file
to check (e.g., generated by Clang from C source), and Sys
outputs bug reports.

2.1 Finding the bug is hard
This bug requires precise reasoning about values (the over-
flow) and memory (the allocation), which is not the strong suit
of most static tools. Other general bug finding methods aren’t
well positioned to find this bug, either.1 Hitting the bug with

1A specialized tool like KINT [142], which only looks for integer over-
flows given code and annotations, is well positioned to find the bug.

200 29th USENIX Security Symposium USENIX Association

https://sys.programming.systems

/* third_party/sqlite/patched/ext/fts3/fts3_write.c */

3398 const int nStat = p->nColumn+2;

/* static extension stores allocation size of <a> */

3401 a = sqlite3_malloc((sizeof(u32)+10)*nStat);
3402 if(a==0){
3403 *pRC = SQLITE_NOMEM;
3404 return;
3405 }

· · ·
3414 if(sqlite3_step(pStmt)==SQLITE_ROW) { ...
3415 } else{

/* symbolic checker flags this <memset> as an error,
the size passed in can be larger than <a> */

3419 memset(a, 0, sizeof(u32)*(nStat));
3420 }

Figure 2: High-severity bug Sys found in SQLite: nColumn is a user-defined
number of FTS3 columns, and attackers can craft a database with enough
columns to overflow the allocation on line 3401 to a small value. Then, the
big memset on line 3419 will be out-of-bounds [1].

a test case or an automatic dynamic tool is daunting, since
SQLite is a large,2 complex codebase even before being in-
cluded in Chrome—and the path (the sequence of instructions)
leading to the bug is complex, too. To reach it, you would have
to start Chrome’s WebSQL and make a database of the correct
kind—among other things, you would need to create a virtual
table instead of a regular table or view [1, 134]—which would
require correctly exercising huge paths. Even then, the tool or
test would have to stumble on the correct number of columns
to trigger the bug. Randomly orchestrating these events is
next to impossible. On the other hand, pure symbolic tools,
which work in theory, are unable to handle massive codebases.
Our group’s previous tool, KLEE [45], does whole program
symbolic execution on 10-30KLOC of C, not millions of lines
of C++. UC-KLEE, our group’s adaption to KLEE that scales
by symbolically executing functions in isolation, would still
need to be modified to check Chrome. Examining each of the
≈15 million Chrome functions would take about five CPU-
years even if execution time were bounded to 10 seconds per
function3 (§6).

2.2 How Sys finds the bug
Sys makes it easy for users to identify potential bugs, and then
lets them use symbolic reasoning (and their own application-
specific knowledge) to check them. We walk through Sys’s
three steps below: (1) statically scanning the source and mark-
ing potential errors, (2) jumping to each marked location to
check it symbolically, and (3) reasoning about state that Sys
misses because it skips code.

Static Clients write small static extensions—similar to
checkers that identify patterns in source code—to quickly
scan all checked code and mark potential errorsites (Figure 4).
Sys runs static extensions similarly to prior tools: it constructs

2Version 3.28.0 is 153,572 LOC according to cloc-1.8.
3UC-KLEE typically operates with a bound 30–60× longer than that, five

to ten minutes.

1 check :: Named Instruction -> Checker ()
2 check instr = case instr of
3

4 -- Save the size of the object
5 name := Call fName args | isAllocation fName -> do
6 let allocSize = args !! 0
7 saveSize name allocSize
8

9 -- Keep track of dependencies between LHS and RHS
10 -- variables of arithmatic instructions.
11 name := _ | isArith instr -> do
12 operands <- getOperands instr
13 forM_ operands $ addDep name
14

15 -- If an array index has some dependency on
16 -- an object's allocated size, report the path
17 name := GetElementPtr addr (arrInd:_) -> do
18 let addrName = nameOf addr
19 addrSize <- findSize addrName
20 when (isDep addrSize arrInd) $
21 reportPath arrSize arrInd
22

23 -- Otherwise do nothing
24 _ -> return ()

Figure 3: Simplified static extension for heap out-of-bounds errors. This
checker looks for index operations (e.g., indexing (pictured) or memset (not
pictured)) that are related to an object’s allocated size.

a control flow graph from LLVM IR and then does a simple
flow-sensitive traversal over it with the user’s extension. Ex-
tensions are written in Haskell, and use a library of built-in
routines to inspect and analyze the control flow graph. If a
checker for a given bug already exists, clients can use that
checker off the shelf.

Sys is subtly different from traditional static checkers, how-
ever. Traditional systems check program rules like “no dead-
locks” by examining source code for buggy patterns like “two
lock calls in a row with no unlock,” and often aim to have a
relatively low false positive rate. In contrast, Sys extensions
should achieve high recall at identifying possible errorsites—
which means that extensions are often crude, leaving serious
reasoning (high precision) to the symbolic checker.

Figure 3 shows the static extension pass that marks the
SQLite bug as a potential error. This extension looks for
memory operations like malloc(x) and index operations like
memset(y) where there is some relationship between x and
y. Intuitively, the reason we look for this construct is that
the dependency gives us enough information to compensate
for unknown state (e.g., we probably won’t know the values
of x and y, but knowing their relationship can be enough to
find bugs). The vast majority of these cases are not buggy, of
course, but we’ll use a symbolic checker to determine which
are and which aren’t later.

The extension itself uses Haskell’s matching syntax (case)
to do different actions depending on the IR instruction it is
applied to. The conditional in lines 5-7 matches allocation
calls and stores an association between the object’s name and
its allocated size. Then, the conditional on line 11 matches
on any arithmetic instruction. It keeps track of dependencies

USENIX Association 29th USENIX Security Symposium 201

symbolic execchecker

static analysis

LLVM

parse to CFG

extension

0
,…,

M

0
,…,

N

Figure 4: Developers provide the LLVM files they wish to check
and a checker description in our framework. Their static extensions
mark relevant program points, and their symbolic checkers jump to
these points to symbolically execute in order to find bugs.

between variables in these instructions (e.g., y = x + 1
would produce a dependency between x and y). Finally, when
it matches on indexing operations (GetElementPtr on line
17), it marks any path where the index size has a dependency
on the object’s allocated size.

Symbolic The static pass produces potentially buggy paths,
which Sys then feeds to the symbolic pass. This pass aims to
achieve high precision at determining whether or not the bug
actually exists by symbolically reasoning about all possible
values on a given path. It: (1) automatically symbolically
executes the entire path4 and (2) applies the user’s symbolic
checker to the path.

Our tool, like other bit-accurate symbolic tools before
it [47], aims to accurately track memory down to the level
of a single bit—i.e., to assert for sure that a bit must be 0,
must be 1, or may feasibly be either. Sys explores each poten-
tially buggy code path individually, and it can explore a path
either to termination or up to a window size. Each explored
path has its own private copy of all memory locations it has
read or written. As it advances down a path, Sys translates
LLVM IR instructions into constraints, logical formulas that
describe restrictions on values in the path. It also applies a
user-supplied symbolic checker as it advances along the path
(described below). Finally, Sys queries an SMT solver [37]
to figure out if the path is possible. It receives either UNSAT if
the path’s constraints can never evaluate to true, or SAT if the
path’s constraints can.

The symbolic checker, in Figure 5, uses information that
the static extension marked to figure out if an out-of-bounds
write is possible. Specifically, its inputs on line 2 are the object
size variable (arrSize) and index variable (arrInd) from the
static extension. The symbolic checker is built from functions
in Sys’s symbolic DSL—getName, toByes, isUge—which

4The static phase gives the symbolic phase a complete path to execute,
which can be a snippet of a loop or N unrolled iterations of a loop. Sys
transforms the final path to single static assignment form to ensure that
variables in loops are handled correctly.

1 symexCheck :: Name -> Name -> Symex ()
2 symexCheck arrSize arrInd = do
3

4 -- Turn the size into a symbolic bitvector
5 arrSizeSym <- getName arrSize
6 -- Turn the index into a symbolic bitvector
7 let indTy = typeOf arrInd
8 arrIndSym <- getName arrInd
9 arrIndSize <- toBytes indTy arrInd

10

11 -- Report a bug if the index size can be
12 -- larger than the allocation size
13 assert $ isUge byte arrIndSize arrSizeSym

Figure 5: A slightly simplified version of the heap out-of-bounds checker,
without the symbolic false positive suppression.

are designed to easily and safely encode constraints about
LLVM variables (§3). First, the checker translates its input
variables into their symbolic representations (line 5), and uses
toBytes to change the raw index value into its offset size in
bytes (line 9). Then, it asserts that arrIndSize should be
larger than arrSizeSym—indicating an out-of-bounds access
(line 13). Mechanically, these SysDSL functions add new
constraints to the logical formula, alongside the constraints
Sys automatically adds when symbolically executing the path.
Sys applies this particular checker once it has finished sym-
bolically executing a path.

Symbolic checkers have control over which code to skip,
where to start executing along the marked possible-error path,
and even which functions to enter or avoid.5 For example,
the checker in Figure 5 runs on each function with a marked
malloc call, and it runs after Sys has finished symbolically
executing the whole path; other checkers match on specific
LLVM IR instructions and run at different points along the
path. Users write short configurations to tell Sys where and
when to run their checkers.

The checker in Figure 5 looks at paths from the start of
functions with marked malloc calls, but it could start either
closer to main or closer to the malloc. The farther away it
starts, the more values it knows, but the higher the cost of
exploration. At one extreme, jumping right to the malloc
call is cheap, but will lack all context before the call. At the
other, starting at main and attempting to reach each site is the
equivalent of traditional symbolic execution.

Unknown state Sys’s approach of jumping over code to the
error site is both its strength and its weakness. By skipping
code, it also skips this code’s constraints and side-effects,
including memory allocation and initializations. Thus, the
struggle is how to (1) make up fake copies of skipped state,
and (2) ensure that missing constraints do not lead to explo-
sions of false positives.

Sys makes up state using lazy allocation, similar to the UC-
KLEE system [115]. If checked code dereferences a symbolic

5The checkers in this paper don’t enter non-inlined function calls, but the
implementation supports both behaviors.

202 29th USENIX Security Symposium USENIX Association

location, Sys allocates memory for it and continues. This
approach allows Sys to allocate exactly the locations that a
path needs without any user interaction. However, allowing
the contents of fake objects to be anything can cause false
errors because of impossible paths and values. Sys doesn’t
drown us in false positives for four main reasons:
1. Sys’s constraint solver eliminates all paths with internal
contradictions (e.g., a path that requires a pointer to be both
null and non-null); the only false positives that are left are
due to the external environment (e.g., callers).

2. We use Sys to target specific errors instead of full func-
tional correctness. As a result, many fake values that could
potentially cause problems do not, since they don’t affect the
checked property in any way. For example, Sys will find the
bug in Figure 2 even if the elided code does many different
memory operations, as long as these operations don’t touch
the nColumn field.

3. Sys checkers can also account for undefined state in use-
ful ways. For example, the malloc checker looks for out-of-
bounds access in code snippets where there’s a dependency
between an object’s allocation size and its index size. The
dependency gives us important information—the relationship
between an object’s size and the index value—that allows us
to find bugs without knowing what the object’s size and index
value actually are.

