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Abstract
Click-jacking protection on the modern Web is commonly
enforced via client-side security mechanisms for framing
control, like the X-Frame-Options header (XFO) and Con-
tent Security Policy (CSP). Though these client-side security
mechanisms are certainly useful and successful, delegating
protection to web browsers opens room for inconsistencies in
the security guarantees offered to users of different browsers.
In particular, inconsistencies might arise due to the lack of
support for CSP and the different implementations of the un-
derspecified XFO header. In this paper, we formally study
the problem of inconsistencies in framing control policies
across different browsers and we implement an automated
policy analyzer based on our theory, which we use to assess
the state of click-jacking protection on the Web. Our analysis
shows that 10% of the (distinct) framing control policies in
the wild are inconsistent and most often do not provide any
level of protection to at least one browser. We thus propose
recommendations for web developers and browser vendors
to mitigate this issue. Finally, we design and implement a
server-side proxy to retrofit security in web applications.

1 Introduction

The Web is the largest distributed system in the world, and it
boasts an incredible variety and complexity. Unfortunately,
complexity is where attackers lurk. To assist developers in
securing their applications, the Web platform has evolved to
support more and more server-sent, yet client-enforced se-
curity mechanisms. This approach is appealing because it
offers uniform and well-thought defenses to as many Web
developers as possible. Examples of popular client-side secu-
rity mechanisms include Content Security Policy (CSP) [25],
cookie security attributes [3], and HSTS [11].

Although client-side security mechanisms are undoubt-
edly useful and successful [23], delegating protection to Web
browsers might introduce inconsistencies in the security guar-
antees offered to users of different browsers. The most obvi-
ous case is when legacy browsers access Web applications,

but problems might also arise when the same defense is imple-
mented differently across modern browsers [21]. In this paper,
we are concerned about inconsistencies in framing control, a
cornerstone of Web application security, which pioneered the
adoption of client-side security mechanisms.

Framing control constrains the inclusion of Web content
inside iframes (sub-documents) opened by malicious pages
and it is particularly useful to prevent click-jacking attacks [7].
The original defense against click-jacking back in the days
was the use of JavaScript-based frame busters. These scripts,
placed in pages for which framing should be forbidden, merely
checked conditions like self == top to assess whether they
were loaded in the top-most frame. If not, they would navigate
the top frame away. Unfortunately, researchers showed that
this solution was often ineffective [20]. In 2009, Internet Ex-
plorer introduced the X-Frame-Options header (XFO) as a
simple, browser-based mechanism to control framing without
relying on JavaScript. This header gained extensive popularity
and was quickly adopted by all the other major browsers. Un-
fortunately, since XFO was not standardized a priori, different
browser vendors provided different implementations, leading
to differing support of its directives and attacks like double
framing in some browsers [20]. In 2014, the second iteration
of the CSP specification introduced the frame-ancestors
directive to control framing, with the goal of obsoleting XFO
and to offer a comprehensive, uniform protection mechanism
for all CSP-compliant browsers.

The way in which the Web platform evolved hints at the fact
that the state of click-jacking protection on the Web is brittle.
Most browsers provide two different defenses in the form of
XFO and CSP, possibly with different implementations, and
developers may choose to use any of these two mechanisms,
or a combination thereof, to protect their Web applications.
Given such complexity and the diverse levels of support for
framing control, this potentially gives rise to inconsistencies.
In this paper, we conduct a comprehensive study of the dif-
fering behavior of major browsers and introduce and apply a
simple formal framework to study the problem in the wild.
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Contributions. We make the following contributions:

1. we introduce a formal framework designed to rigorously
study the problem of inconsistencies in framing control,
based on existing work on the CSP semantics [4]. We
use this framework to formalize the notion of policy
consistency and to observe that not every inconsistency
is equally dangerous. We thus propose more relaxed
definitions which admit limited types of inconsistencies
and might be justified by how the Web platform has been
evolving (Section 3);

2. we develop a policy analyzer (dubbed FRAMECHECK)
based on the proposed theory, which enables an auto-
mated security assessment of the state of click-jacking
protection on a given Web page. Our implementation
leverages a comprehensive set of test cases designed to
understand how existing browsers implement the loosely
specified XFO header. The test cases are of indepen-
dent interest since they highlight potentially dangerous
practices in major browsers (Section 4);

3. we run FRAMECHECK on policies collected from 10,000
popular websites from the Tranco list [18] and we assess
their effectiveness. Our experiments show that 10% of
the (de-duplicated) policies are inconsistent. Hence we
carry out a systematic analysis of the main causes of
inconsistency and their practical import. We also discuss
the impact of the selected browsers on the results of our
study, reasoning on the road forward for click-jacking
protection (Section 5);

4. we present recommendations for developers and browser
vendors to mitigate the dangers of the framing control
inconsistencies that are currently affecting the Web. We
also design and implement a server-side proxy to retrofit
security in existing Web applications, which we release
as open-source software (Section 6).

Artifact Availability. In the interest of open science, we
make both our server-side proxy and the FRAMECHECK core
available online.1,2

2 Background

In this section, we review framing-based attacks and the most
popular client-side defense mechanisms against them.

2.1 Framing-based Attacks
The nature of HTML and CSS allows the developers of a
Web site fine-grained control over how elements are placed
and shown in the browser. This feature, which is one of the

1https://github.com/cispa/framing-control-proxy
2https://github.com/cispa/framing-control-analytics

core pillars of the Web’s success, can, however, be abused by
attackers to their advantage. In particular, an attacker can trick
their victims into clicking elements in another Web applica-
tion. One popular example is the so-called like-jacking attack
on social networks. Here, an attacker creates a page with an
element a user is likely to click, e.g., a button promising some
premium content. Then, the attacker adds an iframe pointing
to a page with a Like button (e.g., from Facebook) at the same
coordinates, and use CSS to make the iframe fully transpar-
ent. When the user tries to click the button for the premium
content, she unknowingly clicks into the frame, inadvertently
invoking the like functionality. In general, we refer to such
attacks where the adversary lures the victim into unknowingly
clicking a link on a different page as click-jacking.

2.2 X-Frame-Options
Starting from 2009, browser vendors picked up on the increas-
ing danger of click-jacking and similar attacks, and Internet
Explorer was the first browser to implement the so-called
X-Frame-Options (XFO) header [9]. This header allows a
site to control which other origins may frame it. At that time,
Firefox and Internet Explorer supported three different direc-
tives for the XFO header: SAMEORIGIN to allow framing
only from pages with the same origin (i.e., protocol, host,
and port), ALLOW-FROM origin to selectively allow framing
from a single origin or DENY to block framing completely.

Importantly, although an XFO specification exists in the
form of RFC 7034 [9], that specification was written after
various browsers had implemented XFO and notes that “not
all browsers implement X-Frame-Options in exactly the same
way, which can lead to unintended results”. In particular, the
ALLOW-FROM directive is not universally supported by all
browsers: most importantly, all Chromium derivates do not
understand this directive. Additionally, browsers might im-
plement SAMEORIGIN (and ALLOW-FROM) differently
because the origin check for framing can be performed in dif-
ferent ways. According to the specification, the check can be
based “on the origin of the framed page and the top-level
browsing context”, on “the framed page and the framing
page”, or on “the whole chain of nested frames in between”.
When the XFO specification was originally written, the first
practice was the most common, yet such implementation is po-
tentially insecure because it opens the way to double framing
attacks, where the attacker relies on multiple nested frames to
circumvent existing defense mechanisms [20].

