_—— T —p— I

.. L N\
usenix \.
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Secure parallel computation on national scale
volumes of data

Sahar Mazloom and Phi Hung Le, George Mason University;
Samuel Ranellucci, Unbound Tech; S. Dov Gordon, George Mason University

https://www.usenix.org/conference/usenixsecurity20/presentation/mazioom

This paper is included in the Proceedings of the
29th USENIX Security Symposium.
August 12-14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium
is sponsored by USENIX.

NERRNRNIRMIE

+

Secure parallel computation on national scale volumes of data

Sahar Mazloom™ Phi Hung Le* Samuel Ranellucci
George Mason University George Mason University Unbound Tech
sseyedma @ gmu.edu plel3@gmu.edu samuel.ranellucci @unboundtech.com

S. Dov Gordon
George Mason University
gordon @ gmu.edu

Abstract

We revisit the problem of performing secure computation
of graph-parallel algorithms, focusing on the applications of
securely outsourcing matrix factorization, and histograms.
Leveraging recent results in low-communication secure multi-
party computation, and a security relaxation that allows the
computation servers to learn some differentially private leak-
age about user inputs, we construct a new protocol that re-
duces overall runtime by 320X, reduces the number of AES
calls by 750X, and reduces the total communication by 200X
Our system can securely compute histograms over 300 mil-
lion items in about 4 minutes, and it can perform sparse matrix
factorization, which is commonly used in recommendation
systems, on 20 million records in about 6 minutes.! Further-
more, in contrast to prior work, our system is secure against
a malicious adversary that corrupts one of the computing
servers.

1 Introduction

Instances of data breach and exfiltration continue to occur
in great number. Secure computation offers an appealing
avenue for defense. This cryptographic tool allows user data
to be secret-shared across multiple computational servers,
ensuring that the breach of any single server provides no
information to an adversary, while still enabling the servers
to perform arbitrary computation on the data. As compared
with standard encryption, which provides security only while
the data remains at rest, secure computation allows the data
to remain secure throughout its life-cycle, from the moment
it is uploaded by the user, through its incorporation into some
statistic or learned model.

The theory of secure computation has been studied since
the 1980’s, and a rich literature has given rise to a line of
practical work that has focused on reducing concrete costs to

*Lead co-authors
I'These numbers are for computation in a LAN. For results in a WAN, see
Section 5.

a near minimum. Of course, there are no free lunches, and
computing on secret-shared data will always require increased
communication and computation when compared with the
cost of computing on plaintext data. However, several recent
research directions have helped narrow the gap between se-
cure data processing and plaintext computations.

Low communication MPC. Several results in secure computa-
tion have recently minimized the communication require-
ments by restricting the number of computing servers to
three [2,4, 17] or four [10], and assuming an honest majority
of the servers. When representing the computation as an arith-
metic circuit over a ring (as we will do here), the cheapest of
these results, by Gordon et al. [10], requires sending only 1.5
ring elements per party, per circuit gate. In contrast, the best
two-party protocol requires 290 bytes per party, per Boolean
gate [22], and the best honest-majority protocol (supporting
arbitrary numbers of parties) requires 12 field elements per
party, per gate [4].

Parallelizing secure computation. Nayak et al. [18] propose a
framework for securely computing graph parallel algorithms.
In such algorithms, the data is assumed to reside in a graph
structure, and the result of the computation is reached through
an iterative process in which a) the data is gathered from all
edges to their neighboring nodes, b) a simple computation is
applied on the data at each node, and c) the processed data is
scattered back to the neighboring edges before the processes
are repeated. Such frameworks have become very popular for
plaintext computations on large amounts of data, because the
Apply phase can be easily distributed among many proces-
sors, making parallelization straight-forward [6,9, 13, 14]. In
this work we implement gradient descent, yielding a secure
protocol for sparse matrix factorization (commonly used in
recommendation systems), as well as histograms. Graph par-
allel frameworks are also used for PageRank, Markov random
field parameter learning, parallelized Gibbs samplers, name
entity resolution, and many other computations.

Allowing differentially private leakage. Very recently, re-
searchers have explored the idea of relaxing security to al-

USENIX Association

29th USENIX Security Symposium 2487

low leakage in secure computation, coupled with a bound
demonstrating that the leakage preserves differential privacy
[3,12,16,20]. Mazloom and Gordon [16] demonstrated a
protocol for computing graph parallel algorithms with differ-
entially private leakage, shaving a log E factor off of the fully
secure protocol of Nayak et al., where E is the number of
edges in the graph.