4. Large groups of false positives usually share a root cause,
and Sys checkers can address that cause with ad hoc, checkers-
specific tricks. For example, the checker that found the SQLite
bug makes different assumptions about integer inputs com-
pared to object fields: it assumes that integer inputs can be
anything, while object fields have been vetted, and so must
not be massive (§5.2). This one change eliminated many false
positives.
Next, we discuss design decisions (§3–§4) and results (§5).

3 SysDSL design
Our goal was to build a symbolic checking system that was
not just accurate, but also flexible enough to express check-
ers that could find bugs in huge codebases. Everything from
prototyping checkers to hacking on the core system to sup-
pressing false positives with ad hoc information—like the
massive-value suppression in the previous section—had to be
easy and fast. To that end, we aimed for a system that was:
1. Domain specific: at the highest level, the system should
make bug finding easy. There should be direct, high-level
ways to express both symbolic checks (e.g., “is x uninitial-
ized”) and ad hoc information (e.g., “all size arguments to
malloc are greater than zero.”). On the one hand, users should
not have to annotate the code that they’re checking; on the
other, they should not have to hack directly on the solver’s
internal representation of constraints. Even turning an LLVM
variable into a solver’s internal representation—a fixed-width
vector of bits called a bitvector—is complicated: if the vari-

able is a struct, is it padded, and if so, how much padding
goes between each element?

2. Expressive: we can’t anticipate all the extensions and
checkers that Sys clients may want, so our challenge is to en-
sure that they can express any checkable property or take ad-
vantage of any latent program fact. We arrived at two rules for
ensuring that clients of extensible systems can express things
that their designers did not anticipate. First, to make sure that
clients can express anything computable, they must be able to
write Turing-complete code. Second, to make sure that their
interface to the system internals—in this case, the static exten-
sion and symbolic checkers’ interface to Sys internals—is suf-
ficiently powerful, core components of the system itself must
be built atop the same interface. In contrast, many checking
systems have a special, internal interface that built-in checkers
use, and a bolted-on, external interface for “extensions.” In-
variably, the extension interface lacks power that the internal
interface has.

3. Simple: it should be possible to iterate quickly not only
on checkers but also on components of the core system—and
changing 6,000 lines of code is easier than changing 60,000.
This is especially important for symbolic checking tools be-
cause they are inherently complex, built from tightly-coupled,
large subsystems, and often operate in feedback loops where
each symbolic bit is the child of thousands of low-level deci-
sions. A mistake in a single bit can cause an explosion of false
reports that are hard to understand and hard to fix; mistakes
that lead to false negatives are hard to find at all.

4. (Type) Safe: debugging symbolic execution errors can be
nightmarish, since fifty constraints can define a single variable
that has a single incorrect bit. We want a system that makes it
as easy as possible to get constraints right, and types can help
us avoid malformed constraints early.

In the rest of this section, we quickly describe the design of
the static extension system. Then, we describe the challenges
of building symbolic checkers, and how SysDSL addresses
those challenges by fulfilling our design principles.

3.1 Static extensions
Building extensible static checking systems is already the
focus of significant work in both academia and industry [27,
39, 60, 62, 65, 70, 84, 87, 122]. Since the details of our static
extension system are relatively standard, we only discuss
one idiosyncrasy of Sys’s static system here: Sys does both
its static and symbolic passes on LLVM IR (or bytecode).
Typically, static tools want to check the highest-level—most
semantics-preserving—representation possible, because the
more information they have, the easier it is to find errors and
suppress false positives. For example, running checkers for the
C language after the preprocessor can cause challenges, since
checkers don’t know that, say, 127 is actually MAXBUF or that a
strange chunk of code is actually a macro. Running checkers
on bytecode is even more suboptimal in some ways, but we do

USENIX Association 29th USENIX Security Symposium 203

it because: (1) it makes communication between the static and
symbolic passes simple; (2) we can check any language that
emits LLVM IR; (3) it lets us “see inside” complicated C++
code for free; and (4) it allows our checkers to comprehend
and take advantage of compiler optimizations (§6).

3.2 Specifying symbolic constraints is hard
Users generate their own constraints differently depending on
which symex system they use: some systems require language-
level annotations, while others have users hack almost directly
on SMT constraints. We decided to build SysDSL because of
our experience building and using both kinds of tools, which
we describe below.

KLEE users express invariants by providing C annota-
tions like “a Bignum’s negative field must be either one or
zero.” According to the main UC-KLEE implementer, David
Ramos, naively written annotations would cause KLEE to spin
forever—in effect, the annotations would generate LLVM IR
that was adversarial to the tool. To write useful annotations,
users needed to understand what LLVM IR the C compiler
would generate, and understand whether or not that IR was
compatible with KLEE. For example, David avoided C code
that would generate certain LLVM “or” statements, since
these statements triggered excessive KLEE forking. David’s
and our own experiences with KLEE convinced us that we
needed a high-level way of expressing constraints that didn’t
force users to emulate a C compiler.

At the same time, checking LLVM IR by hacking directly
on SMT constraints—as we did in early versions of Sys—had
its own challenges. LLVM IR and SMT solvers have different
basic types (e.g., rich structs vs. simple bitvectors) and dif-
ferent correctness requirements. As an example of the latter,
the Boolector SMT solver’s [107] logical left shift operator
required the width of the second operand to be log2 of the
width of the first operand; at the IR level, there is no such
restriction. Thus, in the middle of trying to write a checker,
we would forget the SMT requirement, use the shift, hard
crash the solver, add some width castings, get them wrong,
etc. In addition to accounting for SMT requirements like left
shift, our old approach required users to manually account
for LLVM’s requirements (e.g., by correctly padding their
own structs). We ran into similar problems using angr [131]
(e.g., solver crashes due to adding variables of incompatible
bitwidth), but with the addition of Python dynamic type er-
rors. After that, we wanted to express constraints in a way
that protected users from hand-translating IR into SMT.

3.3 Our solution: SysDSL
Sys clients use the SysDSL to write symbolic checkers like
the malloc checker in Section 2 (Figure 5). The DSL exposes
simple, safe LLVM-style operations that it automatically trans-
lates into Boolector SMT bitvector representations [43, 107].
In particular, with SysDSL, users can create symbolic vari-
ables and constants from LLVM ones; perform binary op-

1 translateAtomicrmw result rmwOp addr val = do
2 -- Get symbolic variable for LLVM operand addr
3 addrSym <- getOperand addr
4 valSym <- getOperand val
5 -- Get the LLVM operand val's type
6 let operandType = typeOf val
7 -- Load value stored at symbolic addr in symbolic memory
8 oldValSym <- load addrSym operandType
9 -- Do the symbolic rmw operation with two symbolic vars

10 newValSym <- rmwOp oldValSym valSym
11 -- Store the symbolic result to symbolic memory at addr
12 store addrSym newValSym operandType
13 -- Assign the symbolic old value to be the result
14 assign result oldValSym

Figure 6: Implementation of the translateAtomicrmw LLVM instruction
in SysDSL.

erations, assignments, comparisons, and casts on these vari-
ables and constants; set and get fields in symbolic aggregate
structures; and, load and store to symbolic memory. We also
provide a library with symbolic operations like memcpy that
builds on top of the core primitives.

Though SysDSL is designed for writing checkers, we also
used it to implement every LLVM instruction that the sym-
bolic engine supports, guaranteeing that it’s powerful enough
to express whatever users want. As an example, we walk
through our implementation of an LLVM IR instruction to
show how the DSL works. The atomicrmw instruction in Fig-
ure 6 atomically updates memory using a given instruction
(e.g., addition). Given address addr and value val, the LLVM
atomicrmw instruction: (1) reads the value, oldValSym, at ad-
dress addr; (2) performs the given operation (e.g., addition)
with oldValSym and val; (3) writes the result back to addr;
(4) returns oldValSym.

First, and most importantly, SysDSL eliminates a whole
class of type and logic bugs that arise from operating on raw
SMT bitvectors. For example, if oldValSym and valSym (line
10) have different bitwidths, the SysDSL will exit with an
informative error. It also prevents more subtle type errors:
it lets us ignore the fact that addr would be a 32- or 64-bit
pointer, and that memory could be an array with blocks of
any size. If, say, addr is 32-bits in an LLVM file that specifies
64-bit pointers, the SysDSL will exit with an error.

Second, SysDSL exposes functions that are polymorphic
over LLVM types to reflect LLVM’s polymorphism—e.g.,
that rmwOp (line 10) operates on all widths of integer and
vectors—and to simplify both the symex engine and checker
implementations. For example, val could be a vector or a
scalar of any width. Internally, the SysDSL handles the op-
eration accordingly—e.g., for vector vals it will automat-
ically decompose the vectors, un-pad the elements if they
are padded, add each pair of elements, re-pad the result, and
re-assemble the result vector. Doing this manually is both
cumbersome and error-prone.

SysDSL also automatically manages variable bindings,
mapping an LLVM variable to its corresponding SMT vari-

204 29th USENIX Security Symposium USENIX Association

able. For example, the getOperand DSL function on line
three takes an LLVM operand as input and returns the sym-
bolic SMT bitvector representing that operand. Internally, this
function creates a new bitvector for the LLVM operand if one
has not already been created, and returns the existing bitvector
otherwise. Similarly, load and store always load from and
store to the most recent version of symbolic memory. Even
this seemingly simple task is error-prone when using SMT
libraries directly (since users must manually model scope,
loops, etc.).

Finally, SysDSL does not bind users’ hands: they can com-
pose existing operations to create their own custom opera-
tions; the atomicrmw LLVM instruction is one example of
how to compose new instructions out of SysDSL functions.
If, for some reason, users want direct access to our Boolector
SMT bindings, they can import them; since DSL and bindings
functions operate on the same constraint representation, they
can interoperate, too.

4 Memory design
Because memory modeling is one of the hardest parts of
symbolic checking, this section discusses how Sys models
memory. We use KLEE as a comparison point, since it: (1)
also focuses on bit-precise symbolic execution and (2) is
relatively well known [47] (e.g., it has its own workshop [23]).

Memory In order to perform queries on a memory location
in the checked program, a symbolic tool must map program
memory to a corresponding memory representation in its
constraint solver. The most natural approach (and what Sys
does) is to represent memory in the same way as most modern
hardware: as a single, flat array.

In contrast, KLEE (and UC-KLEE) represents each object
as its own distinct, disjoint symbolic array (you can view this
as segmentation). This is because manually segregating arrays
lets the solver avoid reasoning about all reads and writes at
once; when KLEE was created, solvers had less sophisticated
optimization heuristics for arrays, so separate arrays were es-
sential for performance. If a pointer dereference *p == 0 can
point to N distinct symbolic objects, KLEE uses the constraint
solver to resolve each option, and fork the current path N
times to explore each one separately. This is because KLEE’s
solver requires that constraints refer to arrays by name, i.e.,
constraints cannot use “pointers” to arrays.

Sys can use a single flat array for two reasons. First, modern
constraint solvers have much better support for arrays, and
second, Sys’s much smaller window size means that there are
simply many fewer memory accesses to handle. With a single
flat array, every object’s address becomes an integer offset
from the base of the symbolic array. These offsets can be
concrete values or—crucially—fully symbolic expressions.
If we use array mem to represent memory and p to be a fully
symbolic expression, the query *p == 0 directly translates to
mem[p] = 0. By using flat memory, Sys sidesteps enumerating
all of a pointer’s pointees—the SMT solver takes care of that.