Overall, we find that XFO is indeed inconsistently imple-
mented across browsers. We dive deeper into the actual incon-
sistencies and their impact in Section 4.2.

2.3 Content Security Policy
Given the problems of the underspecified XFO header, the
Web security community proposed to incorporate framing
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control into Content Security Policy (CSP). While initially
meant as a means of mitigating injection attacks, CSP nowa-
days offers support for framing control and TLS enforcement
as well. As a recent study has shown, CSP is equally widely
used for these use cases as it is for its original purpose [19].

In particular, framing control in CSP can be enforced
through the frame-ancestors directive. This solution has
a clear advantage over XFO due to its standardized support
and additional expressiveness. First, as the name suggests, the
frame-ancestors directive performs the origin check for
framing based on the whole chain of nested frames (ances-
tors) between the top-level browsing context and the framed
page, which offers the strongest security guarantees by ruling
out double framing. Moreover, CSP is strictly more expres-
sive than XFO, since it can take advantage of the full CSP
syntax, which allows one to whitelist an arbitrary (possibly
empty) list of origins. For example, the DENY directive of
XFO can be simulated by setting the frame-ancestors di-
rective to ’none’, while the SAMEORIGIN directive can be
simulated by setting it to ’self’. Even better, CSP can be
easily used to whitelist all subdomains of given domains, e.g.,
frame-ancestors *.foo.com *.bar.com, which cannot
be expressed through XFO. Hence, administrators have an
easier job at maintaining a whitelist of sites through CSP;
achieving the same through XFO is only possible by checking
the Referer header of incoming HTTP requests. This header is
sent by browsers and indicates the document which initiated
the loading of a specific resource (in this case, an iframe).
Hence, this can be combined with server-side logic to check
the transmitted header against a whitelist, and respond with
a corresponding ALLOW-FROM header. We refer to this
mechanism as Referer sniffing.

In this paper, we refer to browsers supporting framing con-
trol via CSP as modern browsers; we deem all the other
browsers as legacy. According to the CSP specification, mod-
ern browsers must ignore the XFO headers in the presence
of a CSP, which includes a frame-ancestors directive. At
the same time, however, XFO is still the only way for a site to
control framing in legacy browsers. Given the difference in
expressiveness between the two types of security mechanisms,
this can cause inconsistencies when visiting the same page
with different browsers.

3 Formal Framework

In this section, we lay the theoretical grounds for our research
by formalizing the notion of policy consistency. We then
observe that not every inconsistency is equally dangerous and
propose more relaxed definitions which admit limited types
of inconsistencies. We also argue why these definitions are of
practical interest by taking into account the current state of
the Web platform and its evolution.

Schemes s ::= http | https
Host Expressions h ::= * | *.string | string
Source Expressions e ::= ’self’ | s | h | (s,h)
Directive Values v ::= {e1, . . . ,en}

Table 1: Syntax of CoreCSP

3.1 Policy Semantics
Since CSP is more expressive than XFO, it is straightforward
to translate every XFO policy into an equivalent CSP policy.
Hence, we can define the semantics of every framing control
policy on top of the CoreCSP framework, which provides
a simple denotational semantics for the content restriction
fragment of CSP [4]. In particular, one can interpret the set
of origins from which framing is allowed using source ex-
pressions, i.e., a sort of regular expressions representing a
set of origins. The semantics of a framing control policy is
then given by a directive value, i.e., a set of source expres-
sions defining the origins where framing is allowed. The
productions in Table 1 define the main syntactic categories
of CoreCSP used in the present section. Note that, though
relatively close to the original CSP syntax, CoreCSP abstracts
from several details, which can still be easily modeled. For
example, the ’none’ source expression of CSP is represented
by the directive value /0 (framing is not allowed anywhere).

To understand how the CoreCSP denotational semantics
is defined, assume that http://www.foo.com deploys the
following CSP:

frame-ancestors *.foo.com https://*

Since the protected page is served over HTTP, the seman-
tics of the policy is formalized by the directive value
{(http,∗.foo.com),(https,∗)}. However, note that this as-
sumes the use of a modern browser since any legacy browser
which does not support CSP will ignore the policy and enforce
no framing restriction. This can be modeled by giving the
semantics of the policy in terms of the more liberal directive
value {(http,*),(https,∗)}.

More generally, since the same policy might be enforced
differently by different browsers and the same Web page may
also send different policies to different user agents, we let
JwKb stand for the directive value representing the framing
restrictions enforced on the page w by the browser b. We
postpone to Section 4 the definition of J·K· for the browsers of
interest and develop a general theory in the present section.

3.2 Formal Definitions
We build on CoreCSP because directive values can be ordered
by a relation v such that v1 v v2 if and only if the set of
origins represented by v1 is contained in the set of origins
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represented by v2 [4]. CoreCSP allows us to readily formalize
the intuition of a consistent policy, i.e., a policy that enforces
the same restrictions across all browsers.

Definition 1 (Consistent Policy). The policy of the Web page
w is consistent for the set of browsers B if and only if, for all
b1,b2 ∈ B, we have JwKb1 v JwKb2 and JwKb2 v JwKb1 .

Example 1. Consider a Web site which only relies on XFO
for framing control, specifying the policy:

ALLOW-FROM https://www.example.com

This policy is inconsistent, because it restricts framing in
Edge, but leaves Chrome users completely unprotected.3 To
improve protection, the Web site might then additionally spec-
ify a CSP of the following form:

frame-ancestors https://www.example.com

The revised framing control policy is consistent for Edge and
Chrome since CSP takes precedence over XFO. Hence, the
users of these two browsers are equally protected.

Though consistency is undoubtedly a desirable property
of policies, there might be practical reasons why real-world
framing control policies are inconsistent. In particular, the
limited expressiveness of XFO complicates the deployment of
useful policies, which instead are trivial to specify using CSP,
e.g., enabling framing from multiple origins or arbitrary sub-
domains of a trusted domain. Operators can work around this
limitation by shipping different ALLOW-FROM directives to
different pages through Referer sniffing, yet this requires the
implementation of additional logic. We thus see pragmatic
reasons why XFO and CSP headers might contain mismatches
leading to inconsistencies, but (luckily) we also notice that
not all the inconsistencies are equally dangerous. We provide
an example below.

Example 2. Assume that https://www.example.com only
relies on CSP for framing control, specifying the policy:

frame-ancestors https://*.example.com

This policy is inconsistent, because it restricts framing in
Chrome, but does not protect the users of legacy browsers
without CSP support. To improve protection, the Web site
might then additionally specify an XFO policy of the form:

SAMEORIGIN

The revised policy is still inconsistent, yet it provides tighter
security than the original one and is straightforward to deploy,
so it might be more appealing for Web developers. Note that
since the XFO policy is less permissive than the CSP policy,
this might lead to compatibility issues in legacy browsers, e.g.,
if framing is required from https://mail.example.com,
yet users of such browsers are protected against click-jacking.

3For details on the exact support for XFO and CSP in major browsers,
see Section 4.2.