A single flat memory array makes translating code to con-
straints simple. Double-, triple-, quadruple- (or more) indirect
pointers take no special effort; ***p == 0 simply becomes
mem[mem[mem[p]]] = 0. Dereferences work naturally even
if naughty code casts pointers to integers and vice versa, or
mutilates them through combinations of bit-level hacks. In
contrast, just for double indirection, KLEE requires multiple
levels of forking resolution.

Shadow memory Flat memory also makes checking eas-
ier. Checking tools often need to associate metadata with
memory locations. Does a location contain a pointer? Is it
uninitialized? Is it deallocated? The wrong way to track this
information, for both dynamic and symbolic tools, is by using
a special “canary” value [82]. If checked code ever stores
the canary bit-pattern itself, the tool will flag false positives,
and tracking small units like single bits is clearly infeasible.
The problem gets worse for underconstrained symbolic tools.
Consider an uninitialized memory checker that stores a canary
bit-pattern to all uninitialized pointers. This checker cannot
do queries asking if pointers may be uninitialized, since if
pointer p is initialized to point to fully-symbolic v, v can
equal the canary. Instead, the checker asks if pointers must
be uninitialized. This restriction goes a long way to defeating
the point of symbolic checking, since (among other issues),
the checker will miss all errors where a pointer could point to
both initialized and uninitialized locations.

The standard approach that dynamic tools like Val-
grind [106], Purify [82], and Eraser [123] take is to associate
each memory location m with a corresponding shadow mem-
ory location m′ that stores metadata about m. They can track
even the state of a single bit by setting its shadow location to
an integer value corresponding to “allocated,” “freed,” or “ini-
tialized.” To the best of our knowledge, UC-KLEE is the only
symbolic tool with shadow memory, and it was a 5–10KLOC
effort that no tool (that we know of) has since replicated.

Sys implements shadow memory as well—easily, in twenty
lines and an afternoon, because it represents memory as a
single flat array. Shadow memory is separate, configurable
array. As a result, queries on shadow memory are almost
direct copies of queries on memory, perhaps with a scaling
adjustment. For example, if the user tracks a shadow bit for
each location, the expression *p maps to mem[p], and the
expression shadow[p/32] checks p’s shadow bit (assuming
32-bit pointers).

Drawbacks The flat memory model has a number of draw-
backs, though: first, it may be too slow for large window
sizes and full-program symbolic execution. Second, in a flat
memory model, out-of-bounds memory accesses turn into
out-of-bounds accesses in symbolic memory. This means that
any memory corruption in the analyzed program becomes a
memory corruption in the analysis. This could be fixed by
tracking a base and bound of each object in shadow memory,
and then preventing—but reporting—out-of-bounds accesses.

USENIX Association 29th USENIX Security Symposium 205

5 Using Sys to find bugs
In this section, we evaluate Sys’s:
1. Expressiveness: can we use the SysDSL to express real,
diverse checkers and suppression heuristics?

2. Effectiveness: can we use Sys to find new security bugs in
aggressively tested, huge codebases without sieving through
thousands of false positives?

We answer these questions by implementing three checkers
that look for two kinds of classic memory safety bugs—use
of uninitialized memory and out-of-bounds reads and writes—
in browser code, and one system-specific checker that finds
unvalidated use of untrusted user data in the FreeBSD kernel.

Workflow We built and debugged checkers on parts of
browser code (e.g., the Prio or Skia library) on our lap-
tops. For entire codebases, we ran Sys on a large ma-
chine: Intel Xeon Platinum 8160 (96 threads) with 1TB
of RAM, running Arch Linux (2/22/19). We check Fire-
fox changeset:commithash 503352:8a6afcb74cd9, Chrome
commit 0163ca1bd8da, and FreeBSD version 12.0-release.
We configured the checkers to run quickly enough that we
could debug problems easily: the uninitialized checker uses a
bound of 5 blocks, the out-of-bounds 15, and user input 20;
we set the solver timeout to 5 minutes. Chrome took longest
(under an hour for the out-of-bounds checkers and six hours
for the uninitialized memory checker) while FreeBSD was
quick (six minutes for user input). All symbolic checkers re-
ject ≥98% of statically proposed paths. We discuss block
bounds and timeouts further in Section 7.

Bug counting We only count unique bugs: if multiple re-
ports share the same root cause (e.g., an inlined function),
we only count a single bug. If the same bug occurs in both
browsers (e.g., [5]), we only count it once in the total tally. We
mark bugs as unknown if we were unable to map their LLVM
IR error message back to source (e.g., because of complicated
C++ inlining).

How good is the code we check? The main systems we
check—Chrome and Firefox—are some of the most aggres-
sively checked open-source codebases in the world. Both
browsers run bug bounty programs that reward security bug
reports [51, 103]. Mozilla’s program has paid over a million
dollars since 2004 [103], and Chrome’s most common bugs
yield $500−$15,000 [51].

Google runs a massive distributed fuzzer on Chrome 24/7
using over 25,000 machines [21] using three different dy-
namic sanitizers: AddressSanitizer (ASan) [55] (e.g., for
buffer overflows); MemorySanitizer (MSan) [56] (e.g., for
uninitialized memory); and UndefinedBehaviorSanitizer (UB-
San) [57]. Chrome also encourages developers to write fuzz
targets for the their own components [102], and combined,
Google fuzzers and test cases reach 73% line coverage of
the entire browser [54]. Firefox has a whole team devoted
to fuzzing [125], and their JavaScript engine alone ran six

different fuzzers as of 2017 [88]. They direct developers to
use sanitizers [24] and Valgrind [106], and recently rolled
out the ASan Nightly project, where regular users browse the
web with ASan enabled—any error triggers an automatic bug
report, and any cash bounties are awarded to the user [67].

The browsers also use static tools. Chrome recommends
that developers run Clang’s core, C++, “Unix”, and dead code
checkers [52]. Firefox automatically runs static checkers on
every submitted patch [104]. These include: (1) Mozilla-
specific checkers; (2) Clang-tidy lints; and (3) traditional
Clang static checkers. Firefox also runs the Infer static an-
alyzer [15] alongside their Coverity scans (integrated in
2006) [20], which resulted in many thousands of bug fixes.

How good are the bugs we find? Our checkers focus on
low-level errors like uninitialized memory and buffer over-
flows because these are the same bugs that almost every tool
we mention in this section detects—so finding these bugs is
a better test for Sys than finding errors that other tools have
never tried to find. The bugs are also not just new introduc-
tions to the codebase. We looked at how long each bountied
bug existed, because those seem like the ones other people are
most incentivized to find. The Prio bugs have existed since
Prio’s introduction last year (§5.1), the SQLite pattern has
existed for at least nine years (§5.2), and the Opus codec bug
has existed for three and a half years (§5.3).

5.1 Uninitialized memory
This section describes our uninitialized memory checker. We
start with this error type because it is arguably the most heavily
picked-over of any bug type (more even than buffer overflows).
The results in Figure 7 show that Sys is effective—it finds
21 errors—and we describe how the checker works and its
results below.

5.1.1 How the checker works

Static extension: a simple, somewhat conservative pass that
marks potential uses of uninitialized stack variables. For each
stack allocation s, the extension performs a flow-sensitive
pass over all subsequent paths. If there is no obvious store
to s, the extension marks the first load of s as potentially
uninitialized. The extension does not track pointer offsets,
instead considering every new offset as a new tracked location.
Symbolic checker: uses Sys’s shadow memory (§ 4) to detect
uses of uninitialized memory, similar to concrete tools like
Valgrind [106] and Purify [82]—with the advantage that it
can reason about many possible locations at once (e.g., all
locations that a symbolic pointer or a symbolic array index
could refer to).

Sys runs the checker symbolically on each path flagged
by the static pass. The start of each checked path is a stack
allocation s that is potentially used uninitialized. The checker
associates each bit in s with a shadow bit sb and initially sets
each shadow bit sb to 1 (uninit). At each store, it writes all
associated shadow bits sb to 0 (not-uninit). Finally, at the

206 29th USENIX Security Symposium USENIX Association

end of the first block in which s is read, the checker runs the
following snippet with s as uninitVar; it will emit an error
if any bit in sb is set:

uninitCheck uninitVar uninitType = do
uninitSym <- getName uninitVar
shadowResult <- loadShadow uninitSym uninitType
isSet <- uninitConst uninitType
assert $ isEq uninitType shadowResult isSet

The last line adds a solver constraint that the checked location
uninitSym’s shadow memory, shadowResult, has a bit set
(implying uninitialized). The solver runs immediately after-
wards and “stores” its result—SAT implies a read of uninitial-
ized memory—so that the checker can use it (e.g., to report an
error to the client). Note: the checker is not doing a concrete
check of a single value. The loaded location, uninitSym and
thus shadowResult can be symbolic expressions that refer
to many storage locations simultaneously. The solver will
determine if any value on the checked path could cause any
of these locations to read even a single uninitialized bit.
False positives: perhaps because this checker examines so
many locations, it was the most sensitive to false positives
caused by impossible values. We discuss the two most inter-
esting sources of false positives below.

First, for speed, the checker does not enter functions and in-
stead takes advantage of Clang’s inlining. This initially caused
a serious number of false positives whenever an uninitialized
variable x was passed to a skipped function and then used
(e.g., init(x); *x;). Before we built shadow memory, we
tried two failed approaches:
1. Using static analysis to determine at the IR level which
pointers were passed to skipped function calls. This was brittle
at deciphering the casts, loads, and pointer offset calculations
that created escaping pointers.

2. Suppressing the problem symbolically, by storing uncon-
strained values to each pointer passed to a function. This
introduced more correctness problems: LLVM IR uses pass-
by-reference whenever it can, so the checker ended up modi-
fying almost all values passed to functions.
The solution using shadow memory is more robust: for each
pointer argument, add a constraint that uses the argument
expression to exactly describe which shadow locations to
clear (e.g., most simply, for unentered foo(p), clear every bit
in p’s shadow). The exact constraint meant we did not need to
manually determine which pointers were passed to functions,
and shadow memory let us avoid canaries. Unintuitively (to
us), this version of symbolic false positive suppression was
actually far easier and more effective than the static one.

The second initial source of false positives arose because
we run checkers on the optimized release builds of Chrome
and Firefox, the code that gets shipped to millions of users.
Optimizations shrink the IR by almost an order of magni-
tude (good) but also strip ASSERTs (bad). Both browsers rely
on ASSERT to express invariants, which means checking opti-
mized code can yield false positives:

System True False Unknown

Chrome 6 5 1
Firefox 12 3 3

Total Browser 13 7 3

FreeBSD 8 2 0

Total 21 9 3

Figure 7: True bugs and false positives for the uninitialized memory
checker. All true browser bugs are reported and confirmed by a triage devel-
oper with two exceptions, where we reported directly to the library maintain-
ers and have not heard back. FreeBSD has not responded.

ASSERT(num > 0);
ASSERT(num >= j);
for (int i = 0; i < num; i++) x[i] = i;
return x[j]; // j is unsigned

Without the ASSERTs, the checker does not know that j is less
than num, and thus that the final x[j] can never be uninitial-
ized. To avoid this, we re-run all buggy function snippets on
the debug version of the browser; there, the tool can tell that
the “buggy” path is actually infeasible.

5.1.2 Checker results

Figure 7 breaks down the 21 bugs this checker found. Three
Firefox bugs were marked sec-medium (equivalent to bugs
that, say, can be used to leak cookies); together, these bugs
were rewarded a bounty and assigned a new CVE. A Chrome
bug also received a CVE. The false positive rate for this
checker is relatively high, but we hope to improve it by jump-
ing back to callsites. Below, we discuss two cases where Sys
found bugs that other tools missed.
A benefit of checking IR: checking IR means that we see
any compiler-generated code, and thus can detect errors in it,
or errors in assumptions programs make about it. For complex
languages like C++, doing this reasoning with a high-level
checker can be hard, since it is not always obvious what the
compiler might do—or even that it will do anything at all.

The following uninitialized memory CVE in Chrome’s
WebRTC module [7] is a good example. Here, a compiler-
generated default constructor never sets a field that a cleanup
function uses:

/* third_party/webrtc/modules/audio_processing
/aec/echo_cancellation.cc */↪→

123 Aec* aecpc = new Aec();

· · ·
130 aecpc->aec = WebRtcAec_CreateAec(aecpc->instance_count);
131 if (!aecpc->aec) {
132 WebRtcAec_Free(aecpc);

The Aec constructor is defined with C++ 11’s default key-
word. This compiler-generated constructor (not shown) does
not initialize the far_pre_buf field of the aecpc object; in-
stead, Chrome relies on code to call WebRtcAec_Init to ini-
tialize the object. Unfortunately, when the allocation func-
tion (WebRtcAec_CreateAec) returns null, this field remains
uninitialized and is used by WebRtcAec_Free.

USENIX Association 29th USENIX Security Symposium 207

Checking checkers: checkers have errors, just like the code
they check. Errors that lead to false negatives are especially
pernicious because they are silent. For example, this unini-
tialized memory bug from Firefox’s Prio library for privacy-
preserving data aggregation [83] should have been caught by
Firefox’s regular Clang checks:6

/* third_party/prio/prio/serial.c */

116 static SECStatus
117 serial_read_mp_array(msgpack_unpacker* upk, ...,
118 const mp_int* max)
119 {
120 SECStatus rv = SECSuccess;
121 P_CHECKCB(upk != NULL);

· · ·
125 msgpack_unpacked res;

· · ·
140 cleanup:
141 msgpack_unpacked_destroy(&res);

Here, P_CHECKCB checks that upk is null and, if so, goes to
cleanup. cleanup uses the msg_unpacked_destroy func-
tion to free fields of res—but res hasn’t been declared on
this path, let alone initialized. Given that this bug was serious
enough to lead to a bounty and CVE, missing it may also be a
serious bug in itself. Running multiple tools is a way to find
such mistakes, but similar tools can have similar mistakes.
Since Sys is very different from most industry tools, it should
be better able to expose their false negatives (and vice versa).

In practice, browser developers really do update their check-
ing tools in response to bug reports. After looking an NSS bug
Sys found [12] (and an audit of NSS for more occurrences of
the bug), a triage developer said “at the very minimum, the
problem in PRZoneCalloc should be found by something. If
not, we have static analysis problems.” They changed their
Coverity configuration so that it would find the missed bug.

5.2 Heap out-of-bounds
After uninitialized memory bugs, stack and heap buffer over-
flows may be the second most widely-checked defect in the
codebases we examine. Overflow checking is popular because
overflows are the most common way for attackers to hijack
control flow—stack buffer overflows are used to overwrite
return addresses, while heap buffer overflows are used to over-
write function pointers and virtual table pointers [64, 139].

This checker (Figure 8) discovered 21 out-of-bounds bugs,
including a group of 13 in Chrome’s SQLite with a bounty and
a CVE. It also discovered a CVE in Firefox. Our guess for why
Sys found so many errors is because this check requires both
complicated reasoning (hard for static) and edge case values to
trigger problems with bit-widths and integer wrapping (hard
for static, dynamic, and humans). Since Section 2 already
described this checker, we now mention one difference in
how it makes up fake state, and then discuss results.

6The Prio author runs his own Clang scans that also missed the bug [58].

All other checkers use Sys’s default strategy of allowing
unknown integer values to be anything, but this checker makes
one change to reduce false positives. Many system compo-
nents we check have an internal security model where values
from outside (e.g., user SQL) need to be checked, but data
internal to the browser is trusted. The checker approximates
this split by assuming that any value coming from inside a
data structure has already been checked to be “small.” It as-
sumes all other values can be anything. Without this trick, the
checker was unusable; with it, the results were clean and seri-
ous. This example shows the power of extensions. Because
they are flexible, we can use them to implement programmatic
annotators: rather than manually, laboriously marking each
field as safe, we use a few lines of code to mark them all.

Section 2 presented the most serious bug this checker found.
As a twist on Section 5.1, where we discussed using Sys to
improve other tools (and vice versa), Sys discovered—from
first principles—a pattern that much simpler tools can express
and check. One of these bugs is in Chrome’s LibDRM, an
interface for communicating with GPUs [6]:

/* third_party/libdrm/src/xf86drmMode.c */

1252 new->items = drmMalloc(old->size_items *
sizeof(*new->items));↪→

· · ·
1257 memcpy(new->items, old->items, old->size_items *

sizeof(*new->items));↪→

This code looks fine at first glance: both the memcpy size and
the allocation size of new->items are exactly the same. But
drmMalloc takes a 32-bit int input, while memcpy takes a
64-bit size_t. For realistic values, size_items can be large
enough to wrap a 32-bit integer but not a 64-bit integer: the
size passed to drmMalloc will wrap around to a small value
and become the target of huge overflow when memcpy copies
the unwrapped number of bytes. We found three separate
instances of malloc routines designed to take ints (or i32s
on x86-64) used with memory operations designed to take
size_ts (or i64s on x86-64). Using these bugs as examples,
a simple static checker should be able to find this pattern, too.

In response to our reports, the LibDRM team is fixing
their allocation routine to take a size_t [6]; the main SQLite
author patched their code to “use 64-bit allocation routines
wherever possible,” according to his commit message [1]; and
a security lead at Firefox asked for an audit of the allocation
routines in NSPR and NSS [68, 69], network runtime and
TLS code that uses small mallocs [12].

5.3 Concrete out-of-bounds
This section focuses on a specialty of static checkers and
even compilers: stack and heap out-of-bounds bugs caused
by indices that are always concretely out-of-bounds. There
should be almost none left in the code we check. Surprisingly,
out of the four reports we’ve examined so far, Sys found three
confirmed bugs (with one false positive), including a bountied
bug (Figure 9) in Chrome’s audio muxer. According to the bug

208 29th USENIX Security Symposium USENIX Association

System True False Unknown

Chrome 19 3 2
Firefox 16 6 3
FreeBSD 0 0 1

Total 21 7 4

Figure 8: True bugs and false positives for the out-of-bounds checker. We
have reported all true bugs and they have been confirmed by at least a triage
developer. We run on O1 for this one checker, since duplicate reports from
inlining make production builds overwhelming.

report, fuzzers missed one of the bugs because the incorrect
access was still within the bounds of the object [16].
Static extension: tags three actions:
1. Concrete phi nodes (e.g., phi i32 [5, %label]), which
choose between values flowing into a basic block, and are one
way of loading constants into operands [95].

2. Compiler-generated undef constants [96], used to denote
undefined values (e.g., the result of an undefined operation).
Since undef is a value that allows any bit-pattern, using it as
an index may overflow.

3. Any getelementptr, LLVM’s offset calculation instruc-
tion [94], with a concrete index.
For efficiency, the static pass does a simple analysis to de-
termine which constant values tagged by the first two cases
could reach the third (array index), and passes this informa-
tion to the symbolic checker. The static pass currently ignores
indices into: parent class objects, since these objects may have
a different layout than child object; dynamically-sized struct
fields (i.e., in C++ accesses off the end of arrays of size [1
x type] in structs); single-index out-of-bounds (because of
C++ iterators); and union types. We tried to write a simple
checker, but a smarter checker will likely yield more results.
Symbolic checker: determines that the out-of-bounds index-
ing is possible. Since we are checking a purely concrete prop-
erty, and in contrast to the other checkers, this symbolic pass
just uses Sys to prune false paths.

5.4 Unvalidated user data
Many symbolic tools can’t handle operating systems code,
but Sys handles it as easily as anything else: simply jump
to the code and check it. As a quick proof of concept, we
wrote a checker for FreeBSD, found two confirmed bugs (no
false positives), and stopped [25, 26]. This also shows that
Sys makes it easy to check system-specific properties.

For space reasons we give only a brief summary. The
checker traces untrusted values copied from user space, using
the solver to flag errors if (1) an untrusted value used as an
array index can be enormous; or (2) an untrusted value passed
as a size parameter (e.g., to memcpy) could cause overflow.

6 Evaluation
In this section, we experimentally compare Sys with state-
of-the-art static analysis and symbolic execution tools (§6.1).
We then describe our experience and the experience of others

/* src/media/muxers/webm_muxer.cc */
/* Tiny <opus_header> passed to WriteOpusHeader */

303 uint8_t opus_header[OPUS_EXTRADATA_SIZE];
304 WriteOpusHeader(params, opus_header);

/* WriteOpusHeader writes past <opus_header> */

20 void WriteOpusHeader(const media::AudioParameters&
params, uint8_t* header) {↪→

· · ·
41 if (params.channels() > 2) {
· · ·

48 header[OPUS_EXTRADATA_NUM_COUPLED_OFFSET] = 0;
49 // Set the actual stream map.
50 for (int i = 0; i < params.channels(); ++i) {
51 header[OPUS_EXTRADATA_STREAM_MAP_OFFSET + i] =
52 kOpusVorbisChannelMap[params.channels() - 1][i];
53 }
54 }
· · ·

48 }

Figure 9: Bountied, medium-severity bug in Chrome [2]. The array
opus_header is allocated with OPUS_EXTRADATA_SIZE elements, which is
19. Then, opus_header is passed to WriteOpusHeader, which writes out-of-
bounds of opus_header: the writes on lines 48 and 51 are to index 20 and
21 respectively.

Tool True False Total

Clang 13 108 121
Sys 12 3 18 (3 unknown)
Semmle 2 58 60

Figure 10: Uninitialized memory bugs that each tool found in Fire-
fox.

writing checkers and using Sys to find bugs (§6.2). Finally,
we evaluate the impact of several Sys design choices (§6.3).

6.1 Comparing Sys’s approach
To understand the importance of our extensible, combined
static and symbolic approach for checking large codebases,
we run Sys and a variety of other tools on the Firefox web
browser. We use Firefox instead of Chrome because Chrome
has an intricate build system, one that is hard to interface
with many tools (e.g., Chrome downloads its own version of
its compiler). Overall, we find that Sys works well on larger
code compared to other symbolic execution tools, and it has
a lower false positive rate than standard static analysis tools.
We do not check smaller codebases; existing symbolic tools
can handle this task and users should continue using them.