By elaborating on the previous example, we identify a new
class of policies that has a useful property: legacy browsers
are all in agreement on how the policy should be enforced,
all modern browsers also share the same policy interpreta-
tion, but legacy browsers might be more conservative than
modern browsers. This ensures that users of legacy browsers
are protected and that no inconsistency arises among users
of modern browsers, yet users of legacy browsers might be
affected by compatibility issues. Formally, this is formulated
by the following definition.

Definition 2 (Security-Oriented Policy). The policy of the
Web page w is security-oriented for the set of browsers B if
and only if it is possible to partition B in two sets Bl ,Bm such
that all these properties hold true:

• Bl only includes legacy browsers and Bm only includes
modern browsers;

• the policy of w is consistent for both Bl and Bm;

• for all b1 ∈ Bl and b2 ∈ Bm we have JwKb1 v JwKb2 .

The last class of policies we consider still arises from the
expressiveness gap between XFO and CSP yet makes the
opposite choice of security-oriented policies: while it is still
true that legacy browsers all give the same semantics to the
policy, as well as modern browsers, the policy interpretation
given by legacy browsers might be more liberal than one
of the modern browsers. This ensures that users of legacy
browsers can access the Web application without compati-
bility issues and that no inconsistency arises among users
of modern browsers. Nevertheless, users of legacy browsers
might be left unprotected.

Definition 3 (Compatibility-Oriented Policy). The policy
of the Web page w is compatibility-oriented for the set of
browsers B if and only if it is possible to partition B in two
sets Bl ,Bm such that all these properties hold true:

• Bl only includes legacy browsers and Bm only includes
modern browsers;

• the policy of w is consistent for both Bl and Bm;

• for all b1 ∈ Bl and b2 ∈ Bm we have JwKb2 v JwKb1 .

Example 3. The original policy of Example 2 is inconsistent,
yet compatibility-oriented. It is an insecure policy, but it might
be a plausible choice for Web developers who are particularly
concerned about compatibility with legacy browsers not sup-
porting CSP, where no restriction is actually enforced. Instead,
the original policy of Example 1 is not even compatibility-
oriented, since two modern browsers like Chrome and Edge
give different interpretations to the policy, due to Chrome’s
lack of support for ALLOW-FROM.
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To summarize, we argue that consistency is the most desir-
able property for framing control policies since it implies the
same policy interpretation in all browsers. Security-oriented
policies can offer a proper level of protection on legacy
browsers but might introduce compatibility issues with them.
Compatibility-oriented policies might sacrifice protection on
legacy browsers, but are backward compatible with them and
thus potentially appealing to Web developers. Observe that a
policy is consistent if and only if it is both security-oriented
and compatibility-oriented.

Inconsistent policies which are neither security-oriented
nor compatibility-oriented are generally hard to justify as
correct because they fall in one of the following cases:

• two legacy browsers interpret the policy differently;

• two modern browsers interpret the policy differently;

• none of the above is true, yet legacy browsers and mod-
ern browsers give two incomparable interpretations of
the same policy.

We refer to such policies as unduly inconsistent.

4 Policy Analyzer

We designed and implemented FRAMECHECK, an automated
analyzer of framing control policies based on our theory.
Given a URL to analyze, FRAMECHECK produces a security
report on its state of click-jacking protection. We explain the
details of the analyzer in the rest of this section.

4.1 FRAMECHECK Description
Our tool is parametric with respect to a set of browsers B.
Each browser b ∈ B is characterized by two ingredients:

1. its user-agent string UAb, defining how the browser
presents itself to Web applications;

2. the semantics J·Kb, expressed as a function translating a
list of HTTP headers into a directive value of CoreCSP.

The user-agent string UAb can be easily found by inspect-
ing the HTTP requests sent by the browser, e.g., using the
developers’ tools. At the same time, the semantics J·Kb can
be identified either by manual source code inspection (in the
case of open-source browsers) or by reverse-engineering.

Our implementation supports the 10 most popular browsers
according to data from Can I Use.4 For each browser, we
downloaded the latest available version with at least 1%
of market share5 and we reverse-engineered its semantics
through an exhaustive set of test cases (see Section 4.2). The

4https://caniuse.com
5Note that Chrome derivates like Brave also show their UA as Chrome,

leading to a slight over-approximation of Chrome usage.

Browser Name Type Version Market

Chrome Desktop 76 ∼ 23%
Chrome for Android Mobile 76 ∼ 35%
Edge Desktop 18 ∼ 2%
Firefox Desktop 69 ∼ 4%
Internet Explorer Desktop 11 ∼ 2%
Opera Mini Mobile 44.1 ∼ 1%
Safari Desktop 12.3 ∼ 2%
Safari for iOS Mobile 12.3 ∼ 10%
Samsung Internet Mobile 10.1 ∼ 3%
UC Browser Mobile 12.12 ∼ 3%

Table 2: Browsers considered in the present study

set of browsers under study is shown in Table 2: only two
browsers do not support framing control via CSP, i.e., Internet
Explorer and Opera Mini, which we deem as legacy. Note
that, according to Can I Use, Opera Mini does not support
any mechanism for framing control. However, we installed
the latest available version from the Google Play Store, and,
according to our tests, Opera Mini, in fact, supports XFO.

Given a Web page w to analyse, FRAMECHECK first ac-
cesses w once for each b ∈ B, sending the corresponding
user-agent string UAb. Since w may redirect requests from
different browsers to different landing pages, e.g., to provide
a mobile-friendly variant of the page, this process eventually
identifies a set of pairs of the form (Bi,wi), where Bi ⊆ B and
wi is the landing page of w for each b j ∈ Bi. For each iden-
tified pair (Bi,wi), FRAMECHECK computes JwiKb j for each
b j ∈ Bi and produces a security report on policy consistency
based on the definitions in Section 3.

4.2 Test Cases
In total, we developed more than 40 test cases to reconstruct
the semantics of the underspecified XFO header in our set
of browsers. We designed the test cases through a careful
analysis of the XFO specification [9] and a preliminary in-
spection of a large set of framing control policies collected
in the wild by a simple crawler. Hence, the test cases are not
esoteric examples of problems that might possibly arise in
theory, but rather represent classes of potentially ambiguous
policies that we observed in practice. We report below on the
most interesting findings.

4.2.1 Support for ALLOW-FROM

Though it is widely known that Chrome does not support
ALLOW-FROM, it turns out that only 3 out of 10 browsers
actually support this XFO directive: Edge, Firefox6 and Inter-
net Explorer. This means that every Web page which adopts

6During our project, Firefox dropped support for ALLOW-FROM in
version 70. We discuss the impact of this recent change in Section 5.4.
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the ALLOW-FROM directive, but does not deploy a corre-
sponding CSP, implements inconsistent protection against
click-jacking and leaves (at least) 7 browsers unprotected.

We also tested what happens when the ALLOW-FROM
directive is not followed by a valid serialized origin (e.g.,
https://example.com), as mandated by the XFO specifica-
tion. In all the cases we tested, the browser implementations
were conservative and denied framing, thus behaving as in
the case of the DENY directive. There is one exception to
this rule, though: Edge also supports the use of ALLOW-
FROM with a hostname like example.com (without scheme).
The corresponding interpretation is the following: if the pol-
icy is applied to an HTTP page, framing is allowed from
example.com over both HTTP and HTTPS; if instead, the
policy is applied to an HTTPS page, framing is only allowed
from https://example.com. This interpretation is sensible
from a security perspective because it mimics the behavior
of source expressions in the CSP specification. However, it
is worth noting that this introduces room for inconsistencies
with other browsers, where framing is denied if the provided
value is not a proper origin.