6.1.1 How does Sys compare to static approaches?

To understand the effect of symbolic reasoning, we compare
Sys to two state-of-the-art static analysis tools—the Clang
Static Analyzer [87] and Semmle [126]—on finding uses of
uninitialized memory. We choose these two analysis tools
because (1) they scale to huge codebases like Firefox and (2)
Mozilla already uses both tools (e.g., they are the two systems
in their new static analysis bug bounty program [119]); there
are many other similar tools [19, 48, 85]. We evaluate the
tools on uninitialized memory bugs because both tools have

USENIX Association 29th USENIX Security Symposium 209

built-in checkers for this bug class—and, for example, Mozilla
already runs the Clang checkers daily.

Clang Clang has six built-in checkers that can identify
uninitialized memory bugs: “assigned value is garbage or
undefined,” “branch condition evaluates to a garbage value,”
“undefined pointer value,” “garbage return value,” “result of
operation is garbage or undefined,” and “uninitialized argu-
ment value.” We ran the six checkers on Firefox; together
they flagged 371 potential bugs. We manually examined each
report to determine: (1) if the report was caused by purported
stack uninitialized memory or by something else (e.g., shift
by a negative number) and (2) for the stack uninit reports,
whether the result was a true positive or a false positive. Ta-
ble 10 summarizes our findings: of the unique stack uninit
flags, Clang found 13 true bugs with 108 false positives.
This contradicts our original hypothesis that few statically-
detectable bugs still exist in browser codebases; instead, we
found that many of the bugs Clang detected were still un-
fixed because of the large number of false positives the tool
produced; examining 371 reports for 13 true uninit bugs is
daunting.7

We marked a bug as a false positive either because the bug
was impossible to reach, i.e., there was no feasible path to
the uninit use, or because the variable was actually initialized
before use. For bugs we were not not completely confident in,
we checked the latest Firefox source for the bug and checked
whether or not the alert had been suppressed by Firefox: if
the bug was still in the source but not in the latest Clang re-
ports, we marked it as a false positive (since it had likely been
suppressed). We also checked the latest Firefox source and
Clang report for bugs we were confident to be true positives.
Of these, eight bugs were either fixed or removed from the
codebase. The other six bugs we marked as true positives
had disappeared from reports, i.e., they were (likely acciden-
tally) suppressed, or some heuristic changed, causing them
to disappear. We reported these bugs to Mozilla, where four
have been confirmed and fixed [17]. In line with previous
work [39], this shows how false positives can turn into false
negatives: if no one is motivated to go through hundreds of
mostly false reports, bugs that a tool finds will never get fixed.

Semmle We also ran Semmle’s default stack uninitialized
memory checker—the cpp/uninitialized-local query—
on Firefox commit cbd75df.8 The checker flagged 465 possi-
ble errors, of which we examined the first 60 alerts. We did
not inspect all the alerts since Semmle requires source mod-
ifications to suppress false positives (as opposed to checker
modifications). Sorting the alerts differently did not change
the list of bugs and, unfortunately, we could not select a ran-
dom sample—the Semmle interface is paginated and presents
a handful of bugs at a time.

7To be fair, some of the 371 reports were duplicates, but Clang does not
automatically de-duplicate reports.

8The Semmle console we had access to only checked this version.

As with Clang reports, we marked a bug as a false positive
either because the bug was impossible to reach or because
the variable was actually initialized before use. Of the 60
flagged bugs, two were true positives. Since they were on the
same line (for two different variables), we filed a single, now
confirmed and fixed, bug [18].

Reasons for false positives In our analysis of the Clang and
Semmle reports, we found that almost all the false positives
were because these static tools do not reason about values.
For example, Semmle flags the color variable on line 157 of:

/* dom/html/HTMLHRElement.cpp */

59 nscolor color;
60 bool colorIsSet = colorValue &&

colorValue->GetColorValue(color);↪→

· · ·
156 if (colorIsSet) {
157 aDecls.SetColorValueIfUnset(eCSSProperty_color, color);
158 }

The variable, however, is conditionally initialized on line 60
(in GetColorValue) and only used on 157 if the condition is
true and the initialization routine succeeded. Extending Clang
and Semmle with basic value reasoning can eliminate simple
false positives like this example, but many of the bugs we
analyzed were more complex—and addressing this problem in
general is precisely a symbolic execution task. Alternatively,
we could send Sys down all paths that Clang or Semmle
identify as possibly buggy.

Reasons for false negatives Sys did not identify the two
Semmle bugs or ten of the thirteen Clang bugs. Four were
due to unentered function calls; four appeared beyond Sys’s
block bound; two bugs were optimized away by the compiler;
one looks safe in LLVM IR, so we are waiting for more
information from Firefox developers; and one is very difficult
to map LLVM IR back to source. Based on these results,
we think that it makes sense to (1) enter all function calls
uninitialized variables are passed to and (2) optimize Sys so
that we can increase its block bound on large codebases.

6.1.2 How does Sys compare to symbolic approaches?

To understand the effect of the static analysis pass, we com-
pare Sys with KLEE and angr running in underconstrained
mode [45, 131].9 We use these tools to represent the fully
symbolic approach and the UC approach, respectively.

Firefox We ran angr in its default configuration (but using
underconstrained mode) to detect uninitialized memory in
Firefox. It spent roughly twenty-four hours in a profiling
function before we stopped it, and it did not detect any errors.
We did not run KLEE on Firefox largely because our angr
experiment: since UC symbolic execution doesn’t scale to the
browser, full symbolic execution is even less likely to.

9KLEE version 2.0 and angr 8.

210 29th USENIX Security Symposium USENIX Association

Checker Static LOC Symbolic LOC

Uninit 132 106
Heap OOB 273 62
Concrete OOB 148 14
User Input 135 13

Total 688 195

Figure 11: Lines of code for each checker (commit 26d7c7af). The whole
system is 6,042 LOC, not including bindings or the compiler or SMT solver,
and the symbolic execution engine is 2,168 LOC.

SQLite We tried to use KLEE on a smaller part of Firefox:
the SQLite 3.28 database shared library.10 We ran KLEE for
three days, configured with a symbolic input file of 4096 bytes
and symbolic stdin of 1024 bytes; we used a large file because
many bugs (e.g., our malloc bug) require very large tables.
The tool produced 1,419,187 test cases in three days, none
of which exposed errors in SQLite (most yielded malformed
database errors or returned the version number of SQLite).
KLEE is more likely to do well given a smaller input file or a
partially concrete and partially symbolic file.

6.2 Experience writing and using checkers
This section describes our experience building and using Sys
and the experience of others using Sys and SysDSL to write
checkers and find bugs.

Building and using Sys Although we spent over a year
building early versions of Sys, things moved quickly once
the system was done: the first author debugged the system,
wrote every checker, and validated and reported all bugs in
about three months. SysDSL allowed us to experiment with
different ways of expressing checked properties and suppress-
ing false positives over that three-month period: recall that
Section 5.1 and Section 5.2 give examples of false positive
suppressions, while Section 5.4 gives a brief rundown of a
system-specific checker for FreeBSD. Each static extension is
under 280 lines of code, while each symbolic checker is under
110 (Figure 11). Making a checker typically took a day or two
of writing code, running the checker, tweaking the checker,
re-running the checker, etc.—and initial results were fast. For
example, we found a CVE in a few minutes the first time we
ran the uninitialized memory checker (on the Prio library [3]).

The largest time sinks were: (1) writing up bug reports
for browser developers to read and (2) coming up with and
implementing false positive suppression heuristics. We dis-
cussed the latter in Section 5. For the former: Sys automati-
cally indicates the exact line on which the bug appears. Using
LLVM’s debug information, we determined which line this
corresponded to in the browser source code, and tried to figure
out if the bug seemed real. Then, for each real bug, we wrote
a report explaining that bug, sent it to browser developers, and
then communicated with those developers about the details
of the report.

10We tried angr on SQLite, too, but ran into implementation bugs (likely
because our use case is not what the tool is actually used for).

Writing checkers To understand the challenges of writing
checkers with SysDSL, we report on the experience of the
second author of this paper writing their first Sys checker.
Their task was to write a checker that could identify simple
use-after-free bugs.

The overall effort took three work days, including testing
and running the checker on FreeBSD and Firefox. The author
used the uninit and user-input checkers as a reference to im-
plement both the static extension and symbolic checker. The
static extension tracks freed variables (and their aliases), and
flags any uses (operands to load and store, and arguments to
function calls). The symbolic checker sets the shadow bits on
free, and checks if any shadow bits are set on load, store, and
call. The false-positive suppression ignores UAFs in reference
counting code.

The final checker (110 LOC extension, 80 LOC symbolic)
flagged a true positive bug in Firefox (in the HarfBuzz text
shaping engine), which was fixed within a few hours of our
report [14]. Sys also flagged a false positive in FreeBSD: a
call with a dangling pointer argument where the called func-
tion did not dereference the dangling pointer. Since passing
dangling pointers across function boundaries is almost always
an error, we will report this bug as well.

This qualitative checker-writing experiment revealed two
challenges. First, Sys needs utilities to more easily inspect
shadow memory; this could have simplified debugging the
UAF checker—and any other checkers that rely on shadow
memory. Second, Sys needs an interactive (mixed LLVM
and source) interface to simplify the task of confirming true
positives. We consider these improvements future work.

Using Sys to check other systems Though we explicitly
designed Sys to be extensible, existing Sys checkers can be
used without modification, too. For example, the program
analysis team at a large company used Sys to check their
custom operating system, which has been analyzed and tested
for seven years since its initial release. The team found three
heap out bounds bugs within a week or two of receiving
the tool. They also found a bug in our checker—specifically
our calloc implementation—that was the source of a false
positive. Finally, they identified similar challenge to our UAF
experiment: some of the checkers’ outputs were confusing
(e.g., at that time, our checkers had different output formats).

6.3 Micro experiments
In this section, we explore two variables that users control
and that can effect checker results: Sys’s block bound and the
checked optimization level. We ran each of these experiments
on Firefox’s Prio library, since it contains at least three unini-
tialized memory bugs, and Sys found these bugs in its default
configuration.

Optimization level We ran the uninitialized memory
checker on optimization levels O0-O3, Os, and Oz, because
LLVM IR for the same program looks different across levels.

USENIX Association 29th USENIX Security Symposium 211

Sys found no bugs at O0 or O1; one bug at Oz; and all three
bugs at O2 (the default level for most of the browser), O3, and
Os. Sys does not find bugs at the lowest optimization levels
because its static analysis pass matches on patterns more com-
mon in production builds; future work is understanding if
Sys can find additional bugs at different, higher optimization
levels in the browser, and determining whether building static
analysis specifically for lower optimization levels can yield
new bugs, as well.11

Block bound We ran Sys on Prio (O2) with block bounds
of 1, 2, 5, 10, 15, 20, and 30. It found three bugs at bounds
five and up; at bound two, it found one bug, and at bound one,
it found zero bugs. This, in combination with our analysis
of Sys’s false negatives, suggests that optimizing the sys-
tem to support longer block bounds is a good first step in
increasing the number of bugs Sys is capable of finding. It’s
possible, though, that longer block bounds will cause more
false positives, since more blocks means more opportunities
for undefined state to affect the analysis.

7 Limitations and future work
Sys skips code and so is not exhaustive: it doesn’t prove the
absence of bugs, and may miss bugs because of false positive
suppression, solver timeouts, loop bound and offset bound
configuration, and the size of the checking window. Other
symbolic execution tools like KLEE, UC-KLEE, and angr
symbolically execute whole programs or whole functions, and
so miss fewer bugs but also cannot scale to check browsers
as written.12 Each tool hits a different point on the trade-off
curve: on the one end, KLEE is designed for exhaustive check-
ing of small programs, while Sys is meant to incompletely
check huge ones (§8). Moreover, angr (for example) could
implement our scaling strategies, or we could modify Sys to
symbolically execute whole functions or programs.

Though Sys has a lower false positive rate than other UC
implementations—angr’s version has “a false positive rate of
93%, in line with . . . UC-KLEE[’s]” [131]—it still produces
false reports. Many of its false positives come from unknown
caller invariants on the functions it checks. About half of these
are obviously false after quick examination; the other half are
hard to reason about. In the future, we plan to eliminate the
easy half by jumping back to callers and re-checking for bugs.

Sys, like all extensible checking systems (e.g., Pin [98],
angr [131], Semmle [126], etc.), requires users to write new
checkers if they want to find new styles of bugs; users may
obviously re-use any existing checkers to find new bugs in
different systems. For example, we re-used each checker on
each different system without modification. Finally, Sys runs
on LLVM IR, which means that developers must be able to
compile their code to use it—which can be a problem in

11For example, it may be able to find undefined behavior bugs that the
compiler optimizes away at higher optimization levels.

12These symbolic tools can also miss bugs due to small sizes of input
objects or their environmental models.

practice, for example, when checking closed source systems,
or when integrating with a new build system [39, 41].

8 Related work
We designed Sys to check huge (browser) codebases that
are thoroughly, continuously, and automatically vetted. To
our knowledge, most other symbolic tools check codebases
that are orders-of-magnitude smaller than browsers, and most
research bug-finding systems in general look at codebases that
are less thoroughly checked by state-of-the-art tools. Since
many of the challenges we ran into arose precisely because of
trying to check very large, very good code, we see our work
as largely complimentary to the existing literature.

Flexible symbolic checking. Analysis tools have been us-
ing extensions to exploit domain- and program-specific knowl-
edge for many years [62, 90, 98, 135]. Symbolic tools have
incorporated these capabilities, but as far as we know, there
is no symbolic checking system designed solely for iterative
bug-finding. UC-KLEE’s main goals were to scale symex
while (1) checking C program correctness without user in-
tervention and (2) avoiding false negatives [114]. Though
UC-KLEE supports checker extensions, the extensions’ false
positive rates are high (80-100% for most checkers), and users
must specify invariants as C annotations (§3).

Woodpecker [59] verifies user-specified rules over com-
plete C programs, so things like false-positive suppression are
irrelevant. Woodpecker is built on KLEE and provides four
built-in checkers, and it appears that users write checkers that
directly manipulate constraints; we discuss Woodpecker more
below. Saturn [143, 144] users write checkers by associating
finite state machines with program objects. Though Saturn
found many locking bugs in the Linux kernel, the tool is not
designed to check large C++ codebases (e.g., it relies on a
custom front-end compiler and IR that models C, and does
not let users encode heuristics or false positive suppressions).

The angr [131] framework, originally designed to compare
different binary analysis techniques, is used for everything
from exploit generation to binary patching. Though we share
similar high-level goals with angr, they focus on easy imple-
mentation of analyses, while we focus specifically on bug
checkers—one level of abstraction higher. angr’s low-level,
untyped interfaces make the tool flexible (e.g., Sys’s scaling
approach could likely be implemented on top of angr to find
bugs in binaries). In our experience these low-level interfaces
also make it hard to use for bug-finding (e.g., from debugging
checkers and heuristics to modifying the tool itself to adding
support for multi-threaded execution; §3). Sys, on the other
hand, is poorly suited to tasks like reverse engineering.

Combined static and symbolic execution. We are not the
first to combine static analysis and symbolic execution. The
most relevant work is Woodpecker [59], which significantly
speeds up symbolic execution by skipping paths that are not
relevant to a given checker. While skipping paths helps, Wood-

212 29th USENIX Security Symposium USENIX Association

pecker still must find a full path to a bug from main. This
problem matters less for them, since they check code that is
orders of magnitude smaller than browsers.

The Dowser system finds buffer overflow vulnerabilities
by combining fuzzing, program analysis, and symbolic ex-
ecution: it performs static analysis to identify complicated
program pieces, and then uses combined symbolic execution
and fuzzing to steer the program towards the target lines [81].
Deadline [145] finds double fetch bugs in OS kernels—Linux
and FreeBSD—by using static analysis to prune uninteresting
paths and focus the symbolic execution to paths that contain
multiple reads. Gadelha et al. [71] implement an extension
to the Clang Static Analyzer that reduces false positives by
encoding the path constraints leading to a bug as SMT con-
straints; if the constraints are unsatisfiable, it suppresses the
bug report (e.g., they find 7% of bugs to be unreachable).
Finally, Parvez et al. [109] use static analysis to identify po-
tentially buggy statements, and then use symbolic execution
to synthesize test cases that hit the statements.

Other systems combine static and symex for failure repro-
duction. Zamfir et al. take a bug report and use a combi-
nation of static analysis and symbolic execution to repro-
duce the bug. Chopper [140] users specify uninteresting
parts of a program, which the tool then excludes (with static
analysis) before performing symbolic execution. Many oth-
ers [34, 59, 66, 73, 78, 79, 93, 112, 118, 120, 130, 147, 153]
similarly combine static analysis and symbolic execution for
testing, verification, and bug finding—from memory leaks to
use-after-frees to buffer overflows. All of these approaches
demonstrate the power of symbolic execution combined with
static analysis. However, none use underconstrained symbolic
execution, which is how Sys scales to large code.

Incomplete symbolic execution. Our incomplete symbolic
execution builds on prior work. UC-KLEE [115], the first
system to support underconstrained symbolic execution [63],
deals with the problem of undefined state by cross-checking
a patched and unpatched function: if the two versions differ
beyond the bug fix, UC-KLEE reports an error. As a result,
all state is defined explicitly by equivalence. Our work can
be seen as a response to UC-KLEE’s (and later, angr’s) open
challenge to reduce the false positive rate of underconstrained
symbolic execution of single versions of functions.

Chopper [140] deals with undefined state by avoiding it: it
lazily executes any state that the path under analysis requires.
Bergan et al. [38], like our work, allows symbolic execution to
start at any program point; they, however, tackle the undefined
state challenge by using context-specific data-flow analysis to
soundly over-approximate the state. In contrast, our symbolic
execution strategy has similarities to call-chain-backward
symbolic execution [99] and iterative verification [110].

Combined concrete and symbolic execution Symbolic
execution tools (e.g., [45, 132, 143, 144]) have been success-
ful at bug finding, test generation, and partial verification. But,

since full symbolic execution struggles to scale [36, 47, 131],
much past work has focused on tackling this challenge. Most
often, modern tools combine symbolic execution with con-
crete execution; these concolic execution tools (e.g., [42, 46,
50, 61, 74–76, 127]) can run long paths in large programs by
executing some code concretely. But the set of code paths
and values are inexhaustible, and thus even these tools can
easily miss errors by not hitting a given path, or not executing
it with the right value. Similar problems arise for other bug
finding systems (e.g., [32, 33, 44, 49]).

Finally, for more information on the benefits and draw-
backs of underconstrained symbolic execution compared to
traditional symbolic execution—in other words, information
on the impact of skipping code—Ramos [113] directly com-
pares KLEE and UC-KLEE along a number of axes (e.g.,
scalability, false positives, etc).

Fuzzing and symbolic execution. Fuzzing has identified
more bugs in browsers than any other approach [30], but
fuzzers have their own scaling challenges. In particular,
fuzzers like AFL [152] have a hard time checking deep code.
In response to this, various systems, including Driller [137],
QSYM [150], CAB-Fuzz [86] and several others (e.g., [97,
100, 108]), combined fuzzing with symbolic execution. T-
Fuzz [111], for example, scales fuzzing by skipping complex
constrains and uses symbolic execution to determine if the
bugs flagged bugs are real; it, however, relies on full symbolic
execution which does not scale to checking browsers.

Extensible static checking. There are many extensible
static frameworks for bug checking [39, 48, 60, 121]. Hallem
et al. [80] present one such system, and the Clang Static Ana-
lyzer [87] allows users to write their own static checks using
an API. Semmle provides a query language for detecting
buggy patterns in source code; they, however, require devel-
opers to add inline source annotations [126]. Joern provides
a query language for finding bugs and “fuzzy” parsing to
avoid constructing full program graphs [85]. These efforts are
largely complimentary; indeed, an future direction is to com-
bine such source-level static analysis with low-level symbolic
execution.

Memory safety bug checkers We are not the first to iden-
tify uninitialized memory, buffer overflow, and use-after-free
bugs; we chose these classes of bugs because they are ag-
gressively checked for and thus good test cases for new tools.
Many static tools identify the bug types we look for: Garmany
et al. build a static analysis framework for detecting unini-
tialized accesses in binaries, identifying seven bugs [72], and
tools like the Clang Static Analyzer [87], Coverity [19], and
Semmle [126] all detect uninitialized memory bugs in source
code. We compare to Clang and Semmle in Section 6; these
tools and others [31, 35, 65, 80, 89, 117, 138, 146] also detect
overflow and use-after-free bugs statically. Finally, Lee et al.
provide a thorough overview of undefined behavior—and how
to view certain bug types as cases of undefined behavior [92].

USENIX Association 29th USENIX Security Symposium 213

Dynamic tools and “sanitizers” [133] can also detect
the bug types Sys finds. MSan [136], UBSan [57], and
ASan [128] automatically instrument programs to detect unini-
tialized reads, undefined behavior, and memory and use-after-
free errors, respectively; Ye et al. reduce the overhead of
MSan on the SPEC2000 benchmark [148]. Valgrind [106]
supports the MemCheck tool [129] that warns about memory
errors like out-of-bounds access and uninitialized memory.

Mitigating memory safety bugs There is a large body of
work on eliminating and mitigating the classes of bugs Sys
checks for. For example, DangSan [141], DangNull [91],
and FreeSentry [149] can mitigate use-after-frees; Baggy-
Bounds [28] and others (we refer the reader to [139]) can
mitigate buffer overflows; and systems like SafeInit [101]
can mitigate uninitialized memory bugs. In practice, browsers
rely on sandboxing to contain the damage caused by these
classes of bugs, and more recently, they have turned to verifi-
cation [154] and memory safe languages like Rust [29, 77].

9 Conclusion
This paper presents Sys, an extensible framework for automat-
ically detecting bugs using a combination of static analysis
and symbolic execution: static analysis identifies potential
errorsites cheaply, while symbolic execution reasons deeply
about whether the sites are actually in error. Developers can
use existing Sys checkers for uninitialized memory, overflow,
and use-after-free bugs, or they can write their own checkers
for custom properties. Sys identifies 51 bugs (four CVEs and
three groups of bounties) in browsers and operating systems.