4.2.2 Support for Multiple Headers

When the same Web page sends multiple XFO headers, most
of the tested browsers simultaneously enforce all of them:
this is the case for 7 out of 10 browsers. Unfortunately, we
observed that Edge, Internet Explorer and Opera Mini only en-
force the first header and discard the other ones, which might
lead to inconsistencies. For example, consider the following
two headers:

X-Frame-Options: SAMEORIGIN
X-Frame-Options: DENY

This policy prevents framing in most browsers, since two di-
rectives are simultaneously enforced, and one of them denies
framing. However, this policy allows same-origin framing in
Edge, Internet Explorer and Opera Mini. Observe that this
policy would not have been inconsistent if the two headers
had been swapped.

4.2.3 Parsing of Header Values

The HTTP protocol specification in RFC 7230 mandates that
it must be possible to replace multiple headers with the same
name with a single header that includes a comma-separated
list of the header values [8]. Therefore, the standard implies
that browsers must be able to handle headers of the following
form correctly:

X-Frame-Options: SAMEORIGIN, DENY

This policy prevents framing in most browsers since it is in-
terpreted as two headers, one of which denies framing (see
above). However, we discovered unexpected behaviors in 3

browsers: Edge, Internet Explorer and Opera Mini. In particu-
lar, we observed that these browsers do not split the header
value on commas and rather parse the list as a single value,
which is interpreted as a non-existing directive, i.e., not en-
forcing any framing restriction. This also happens when the
same directive is repeated multiple times, such as in the case
of DENY, DENY. This behavior has a particularly subtle impli-
cation on the interpretation of policies like:

X-Frame-Options: ALLOW-FROM <orig1>, <orig2>

Firefox parses this policy as two separate headers, one allow-
ing framing from the first origin and the other one containing
an incorrect value, which does not enforce any framing re-
striction: as a result, framing is only allowed from the first
origin. Internet Explorer, instead, blocks every form of fram-
ing, since ALLOW-FROM is not set to a serialized origin.
Remarkably, none of these two interpretations matches what
the Web developer likely had in mind, i.e., whitelisting two
different origins.

4.2.4 Double Framing Protection

Finally, we observed that most browsers implement XFO in a
way that is robust against double framing attacks. This shows
that current implementation practices had improved since the
original XFO specification when all browsers used to perform
origin checks for framing based on the top-level browsing
context alone [9]. However, there are still 3 browsers that are
susceptible to double framing attacks: Edge, Internet Explorer,
and UC Browser.

In the rest of the paper, we do not consider inconsistencies
arising from double framing, because otherwise even trivial
XFO policies like SAMEORIGIN would be considered inconsis-
tent and bias our study. This also implies that we do not need
to take the full browsing context into account when defining
the semantics of framing control policies in our framework,
which is useful to keep the presentation simple.

4.2.5 Summary

The summary of our analysis is shown in Table 3. Based on
our extensive set of test cases, we identified 6 different seman-
tics across the 10 browsers we considered, without counting
the unexpected support for hostnames in ALLOW-FROM im-
plemented in Edge: this means that the room for inconsistent
click-jacking protection is significant. Out of the 10 tested
browsers, Firefox 69 is the only one that faithfully implements
the specifications we checked, while Opera Mini offers little
to no protection against click-jacking, because it does not im-
plement CSP, it does not support ALLOW-FROM, and even
basic XFO directives like SAMEORIGIN and DENY can be
incorrectly enforced due to other quirks in the treatment of
HTTP headers.
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Browser CSP ALLOW-FROM Multiple Headers Header Parsing Double Framing

Chrome 3 7 3 3 3
Chrome for Android 3 7 3 3 3
Edge 3 3 7 7 7
Firefox 3 3 3 3 3
Internet Explorer 7 3 7 7 7
Opera Mini 7 7 7 7 3
Safari 3 7 3 3 3
Safari for iOS 3 7 3 3 3
Samsung Internet 3 7 3 3 3
UC Browser 3 7 3 3 7

Table 3: Framing control semantics of popular browsers

5 Analysis in the Wild

In this section, we report on a large-scale analysis performed
in the wild with our policy analyzer. Our analysis shows that
many popular Web sites implement inconsistent protection
against click-jacking and sheds light on the root causes of this
potential security problem.

5.1 Data Collection
To assess inconsistencies at scale, we decided to analyze the
top 10,000 sites from the Tranco list of October 29, 2019.
As we did not only want to check the start pages in a static
manner, we instead used a Chrome-based crawler to visit the
start pages, collect all links on them, and follow those links
up to at most 500 items per site. (Here, “site” refers to the
registrable domain name or eTLD+1.) In doing so, we did not
only collect the headers delivered with the pages we visited,
but also those of all iframes on the visited pages. This way, we
were able to (partially) account for sites where only specific
pages are protected against framing-based attacks. We then
retrieved the XFO and CSP headers of the collected URLs,
sending each request to a URL once for each of the different
user-agent strings considered in our study.

For this step, we primarily relied on Python’s Requests
library to collect data. However, Requests folds multiple re-
sponse headers with the same name into a comma-separated
list, as specified in RFC 7230 [8]. As discussed in Section 4.2,
browsers do not necessarily follow this specification, but
might rather consume each header separately, meaning that
Requests’ approach to parsing headers would not properly ac-
count for that. Therefore, in case we detect a comma in either
the XFO or CSP header, we fall back to curl, which outputs
the headers line-by-line. To further improve resiliency against
possible crawling errors, we filtered out from the dataset all
the pages where we observed that at least one user agent was
not receiving the XFO or CSP headers, while other user agents
were. Though this might lose some inconsistencies, e.g., when
CSP headers are not actually sent to legacy browsers, we pre-

ferred to be conservative and work on more reliable data rather
than risking to unduly exacerbate the number of inconsisten-
cies in the wild. In particular, we found that several pages did
not consistently deliver the same XFO and/or CSP headers,
even when visited multiple times with the same User-Agent
string. Finally, we performed a de-duplication of the collected
framing control policies by removing all the duplicate combi-
nations of XFO and CSP policies collected within the same
origin, to avoid biasing the dataset construction towards ori-
gins with hundreds of pages all using the same policy.

At the end of the data collection process, we visited 989,875
URLs overall. Of those, 369,606 URLs (37%) across 5,835
sites carried either an XFO or CSP header aimed at framing
control. After the dataset cleaning and the de-duplication
process explained above, we were left with 17,613 framing
control policies. Table 4 shows the adoption of the different
security mechanisms in the different policies. We observe
that XFO is still the most widespread defense mechanism
against click-jacking in the wild by far, yet around 12% of the
collected policies make use of CSP.

5.2 Inconsistent Policies

Overall, we identified 1,800 policies from 1,779 origins im-
plementing inconsistent protection against click-jacking, i.e.,
where the enforced level of protection is dependent on the
browser. This is 10% of the analyzed policies, which is al-
ready a significant percentage. But this result becomes even
more concerning when we take a look at which click-jacking
protection mechanisms are used by such policies.

Defense Number of Policies Percentage

Just XFO 15,415 88%
Just CSP 714 4%

XFO + CSP 1,484 8%

Table 4: Defenses used in the collected policies
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Defense Inconsistencies Percentage

Just XFO 290 16%
Just CSP 705 39%

XFO + CSP 805 45%

Table 5: Defenses used in the inconsistent policies

Table 5 provides the breakdown: the relative majority of the
inconsistencies (45%) occur when XFO and CSP are used to-
gether, which suggests that having two different mechanisms
for the same purpose is potentially dangerous. Moreover, note
that 805 out of the 1,484 pages (54%) which make use of
both XFO and CSP together implement inconsistent protec-
tion against click-jacking, i.e., it is more likely to get the
combination of the two defenses wrong than right.

Another interesting insight from our analysis is that 84%
of the inconsistent policies make use of CSP. Intuitively, this
seems related to the fact that the set of browsers we consider
includes some legacy browsers without CSP support: in partic-
ular, Opera Mini provides very limited tools to protect against
click-jacking. Hence, one might think that inconsistencies are
motivated by its presence alone, yet this is not the case: if we
removed Opera Mini from the set of browsers, the number of
inconsistent policies would drop from 1,800 to 1,749, which
is roughly a 3% reduction. One might then try to also remove
Internet Explorer from the picture, since it also lacks support
for CSP. However, this is a different story than Opera Mini,
since Internet Explorer supports the ALLOW-FROM direc-
tive. Hence, inconsistencies could be fixed by simulating the
behavior of CSP through different values of ALLOW-FROM
based on the Referer header (see Section 2).

To understand the prevalence of such practice in the wild,
we set up the following experiment: for each page in our
dataset, we identify the hosts which are allowed framing
according to CSP, and we send an HTTP request to the
page with the Referer header set to one of such hosts. In
the presence of wildcards in CSP, e.g., *.example.com, we
generate a synthetic candidate Referer matching them, e.g.,
https://test.example.com. If we observe that the value
of the Referer is reflected back in the XFO header of the re-
sponse, it means that we might have false positives in our
set of inconsistencies, because the originally collected XFO
headers only provided a partial picture of the deployed policy.
We managed to perform this test on the 2,198 pages with CSP
and observed extremely low adoption of Referer sniffing: in
particular, only 11 pages relied on such practice. This gives
us confidence in the correctness of the conclusions we draw.

In the next section, we provide an in-depth analysis of the
inconsistent policies we collected. We do this while consider-
ing the full set of browsers in Table 2, because those browsers
are actively used, and we want to assess the state of click-
jacking protection on the Web as of now. We elaborate on the
impact of the chosen browsers on our study in Section 5.4.

5.3 Analysis of Inconsistent Policies
To have a more in-depth look into the set of inconsistent poli-
cies, we performed a further classification step: in particular,
we identified 590 security-oriented policies (33%) and 795
compatibility-oriented policies (44%), while the other 415
inconsistent policies (23%) do not belong to any of these
two classes, hence are unduly inconsistent. In the rest of this
section, we perform an in-depth analysis of the collected in-
consistent policies and identify dangerous practices therein.

5.3.1 Security-Oriented Policies

The existence of security-oriented policies is justified by the
fact that XFO is less expressive than CSP, hence Web devel-
opers might be led into shipping XFO headers that are more
restrictive than the corresponding CSP headers. For example,
the Web site https://www.icloud.com deploys an XFO
header set to SAMEORIGIN and a CSP whitelisting every
subdomain of icloud.com and apple.com. A similar situa-
tion happens on https://academia.stackexchange.com,
which sets XFO to SAMEORIGIN and uses CSP to whitelist
both itself and https://stackexchange.com. These poli-
cies offer a good level of protection to legacy browsers, but
might introduce compatibility issues therein.

We further categorized the 590 security-oriented policies
in two classes. The first class includes ineffective policies,
where CSP is overly liberal compared to XFO: these poli-
cies allow framing from any host on CSP-enabled browsers,
possibly just restricting its scheme, hence modern browsers
are left unprotected. We noticed this problem just in 13 cases
(2%), and we conjecture it might come from the wrong as-
sumption that, when both XFO and CSP are enabled, they
are both enforced, while CSP actually overrides XFO and
voids protection. However, it is positive to see that this class
of policies is highly under-represented. The other policies
all take advantage of the additional expressive power of CSP
over XFO for fine-grained whitelisting: specifically, we ob-
served 99 cases (17%) where CSP was used to whitelist all
the subdomains of the host whitelisted via XFO, while in all
other cases CSP whitelisted at least two source expressions.

To the best of our knowledge, these look like legitimate use
cases, where policy inconsistency is not necessarily danger-
ous for security. However, this discrepancy raises concerns,
because it implies that either legacy browsers suffer from com-
patibility issues due to overly harsh security enforcement, or
modern browsers are excessively liberal in their treatment of
framing, i.e., the policies violate principle of least privilege.

5.3.2 Compatibility-Oriented Policies

Compatibility-oriented policies might be justified by the need
to make Web applications accessible by legacy browsers, at
the cost of (partially) sacrificing security in that case. For
example, the Web site https://www.spotify.com deploys
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Inconsistency Reason Number of Policies Fraction

Use of the ALLOW-FROM directive 323 78%
Comma-separated directives in XFO header 94 23%
Incomparable policies in XFO and CSP 53 13%
Use of multiple XFO headers 16 4%
Different policies sent to different browsers 5 1%

Table 6: Practices in unduly inconsistent policies (classes might overlap)

a CSP whitelisting every subdomain of spotify.com and
spotify.net, but does not ship any XFO header, likely
because XFO does not support such expressive whitelists.
Another similar example is https://www.sony.com, which
does not deploy XFO, but uses CSP to allow framing from
itself and all the subdomains of three other trusted sites.

Recall that our dataset contains 795 compatibility-oriented
policies. The first analysis we perform aims at understanding
how much security legacy browsers sacrifice for such policies.
For the very large majority of compatibility-oriented policies,
we observed that XFO does not provide any protection at all,
i.e., framing is allowed from any origin: this happened in 758
cases (95%). In particular, we found 705 pages where an XFO
header is entirely absent (89%) and 99 pages where the XFO
headers contain an incorrect directive or are misinterpreted
by some legacy browser (11%). This shows that most Web
developers are not actually concerned about offering security
to users of legacy browsers, or are just entirely unaware of
the existence of this problem.

To get a better understanding of the reasons underlying the
existence of compatibility-oriented policies, we analyze the
combination of XFO and CSP for the following scenario: if
CSP is used to whitelist at most one origin, it is straightfor-
ward to write an XFO header which enforces exactly the same
restrictions, hence the adoption of a compatibility-oriented
policy is unjustified. We observe that this was the case for
105 policies (13%), where protection could be improved with
minimal effort and expertise by the Web developers, i.e., with-
out resorting to Referer sniffing. This shows that the bleak
picture given above could be easily improved to some extent,
yet this is not happening in practice.