Acknowledgments
We thank the reviewers, and our shepherd Thorsten Holz for
his insightful comments and help navigating this process.
Many thanks to Ranjit Jhala for his always impeccable guid-
ance. Thanks to Craig Disselkoen for work on an early version
of the tool, and Diana Young, Mike Walfish, David Ramos,
Riad S. Wahby, Andres Nötzli, and Henry Corrigan-Gibbs for
their assistance with both prose and ideas. Thanks to everyone
who responded to our bug reports for Firefox, Chrome, and
FreeBSD, especially Daniel Veditz and Nicholas Nethercote
at Mozilla, and Ed Maste, Gordon Tetlow, and Ali Mashti-
zadeh with FreeBSD. Thanks to Tom Ritter for helping us run
Semmle and Evan Johnson for helping us run angr. Thanks to
Mary Jane Swenson for everything. This work was supported
in part by a gift from Cisco, the NSF under Grant Number
CCF-1918573 and CPS-1931750, and the Global Research
Outreach program of Samsung Research.

References
[1] https://bugzilla.mozilla.org/show_bug.cgi?id=952406.
[2] https:

//bugs.chromium.org/p/chromium/issues/detail?id=930035.
[3] https://bugzilla.mozilla.org/show_bug.cgi?id=1521360.
[4] https://bugzilla.mozilla.org/show_bug.cgi?id=1544181.
[5] https://bugzilla.mozilla.org/show_bug.cgi?id=923799.

[6] https:
//bugs.chromium.org/p/chromium/issues/detail?id=940323.

[7] https:
//bugs.chromium.org/p/chromium/issues/detail?id=922882.

[8] https:
//bugs.chromium.org/p/chromium/issues/detail?id=943345.

[9] https://bugzilla.mozilla.org/show_bug.cgi?id=952406.
[10] https://bugzilla.mozilla.org/show_bug.cgi?id=1544153.
[11] https://bugzilla.mozilla.org/show_bug.cgi?id=1535880.
[12] https://bugzilla.mozilla.org/show_bug.cgi?id=1544178.
[13] https:

//bugs.chromium.org/p/chromium/issues/detail?id=942269.
[14] https://github.com/harfbuzz/harfbuzz/issues/2168.
[15] https://bugzilla.mozilla.org/show_bug.cgi?id=1473278.
[16] https:

//bugs.chromium.org/p/chromium/issues/detail?id=943374.
[17] https://bugzilla.mozilla.org/show_bug.cgi?id=1614250.
[18] https://bugzilla.mozilla.org/show_bug.cgi?id=1615130.
[19] Coverity scan. https://scan.coverity.com/.
[20] Coverity scan: Firefox.

https://scan.coverity.com/projects/firefox/.
[21] Google/ClusterFuzz. https://github.com/google/clusterfuzz.
[22] How SQLite is tested. https://www.sqlite.org/testing.html.
[23] KLEE workshop 2018.

https://srg.doc.ic.ac.uk/klee18/cfpresentations.html.
[24] Testing Mozilla code. https://developer.mozilla.org/en-

US/docs/Mozilla/Testing.
[25] Email correspondence with Ed Maste, Mar. 2019.
[26] Email correspondence with Gordon Tetlow, Apr. 2019.
[27] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan. Building useful

program analysis tools using an extensible java compiler. In
IWCSCAM, 2012.

[28] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds
checking: An efficient and backwards-compatible defense against
out-of-bounds errors. In USENIX Sec, 2009.

[29] B. Anderson, L. Bergstrom, D. Herman, J. Matthews, K. McAllister,
M. Goregaokar, J. Moffitt, and S. Sapin. Experience report:
Developing the Servo web browser engine using Rust.
arXiv:1505.07383, 2015.

[30] A. Arya, O. Chang, M. Moroz, M. Barbella, J. Metzman, and
ClusterFuzz team. Open sourcing ClusterFuzz.
https://opensource.googleblog.com/2019/02/open-
sourcing-clusterfuzz.html, 2019.

[31] K. Ashcraft and D. Engler. Using programmer-written compiler
extensions to catch security holes. In IEEE S&P, 2002.

[32] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG:
Automatic exploit generation. In NDSS, 2011.

[33] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. Enhancing
symbolic execution with veritesting. In ICSE, 2014.

[34] D. Babić, L. Martignoni, S. McCamant, and D. Song. Statically-
directed dynamic automated test generation. In ISSTA, 2011.

[35] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu. Effective static
analysis of concurrency use-after-free bugs in Linux device drivers.
In USENIX ATC, 2019.

[36] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi.
A survey of symbolic execution techniques. ACM Comp. Surv., 51(3),
2018.

[37] C. Barrett, A. Stump, C. Tinelli, et al. The SMT-LIB standard:
Version 2.0. In SMT, 2010.

[38] T. Bergan, D. Grossman, and L. Ceze. Symbolic execution of
multithreaded programs from arbitrary program contexts. In
OOPSLA, 2014.

[39] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few billion
lines of code later: using static analysis to find bugs in the real world.

214 29th USENIX Security Symposium USENIX Association

https://bugzilla.mozilla.org/show_bug.cgi?id=952406
https://bugs.chromium.org/p/chromium/issues/detail?id=930035
https://bugs.chromium.org/p/chromium/issues/detail?id=930035
https://bugzilla.mozilla.org/show_bug.cgi?id=1521360
https://bugzilla.mozilla.org/show_bug.cgi?id=1544181
https://bugzilla.mozilla.org/show_bug.cgi?id=923799
https://bugs.chromium.org/p/chromium/issues/detail?id=940323
https://bugs.chromium.org/p/chromium/issues/detail?id=940323
https://bugs.chromium.org/p/chromium/issues/detail?id=922882
https://bugs.chromium.org/p/chromium/issues/detail?id=922882
https://bugs.chromium.org/p/chromium/issues/detail?id=943345
https://bugs.chromium.org/p/chromium/issues/detail?id=943345
https://bugzilla.mozilla.org/show_bug.cgi?id=952406
https://bugzilla.mozilla.org/show_bug.cgi?id=1544153
https://bugzilla.mozilla.org/show_bug.cgi?id=1535880
https://bugzilla.mozilla.org/show_bug.cgi?id=1544178
https://bugs.chromium.org/p/chromium/issues/detail?id=942269
https://bugs.chromium.org/p/chromium/issues/detail?id=942269
https://github.com/harfbuzz/harfbuzz/issues/2168
https://bugzilla.mozilla.org/show_bug.cgi?id=1473278
https://bugs.chromium.org/p/chromium/issues/detail?id=943374
https://bugs.chromium.org/p/chromium/issues/detail?id=943374
https://bugzilla.mozilla.org/show_bug.cgi?id=1614250
https://bugzilla.mozilla.org/show_bug.cgi?id=1615130
https://scan.coverity.com/
https://scan.coverity.com/projects/firefox/
https://github.com/google/clusterfuzz
https://www.sqlite.org/testing.html
https://srg.doc.ic.ac.uk/klee18/cfpresentations.html
https://developer.mozilla.org/en-US/docs/Mozilla/Testing
https://developer.mozilla.org/en-US/docs/Mozilla/Testing
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html

CACM, 53(2), 2010.
[40] F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala, and

D. Stefan. Finding and preventing bugs in JavaScript bindings. In
IEEE S&P, 2017.

[41] F. Brown, A. Nötzli, and D. Engler. How to build static checking
systems using orders of magnitude less code. In ASPLOS, 2016.

[42] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, D. Song, and H. Yin. Bitscope: Automatically
dissecting malicious binaries. CMU Tech report CS-07-133, 2007.

[43] R. Brummayer and A. Biere. Boolector: An efficient SMT solver for
bit-vectors and arrays. In TACAS, 2009.

[44] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In EuroSys,
2011.

[45] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In OSDI, 2008.

[46] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
Exe: automatically generating inputs of death. TISSEC, 2008.

[47] C. Cadar and K. Sen. Symbolic execution for software testing: three
decades later. CACM, 2013.

[48] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer,
M. Luca, P. O’Hearn, I. Papakonstantinou, J. Purbrick, and
D. Rodriguez. Moving fast with software verification. In NASA
Formal Methods Symposium, 2015.

[49] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing
mayhem on binary code. In IEEE S&P, 2012.

[50] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for
in-vivo multi-path analysis of software systems. In ASPLOS, 2011.

[51] Chrome vulnerability reward program rules.
https://www.google.com/about/appsecurity/chrome-rewards/.

[52] The Clang static analyzer. https://chromium.googlesource.
com/chromium/src/+/HEAD/docs/clang_static_analyzer.md.

[53] Severity guidelines for security issues.
https://chromium.googlesource.com/chromium/src/+/
master/docs/security/severity-guidelines.md.

[54] Chromium code coverage. https://chromium-coverage.appspot.com/.
[55] Address sanitizer.

https://clang.llvm.org/docs/AddressSanitizer.html.
[56] Memory sanitizer.

https://clang.llvm.org/docs/MemorySanitizer.html.
[57] Undefined behavior sanitizer. https:

//clang.llvm.org/docs/UndefinedBehaviorSanitizer.html.
[58] H. Corrigan-Gibbs. Personal communication, Feb. 2019.
[59] H. Cui, G. Hu, J. Wu, and J. Yang. Verifying systems rules using

rule-directed symbolic execution. In ASPLOS, 2013.
[60] D. Distefano, M. Fähndrich, F. Logozzo, and P. W. O’Hearn. Scaling

static analyses at Facebook. CACM, 2019.
[61] B. Elkarablieh, P. Godefroid, and M. Y. Levin. Precise pointer

reasoning for dynamic test generation. In ISSTA, 2009.
[62] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules

using system-specific, programmer-written compiler extensions. In
OSDI, 2000.

[63] D. Engler and D. Dunbar. Under-constrained execution: making
automatic code destruction easy and scalable. In ISSTA, 2007.

[64] Ú. Erlingsson, Y. Younan, and F. Piessens. Low-level software
security by example. In Handbook of Information and
Communication Security. 2010.

[65] D. Evans and D. Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, 19(1), 2002.

[66] J. Feist, L. Mounier, S. Bardin, R. David, and M.-L. Potet. Finding
the needle in the heap: combining static analysis and dynamic
symbolic execution to trigger use-after-free. In SSPREW, 2016.

[67] ASan nightly project. https://developer.mozilla.org/en-
US/docs/Mozilla/Testing/ASan_Nightly_Project.

[68] https://developer.mozilla.org/en-

US/docs/Mozilla/Projects/NSPR.
[69] https://developer.mozilla.org/en-

US/docs/Mozilla/Projects/NSS.
[70] C. Flanagan, C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,

J. B. Saxe, and R. Stata. Extended static checking for Java. In PLDI,
2002.

[71] M. R. Gadelha, E. Steffinlongo, L. C. Cordeiro, B. Fischer, and D. A.
Nicole. SMT-based refutation of spurious bug reports in the Clang
static analyzer. arXiv:1810.12041, 2018.

[72] B. Garmany, M. Stoffel, R. Gawlik, and T. Holz. Static detection of
uninitialized stack variables in binary code. In ESORICS, 2019.

[73] A. Y. Gerasimov. Directed dynamic symbolic execution for static
analysis warnings confirmation. Programming and Computer
Software, 44(5), 2018.

[74] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In PLDI, 2005.

[75] P. Godefroid, S. K. Lahiri, and C. Rubio-González. Statically
validating must summaries for incremental compositional dynamic
test generation. In SAS, 2011.