5.3.3 Unduly Inconsistent Policies

Finally, we focus on the 415 inconsistent policies that are
neither security-oriented nor compatibility-oriented. These
policies are hard to justify as secure, or even as intended, as
explained in Section 3. In particular, we observe the following
distribution of (possibly overlapping) classes:

• 315 policies are interpreted differently by at least two
legacy browsers (76%);

• 289 policies are interpreted differently by at least two
modern browsers (69%);

• 29 policies are given the same interpretation by all legacy
browsers and all modern browsers, yet these two inter-
pretations are incomparable (7%).

What is worse is that 380 of these policies (92%) do not
enforce any form of framing restriction on at least one of the
browsers considered in our study, which confirms that this
class of inconsistencies is particularly dangerous for security.
For example, the Web site https://es.sprint.com sets an
XFO header to ALLOW-FROM https://www.sprint.com,
but does not ship a companion CSP: this leaves browsers
without support for ALLOW-FROM unprotected. As another
example, https://whois.web.com sends two XFO headers,
one set to SAMEORIGIN and one set to DENY, which allows
same-origin framing in some browsers but not others.

It is instructive to have a look at why these undue inconsis-
tencies arise. Table 6 provides the breakdown of the main prac-
tices leading to policy inconsistency (classes partially over-
lap). We observe that the ALLOW-FROM directive is present
in most of the unduly inconsistent policies, which shows that
XFO is not properly coupled with CSP in those cases. Indeed,
322 out of 465 policies that use ALLOW-FROM do not come
with any CSP (69%) and do not offer any protection on most
modern browsers. It is also interesting that we found 53 poli-
cies where both XFO and CSP are syntactically correct, yet
express incomparable policies. For example, we noticed that
https://gfp.sd.gov deploys an XFO header set to SAME-
ORIGIN, while its CSP allows framing from every subdomain
of arcgis.com, soundcloud.com and flipsnack.com. We
do not have definite explanations for this kind of policies,
but a plausible reason could be that XFO was deployed for a
legacy version of the Web site and never updated later.

5.3.4 Perspective

We summarize here the security impact of our findings by
computing the number of policies that do not offer any level
of protection to at least one browser. We also present the same
perspective for modern browsers alone. The presence and dis-
tribution of vulnerable policies for these two cases are shown
in Table 7. These numbers confirm our claim that not all in-
consistencies are necessarily dangerous, yet their majority
actually is (64%). In particular, almost every inconsistent pol-
icy that is not security-oriented is completely ineffective on
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Inconsistency Class Vulnerabilities (Any Browser) Vulnerabilities (Modern Browser)

Security-Oriented 13 (2%) 13 (2%)
Compatibility-Oriented 758 (95%) 3 (<1%)
Unduly Inconsistent 380 (92%) 278 (67%)

Aggregate 1,151 (64%) 294 (16%)

Table 7: Presence and distribution of vulnerable policies

at least one browser. Luckily, our experiments also show that
users of modern browsers enjoy a significantly higher level
of protection than users of legacy browsers since only 16%
of the inconsistencies actually void any form of security en-
forcement in a modern browser, where undue inconsistencies
are essentially the only threat.

5.4 The Role of Browsers
Since we assess inconsistencies over a set of popular browsers,
one might wonder to which extent the chosen browsers bias
the results of our study. To understand this point, we decided
to run a second analysis by removing Internet Explorer and
Opera Mini from the set of browsers under test. The rationale
of this choice is that these browsers do not support CSP, and
thus, we might get a picture of how much the current policy
deployment would be inconsistent in a world without legacy
browsers. It turns out that the total number of inconsistent
policies would drop from 1,800 to 289, which is a major im-
provement. However, observe that all such policies fall in the
class of unduly inconsistent policies (since we removed legacy
browsers), and we computed that for 278 of them (96%) there
is at least one modern browser which does not enforce any
form of restriction. This confirms that the adoption of modern
browsers strongly mitigates the problem of inconsistencies,
yet not entirely solved. The main reasons for inconsistency
would still be the use of ALLOW-FROM and the adoption of
a comma-separated list of directives in XFO.

It is also particularly interesting that two of the browsers
that we tested have been undergoing major changes at the
time of writing. The first significant change was implemented
in Firefox, which dropped support for the ALLOW-FROM
directive in version 70.7 Moreover, Microsoft announced that
Edge will move to the Chromium architecture in 2020, which
likely means that it will drop support for ALLOW-FROM and
fix the problems with XFO headers. These changes go in the
direction of reducing the risk of inconsistencies in modern
browsers, which will eventually be uniformed to Chromium
derivates. Unfortunately, we also showed that 322 out of 465
policies that use ALLOW-FROM do not come with any CSP
(69%), which implies that these changes are weakening the
state of click-jacking protection on the Web.

7https://developer.mozilla.org/en-US/docs/Mozilla/
Firefox/Releases/70#HTTP

At the end of the day, we believe that the problem of in-
consistencies in click-jacking protection is far from solved.
Though legacy browsers not supporting CSP are likely go-
ing to disappear in a few years, it is hard to predict a precise
temporal horizon for this: for example, Internet Explorer 11
was launched in 2013, and it still has ∼ 2% of the market
share based on publicly available data, while Opera Mini is
still under active development and extremely popular with
around 15% market share in Africa, where mobile traffic is
still expensive.8 Also, it should be noted that the versions
of Edge and Firefox considered in the present study might
still be around for a while, i.e., the Web platform will still be
accessed by browsers supporting ALLOW-FROM at least in
the near future. Though a full transition from XFO to CSP
for click-jacking protection is the way to go to solve the is-
sue of inconsistencies, the setting is complex and requires
actions at different levels. We discuss recommendations and
countermeasures in the next section.

5.5 Limitations
Though we strived to quantify the security impact of the de-
tected policy inconsistencies, we cannot show that even poli-
cies that do not provide any form of framing control in some
browsers lead to exploitable vulnerabilities in practice. To
overcome this limitation, we would need to identify pages
that are susceptible to framing-based attacks. However, iden-
tifying these in an automated fashion at a large scale requires
accounts of all tested sites as well as an in-depth understand-
ing of the application’s semantics. However, we argue that
it is fair to assume that site operators are deploying framing
control for a reason. In our opinion, the widespread adop-
tion of framing control policies (33% of all crawled URLs,
spread across 58% of the sites we looked at) motivates that
click-jacking is perceived as an important security threat. Our
analysis acts as a cautionary tale aimed at raising awareness
of the potential issues that arise from policy inconsistencies.

In addition to this, we also remark that our study specif-
ically focuses on the 10,000 most popular sites at the time
of writing the paper. Given the diversity of the Web in gen-
eral, this does not necessarily enable us to generalize about
framing control inconsistencies on the entire Web. As prior

8https://blogs.opera.com/mobile/2019/08/
opera-is-leading-the-digital-revolution-in-africa/
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work has shown [24], though, the popularity of domains often
represents a proxy for security measures, meaning that our
results most likely are a lower bound of the actual problems
discoverable in the wild.

6 Recommendations and Countermeasures

Based on the data gathered in our analysis of both browser
implementations and real-world deployment of framing con-
trol, we discuss lessons learned to improve the situation. In
particular, we first present recommendations for both Web
developers and browser vendors, highlighting some room for
improvement which we found. We then discuss our implemen-
tation of a server-side proxy capable of retrofitting framing
control policies in existing Web applications for the diverse
set of browsers we considered in our analysis.