[76] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox
fuzz testing. In NDSS, 2008.

[77] M. Goregaokar. Fearless concurrency in Firefox Quantum.
https://blog.rust-lang.org/2017/11/14/Fearless-
Concurrency-In-Firefox-Quantum.html.

[78] S. Guo, M. Kusano, and C. Wang. Conc-iSE: Incremental symbolic
execution of concurrent software. In ASE, 2016.

[79] S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta. Assertion
guided symbolic execution of multithreaded programs. In FSE, 2015.

[80] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language
for building system-specific, static analyses. In PLDI, 2002.

[81] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowser: a
guided fuzzer to find buffer overflow vulnerabilities. In USENIX Sec,
2013.

[82] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Winter USENIX Conference, 1991.

[83] R. Helmer, A. Miyaguchi, and E. Rescorla. Testing
privacy-preserving telemetry with prio.
https://hacks.mozilla.org/2018/10/testing-privacy-
preserving-telemetry-with-prio/, 2018.

[84] D. Hovemeyer and W. Pugh. Finding bugs is easy. OOPSLA, 2004.
[85] Joern. https://joern.io/docs/.
[86] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and T. Kim.

CAB-Fuzz: Practical concolic testing techniques for COTS operating
systems. In USENIX ATC, 2017.

[87] T. Kremenek. Finding software bugs with the Clang Static Analyzer.
https://llvm.org/devmtg/2008-
08/Kremenek_StaticAnalyzer.pdf, 2008.

[88] G. Kwong. JavaScript fuzzing in Mozilla, 2017.
https://nth10sd.github.io/js-fuzzing-in-mozilla/.

[89] D. Larochelle and D. Evans. Statically detecting likely buffer
overflow vulnerabilities. In USENIX Sec, 2001.

[90] J. Lawall and G. Muller. Coccinelle: 10 years of automated evolution
in the Linux kernel. In USENIX ATC, 2018.

[91] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee.
Preventing use-after-free with dangling pointers nullification. In
NDSS, 2015.

[92] J. Lee, Y. Kim, Y. Song, C.-K. Hur, S. Das, D. Majnemer, J. Regehr,
and N. P. Lopes. Taming undefined behavior in LLVM. PLDI, 2017.

[93] K. Li. Combining Static and Dynamic Analysis for Bug Detection
and Program Understanding. PhD thesis, UMass Amherst, 2016.

[94] The often misunderstood GEP instruction.
https://llvm.org/docs/GetElementPtr.html.

[95] https://llvm.org/docs/LangRef.html#phi-instruction.
[96] https://llvm.org/docs/LangRef.html#undefined-values.
[97] K. Lu, M.-T. Walter, D. Pfaff, S. Nümberger, W. Lee, and M. Backes.

Unleashing use-before-initialization vulnerabilities in the Linux

USENIX Association 29th USENIX Security Symposium 215

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/clang_static_analyzer.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/clang_static_analyzer.md
https://chromium.googlesource.com/chromium/src/+/master/docs/security/severity-guidelines.md
https://chromium.googlesource.com/chromium/src/+/master/docs/security/severity-guidelines.md
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/ASan_Nightly_Project
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/ASan_Nightly_Project
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://blog.rust-lang.org/2017/11/14/Fearless-Concurrency-In-Firefox-Quantum.html
https://blog.rust-lang.org/2017/11/14/Fearless-Concurrency-In-Firefox-Quantum.html
https://hacks.mozilla.org/2018/10/testing-privacy-preserving-telemetry-with-prio/
https://hacks.mozilla.org/2018/10/testing-privacy-preserving-telemetry-with-prio/
https://joern.io/docs/
https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
https://nth10sd.github.io/js-fuzzing-in-mozilla/
https://llvm.org/docs/GetElementPtr.html
https://llvm.org/docs/LangRef.html#phi-instruction
https://llvm.org/docs/LangRef.html#undefined-values

kernel using targeted stack spraying. In NDSS, 2017.
[98] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In PLDI, 2005.

[99] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. Directed symbolic
execution. In SAS, 2011.

[100] R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE, 2007.
[101] A. Milburn, H. Bos, and C. Giuffrida. Safelnit: Comprehensive and

practical mitigation of uninitialized read vulnerabilities. In NDSS,
2017.

[102] M. Moroz and K. Serebryany. Guided in-process fuzzing of Chrome
components. Google Security Blog, 2016.

[103] Mozilla bug bounty program.
https://www.mozilla.org/en-US/security/bug-bounty/.

[104] Clang static analysis. https://developer.mozilla.org/en-
US/docs/Mozilla/Testing/Clang_static_analysis.

[105] Security severity ratings.
https://wiki.mozilla.org/Security_Severity_Ratings.

[106] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI, 2007.

[107] A. Niemetz, M. Preiner, and A. Biere. Boolector 2.0. JSAT, 9(1),
2015.

[108] B. S. Pak. Hybrid fuzz testing: Discovering software bugs via fuzzing
and symbolic execution. PhD thesis, CMU, 2012.

[109] R. Parvez, P. A. Ward, and V. Ganesh. Combining static analysis and
targeted symbolic execution for scalable bug-finding in application
binaries. In CASCON, 2016.

[110] C. S. Păsăreanu and W. Visser. Verification of Java programs using
symbolic execution and invariant generation. In SPIN, 2004.

[111] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz: fuzzing by
program transformation. In IEEE S&P, 2018.

[112] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed
incremental symbolic execution. In PLDI, 2011.

[113] D. A. Ramos. Under-constrained symbolic execution: correctness
checking for real code. PhD thesis, Stanford University, 2015.

[114] D. A. Ramos. Personal communication, Aug. 2019.
[115] D. A. Ramos and D. Engler. Under-constrained symbolic execution:

Correctness checking for real code. In USENIX Sec, 2015.
[116] J. Regehr. SQLite with a fine-toothed comb.

https://blog.regehr.org/archives/1292.
[117] J. Regehr, A. Reid, and K. Webb. Eliminating stack overflow by

abstract interpretation. TECS, 2005.
[118] M. J. Renzelmann, A. Kadav, and M. M. Swift. Symdrive: Testing

drivers without devices. In OSDI, 2012.
[119] T. Ritter. Adding CodeQL and Clang to our bug bounty program.

https://blog.mozilla.org/security/2019/11/14/adding-
codeql-and-clang-to-our-bug-bounty-program/.

[120] N. Rungta, S. Person, and J. Branchaud. A change impact analysis to
characterize evolving program behaviors. In ICSM, 2012.

[121] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and
C. Jaspan. Lessons from building static analysis tools at Google.
CACM, 61(4), 2018.

[122] C. Sadowski, J. Van Gogh, C. Jaspan, E. Söderberg, and C. Winter.
Tricorder: Building a program analysis ecosystem. In ICSE, 2015.

[123] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
TOCS, 15(4), 1997.

[124] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to
know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In IEEE S&P, 2010.

[125] Security at Mozilla. https://wiki.mozilla.org/security.
[126] Semmle. https://semmle.com/.
[127] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing

engine for C. In ESE-FSE, 2005.
[128] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Address-

Sanitizer: A fast address sanity checker. In USENIX ATC, 2012.
[129] J. Seward and N. Nethercote. Using valgrind to detect undefined

value errors with bit-precision. In USENIX ATC, 2005.
[130] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna.

Firmalice: Automatic detection of authentication bypass
vulnerabilities in binary firmware. In NDSS, 2015.

[131] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna.
SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis. In IEEE S&P, 2016.

[132] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A new
approach to computer security via binary analysis. In ICISS, 2008.

[133] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen,
and M. Franz. Sok: Sanitizing for security. In IEEE S&P, 2019.

[134] SQLite Documentation. The virtual table mechanism of SQLite.
https://sqlite.org/vtab.html.

[135] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. In PLDI, 1994.

[136] E. Stepanov and K. Serebryany. MemorySanitizer: fast detector of
uninitialized memory use in C++. In CGO, 2015.

[137] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Krügel, and G. Vigna. Driller: Augmenting
fuzzing through selective symbolic execution. In NDSS, 2016.

[138] H. Stuart. Hunting bugs with Coccinelle. Master’s thesis, University
of Copenhagen, 2008.

[139] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in
memory. In IEEE S&P, 2013.

[140] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar. Chopped
symbolic execution. In ICSE, 2018.

[141] E. Van Der Kouwe, V. Nigade, and C. Giuffrida. Dangsan: Scalable
use-after-free detection. In EuroSys, 2017.

[142] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek.
Improving integer security for systems with KINT. In OSDI, 2012.

[143] Y. Xie and A. Aiken. Saturn: A SAT-based tool for bug detection. In
CAV, 2005.

[144] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. In POPL, 2005.

[145] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim. Precise and scalable
detection of double-fetch bugs in OS kernels. In IEEE S&P, 2018.

[146] H. Yan, Y. Sui, S. Chen, and J. Xue. Spatio-temporal context
reduction: A pointer-analysis-based static approach for detecting
use-after-free vulnerabilities. In ICSE, 2018.

[147] G. Yang, S. Khurshid, S. Person, and N. Rungta. Property
differencing for incremental checking. In ICSE, 2014.

[148] D. Ye, Y. Sui, and J. Xue. Accelerating dynamic detection of uses of
undefined values with static value-flow analysis. In CGO, 2014.

[149] Y. Younan. FreeSentry: protecting against use-after-free
vulnerabilities due to dangling pointers. In NDSS, 2015.

[150] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM: A practical
concolic execution engine tailored for hybrid fuzzing. In USENIX
Sec, 2018.

[151] A. Zaks and J. Rose. How to write a checker in 24 hours. https:
//llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf,
2012.

[152] M. Zalewski. American fuzzy lop.
http://lcamtuf.coredump.cx/afl.

[153] Y. Zhang, Z. Chen, J. Wang, W. Dong, and Z. Liu. Regular property
guided dynamic symbolic execution. In ICSE, 2015.

[154] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche.
HACL*: A verified modern cryptographic library. In ACM CCS,
2017.

216 29th USENIX Security Symposium USENIX Association

https://www.mozilla.org/en-US/security/bug-bounty/
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Clang_static_analysis
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Clang_static_analysis
https://wiki.mozilla.org/Security_Severity_Ratings
https://blog.regehr.org/archives/1292
https://blog.mozilla.org/security/2019/11/14/adding-codeql-and-clang-to-our-bug-bounty-program/
https://blog.mozilla.org/security/2019/11/14/adding-codeql-and-clang-to-our-bug-bounty-program/
https://wiki.mozilla.org/security
https://semmle.com/
https://sqlite.org/vtab.html
https://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf
https://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf
http://lcamtuf.coredump.cx/afl

	Introduction
	System overview
	Finding the bug is hard
	How Sys finds the bug

	SysDSL design
	Static extensions
	Specifying symbolic constraints is hard
	Our solution: SysDSL

	Memory design
	Using Sys to find bugs
	Uninitialized memory
	How the checker works
	Checker results

	Heap out-of-bounds
	Concrete out-of-bounds
	Unvalidated user data

	Evaluation
	Comparing Sys's approach
	How does Sys compare to static approaches?
	How does Sys compare to symbolic approaches?

	Experience writing and using checkers
	Micro experiments

	Limitations and future work
	Related work
	Conclusion