6.1 Recommendations for Web Developers

The first important recommendation we make is that both
XFO and CSP must be used for effective framing control on
the current Web. XFO alone is insufficient for security because
sites might be prone to double framing attacks (also in modern
browsers like UC Browser) or even not protected at all (most
notably, in the presence of the largely unsupported ALLOW-
FROM directive). On the other hand, just using CSP results
in leaving users of legacy browsers completely unprotected.
Unfortunately, we found that only 8% of the collected policies
use both XFO and CSP. Worse, the combination of the two
mechanisms proved hard to get right for Web developers, as
54% of such policies are inconsistent.

The other crucial recommendations are about the use of
XFO. Web developers should ensure that at most one XFO
header is sent with every Web page because existing browsers
have inconsistent interpretations in the presence of multiple
XFO headers. What is worth noting here is that there is no
good practical reason to deploy more than one XFO header.
In the presence of multiple XFO headers, existing browsers
either enforce the first one (thus voiding the others) or simul-
taneously enforce all of them. However, even this is useless,
because any pair of XFO directives always contains either re-
dundant or contradictory information, which can be expressed
with a single XFO directive (see Table 8). For the same rea-
sons we just discussed, Web developers should avoid the use
of comma-separated values in XFO headers. These headers
are parsed as multiple XFO headers in most browsers, while in
other browsers, they are interpreted as non-existing directives
that do not enforce any form of framing control. This latter
observation shows that even the apparently innocuous prac-
tice of repeating the same directive multiple times is actually
insecure because it voids protection on some browsers.

6.2 Recommendations for Browser Vendors

Though the frame-ancestors directive obsoleted XFO back
in 2014, XFO is still very popular in the wild: 88% of the poli-
cies we collected are still based on XFO alone. This means
that this is not the right time to drop support for XFO, and
one might wonder if this will ever be possible without leaving
a significant fraction of the Web unprotected. An important
point we would like to stress is the need for more informa-
tional messages for Web developers, e.g., in the JavaScript
console. A prime example of this issue comes from the recent
removal of support for ALLOW-FROM in Firefox. When
visiting a page that sends an XFO header containing such a
directive, Firefox merely notes an invalid header and points
the developer to the generic Mozilla Developer Network page
on XFO. This page does note that ALLOW-FROM is now
obsolete and should not be used, but does not provide an imme-
diately visible and explicit warning that sites using ALLOW-
FROM have suddenly become unprotected. As to Chrome,
the JavaScript console only shows a warning about an unrec-
ognized directive and nothing more.

We argue that browsers should explicitly warn Web de-
velopers about the possibility of using CSP to achieve the
same effect of XFO, which is straightforward considered that
CSP is more expressive than XFO. In particular, XFO poli-
cies which do not contain glaring mistakes can be readily
transformed into corresponding CSPs. We designed one such
solution as part of our server-side proxy (see Section 6.3),
which might be inspiring also for browser vendors since the
same approach could be applied at the client. We understand
that major browser vendors might consider such transforma-
tions dangerous for backward compatibility, yet even simple
transformations might significantly increase security in the
wild and are worth testing in our opinion. At the very least,
a candidate value for frame-ancestors combined with a
clear warning about the unprotected state of the site should
be reported in the JavaScript console.

On more general terms, we think that our paper shows the
importance of implementing only client-side security mecha-
nisms that come with a clear and precise specification. The
XFO specification was put together only after major browsers
already implemented support for the XFO header, which led
to many different implementations. Though the auto-update
feature of modern browsers certainly helps in mitigating the
problem of inconsistencies, real-world market share data show
that legacy browsers are hard to eradicate. Once a client-side
security mechanism has been inconsistently implemented
across browsers, it might be challenging to understand its
long-lasting impact in the wild. For example, without moving
away from CSP, the strict-dynamic source expression has
first been implemented in Chrome due to an independent ef-
fort from Google’s engineers and then pushed into the CSP
standard. This kind of practice is dangerous because other
browser vendors might be unwilling to pick up: for example,
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Directive 1 Directive 2 Conjunction of Directives

SAMEORIGIN SAMEORIGIN SAMEORIGIN
SAMEORIGIN ALLOW-FROM o′ DENY if o 6= o′,

SAMEORIGIN otherwise
SAMEORIGIN DENY DENY
ALLOW-FROM o′ ALLOW-FROM o′′ DENY if o′ 6= o′′,

ALLOW-FROM o′ otherwise
ALLOW-FROM o′ DENY DENY
DENY DENY DENY

Table 8: Simplification of multiple XFO directives into a single one (adoption at origin o)

Safari still lacks support for strict-dynamic. This decision,
however, may well be a good one, given that recent work has
shown the dangers of strict-dynamic through script gad-
gets, and even Google engineers now advocate to instead rely
on explicit passing of nonces [13]. Nevertheless, this feature
is inconsistently implemented across browsers already and
unlikely to be removed in the near future.

6.3 Retrofitting Security
As Web developers might not be aware of the intricacies
of the two mechanisms available to control the framing of
their sites, we developed a server-side proxy designed to en-
force consistency in framing control policies, i.e., to ensure
all browsers enforce the same level of protection. The proxy
is a Python script (∼ 800 LoC), which can be run at the server.
It inspects the HTTP traffic to automatically fix the framing
control headers so as to ensure policy consistency. To enable
researchers to build on our work and website administrators
to benefit from the tool, we have made the proxy available at
https://github.com/cispa/framing-control-proxy.

In particular, for any request r, let r stand for the corre-
sponding HTTP response. If r contains XFO headers, but no
CSP header with a frame-ancestors directive, the proxy
behaves as follows:

1. if multiple XFO headers are present in r, they are first
folded into one XFO header set to a comma-separated
list of the specified directives;

2. after step 1, r is guaranteed to contain exactly one XFO
header. If the header contains a comma-separated list of
directives, it is replaced by a single directive enforcing
the same security restrictions of the conjunction of the
directives. This is always possible, thanks to the simpli-
fication rules in Table 8;

3. the proxy finally attaches to r a new CSP header enforc-
ing the same framing control restrictions of the sanitized
XFO header. This is straightforward, since CSP is more
expressive than XFO, and does not conflict with other
CSP headers possibly present in r, since, when multiple

CSP headers are sent, their conjunction is enforced and
no other frame-ancestors directive is present.

If r contains CSP headers with a frame-ancestors direc-
tive, the proxy instead behaves as follows:

1. all the XFO headers of r are stripped away;

2. the proxy computes the union of the source expressions
whitelisted in all the frame-ancestors directives con-
tained in the CSP headers of r;

3. if CSP denies framing, r is extended with an XFO header
containing the DENY directive. If instead CSP only al-
lows same-origin framing, r is extended with an XFO
header containing the SAMEORIGIN directive. Other-
wise, the proxy checks if the Referer header of r contains
a URL whitelisted by any of the source expressions iden-
tified at step 2: if this is the case, r is extended with an
XFO header containing an ALLOW-FROM directive set
to the origin of the Referer header; otherwise, the XFO
header is set to DENY. If r lacks the Referer header, the
proxy conservatively sets the XFO header to DENY.

Eventually, the proxy ensures the consistency of framing
control policies with respect to the set of tested browsers,
by equating the security guarantees of XFO and CSP (up to
double framing). Observe that, although Opera Mini supports
neither CSP nor ALLOW-FROM, the proxy still manages
to rectify its limitations. In particular, if the Referer of the
request is set to a whitelisted URL, the proxy sets XFO to
the corresponding ALLOW-FROM directive, which is just
ignored by Opera Mini and framing is allowed. Otherwise,
the proxy sets XFO to DENY, and the page cannot be framed.

In our design, we prioritize CSP headers over XFO head-
ers when both are present since CSP is the preferred method
to enforce framing control in modern browsers. This means
that it is occasionally possible for the proxy to relax security
restrictions beyond least privilege: for example, if a page sets
XFO to DENY and CSP allows same-origin framing, then
XFO will be relaxed to SAMEORIGIN. However, this is sen-
sible from a security perspective, because modern browsers
already allow same-origin framing, so we assume this was
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intended by the site administrators, as modern browsers are
the primary target in the market and are also easier to test.
This is also backed up by our dataset, where we observed only
13 policies where XFO was tighter than CSP and CSP was
configured in an obviously insecure manner (see Table 7).

As a final point, we note that the Referer header may be
stripped when controlled through the Referrer-Policy [16],
which would disable the possibility of performing Referer
sniffing in the proxy. However, Referrer-Policy is only sup-
ported in browsers that also support the frame-ancestors di-
rective of CSP. Since the proxy only relies on Referer sniffing
in the presence of frame-ancestors, the DENY directive
placed in the absence of the Referer header would be overrid-
den by CSP in all cases. After implementing our proxy, we
tested it out against the full set of test cases of Section 4.2. By
doing so, we confirmed that the proxy behaves as expected
and enforces the same security restrictions in the entire pool
of browsers.

7 Related Work

In this section, we present related work, and for the work
closest to ours, we explain the main differences.

CSP and XFO for Framing Control In their 2019 paper,
Luo et al. [14] studied the evolution of mobile browsers and
their support for client-side security mechanisms over time.
In doing so, they also documented the interplay between CSP
and XFO, reporting in particular that some mobile browsers
did not prioritize CSP over XFO in the past. Their paper
generically hints that inconsistencies between CSP and XFO
could occur based on the collected headers, yet the paper does
not go much in detail about this. The increased importance
of CSP for framing control was also documented by Roth
et al. [19], who analyzed the evolution of CSP from 2012 to
2018, indicating that CSP has become more and more pop-
ular as a protection mechanism against click-jacking. They
also evaluated the dangers coming from the inconsistent sup-
port for ALLOW-FROM and CSP in different browsers, most
notably by leveraging the well-known observation that the
ALLOW-FROM directive is not supported in Chrome.

Though both these studies have been inspiring starting
points for our work, we extend the mere analysis of the po-
tential problems by building a comprehensive framework to
reason about inconsistencies. In particular: (i) we formally de-
fine the problem of inconsistencies in framing control policies
to provide a full account of this security problem, highlight-
ing different classes of inconsistencies with different security
implications; (ii) we focus on both desktop browsers and mo-
bile browsers, exposing many new and unreported dangerous
implementations of the underspecified XFO header; (iii) we
perform an in-depth analysis of several root causes of incon-
sistencies in the wild, their security import, and some possible

countermeasures, discussing the potential role of browser ven-
dors on the way forward; and (iv) we implement and release a
server-side proxy designed to retrofit security in existing Web
applications by enforcing consistency for the set of browsers
that we analyzed.

Click-Jacking Protection and Attacks In 2010, Rydstedt
et al. [20] studied the usage of frame busting scripts in the
Alexa Top 500 sites, showing that the deployed mechanisms
through JavaScript were trivial to bypass. In the same year,
Balduzzi et al. [2] built a system capable of detecting click-
jacking, primarily based on the assumption that elements
should not be overlapping when clicked. In 2012, Lekies
et al. [12] highlighted additional techniques for bypassing
existing defenses and showed the shortcomings of XFO for
fine-grained framing control. In the same year, Huang et al.
[7] conducted an in-depth analysis of the underlying issues
and proposed INCONTEXT, in which applications could mark
specific elements as sensitive (e.g., Like buttons), which
would, through various defensive techniques, be protected
from forced clicks at the browser. In 2014, Akhawe et al. [1]
generalized click-jacking to perceptual UI attacks and showed
how easily users could be tricked into clicking unwanted ele-
ments while seemingly playing a benign game.

Inconsistencies in Web Security Inconsistencies in the im-
plementation of client-side security mechanisms have been
first studied by Singh et al. [22]. Their seminal work focused
on access control policies and, in particular, on parts of the
Same Origin Policy (SOP), which proved to be inconsistently
implemented in existing Web browsers at the time. A similar
study was later performed on modern browsers by Schwenk
et al., and also exposed dangerous inconsistencies [21]. Au-
tomated testing has been proposed as an effective technique
to catch bugs in the implementation of client-side security
mechanisms by Hothersall-Thomas et al. [6]. None of these
studies focused on inconsistencies in framing control policies.

Naturally, the client is not the only software where inconsis-
tencies may occur. In particular, prior work has investigated
the handling of multiple Host headers in CDNs and origin
servers, showing that due to differences in handling multi-
ple headers, these two components end up with a different
understanding of the requested host [5]. In a recent paper,
Nguyen et al. [17] showed that inconsistencies in allowed
header lengths or control characters could allow an attacker to
force origin servers to yield error pages. This, in combination
with CDNs that cache such error pages, can lead to a cache-
poisoned Denial of Service attack. In non-academic research,
Kettle [10] showed that using multiple Content-Length head-
ers as well as conflicting Transfer-Encoding allows for HTTP
Desync attacks. Albeit only indirectly related to our paper,
these works clearly document the dangers of inconsistent
implementations on the Web.
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Finally, Mendoza et al. [15] studied the inconsistent adop-
tion of security mechanisms in the mobile and the desktop
version of the same Web site. They even showed attacks where
the insecurity of a mobile site could be exploited to target the
desktop site, which sits at a higher security level.

8 Conclusion

In this paper, we presented the first comprehensive analysis
of inconsistencies in framing control policies. We based our
investigation on a formal framework, which constituted the
basis for the implementation of a real-world policy analyzer
dubbed FRAMECHECK. Our analysis of 10,000 Web sites
from the Tranco list showed that the problem of inconsisten-
cies is widespread on the Web, since around 10% of the (dis-
tinct) framing control policies in the wild are inconsistent and
most often do not provide any form of protection to at least
one browser. Given the insights of the dangers caused through
inconsistencies, we proposed different countermeasures in
terms of recommendations for Web developers and browser
vendors, as well as the implementation of a server-side proxy
designed to retrofit security to existing Web applications. We
are currently in the process of responsibly disclosing the se-
curity issues found throughout our comprehensive analysis to
the affected browser vendors and site operators.

We foresee a few avenues for future work. First, we would
like to extend our current analysis to uncover inconsistencies
between the desktop version and the mobile version of the
same Web site, following the approach proposed by Mendoza
et al. [15]. Then, we plan to generalize our formal framework
to other client-side security mechanisms besides XFO and the
framing control fragment of CSP. Finally, we would like to
carry out a systematic analysis of the compatibility impact
of some of our proposed countermeasures, which we only
evaluated in terms of security so far. This might require close
collaboration with browser vendors to understand their impact
on a large scale.
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