Securely outsourcing computation. These advances have
introduced an opportunity for several applications of secure
computation in which user data from thousands of parties are
secret shared among a few servers (usually three) to perform
a secure computation on their behalf. Multiple variants of this
application have now been deployed. In some cases, users
have already entrusted their data, in the clear, to a single entity,
which then wishes to safeguard against data breach; secret
sharing the data among several servers, each with a unique
software stack, helps diversify the risk of exposure. In other
cases, users were unwilling, or were even forbidden by law,
to entrust their data to any single entity, and the use of secure
computation was essential to gaining their participation in the
computation. In many of these cases, the servers executing
the secure computation are owned and operated by a single
entity that is trusted for the time being, but may be corrupted
by an outside party. In other cases, some data were entrusted
to one entity, while other data, from another set of users, were
entrusted to a second entity, and these two distrusting parties
wish to join in a shared computation.

The common denominator in all of these variants is that
the computation servers are distinct from the data owners.
In this context, the relaxation allowing these servers to learn
some small, statistical information about the data may be
quite reasonable, as long as the impact to any individual data
contributor can be bounded. For example, when computing
a histogram of the populations in each U.S. zip code, the
servers see only a noisy count for each zip code, gaining little
information about the place of residence of any individual
data contributor. In the context of securely performing matrix
factorization for use in a recommendation system, we allow
the servers to learn a noisy count of the number of items that
each contributing user has reviewed. Even when combined
with arbitrary external data, this limits the servers from gain-
ing any certainty about the existence of a link between any
given user and any given item in the system.

Our reliance on a fourth server in the computation intro-
duces a tradeoff between security and efficiency, when com-
pared with the more common reliance on three servers.” It is
almost certainly easier for an adversary to corrupt two out of
four servers than it is to corrupt two out of three. However, as
our results demonstrate, the use of a fourth server enables far
faster computation, which, for large-scale applications, might

2From a purely logistical standpoint, we do not envision that this require-
ment will add much complexity. The additional server(s) can simply be run
in one or more public clouds. In some cases, as already mentioned, all servers
are anyway run by a single entity, so adding a fourth server may be trivial.

make the use of secure computation far more feasible than it
was previously.

Results. In this work, we revisit secure computation of graph
parallel algorithms, simultaneously leveraging all three of the
advances just described: we assume four computation servers
(with an honest majority, and one malicious corruption), al-
low differentially private leakage during computation, and,
exploiting the parallelism that this affords, we construct an
MPC protocol that can perform at national scales. Concretely,
we compute histograms on 300 million inputs in 4.17 minutes,
and we perform sparse matrix factorization, which is used
in recommendation systems, on 20 million inputs in under 6
minutes. These problems have broad, real-world applications,
and, at this scale, we could imagine supporting the Census
Bureau, or a large company such as Amazon. For comparison,
the largest experiments in GraphSC [18] and OblivGraph [16]
had 1M inputs, and required 13 hours and 2 hours of runtime,
respectively, while using 4 times the number of processors
that we employ, and tolerating only semi-honest corruptions.
End-to-end, our construction is 320X faster than OblivGraph,
the faster of these 2 systems.

Technical contributions. Merging the four-party protocol of
Gordon et al. [10] with the construction of Mazloom and
Gordon [16] raises several challenges and opportunities:

Fixed point arithmetic. There are few results in the MPC
literature that support fixed point computation with malicious
security. The most efficient that we know of is the work by
Mohassel and Rindal, which uses replicated sharing in the
three party, honest majority setting [17], modifying the proto-
col of Furakawa et al. [7]. Their construction requires each
party then sends 8 ring elements for each multiplication with-
out truncation. The parties execute two subtraction circuits in
pre-processing phase for each truncation. The pre-processing
costs each party at least 21 - (2k — d) bits for each truncation
where k is the size of the ring, and d the length of the fraction
bits. With a bit of care, we show that we can extend the four-
party protocol of Gordon et al. [10] to handle fixed point arith-
metic, without any additional overhead, requiring each party
to send just 1.5 ring elements for each multiplication. This
provides about a 20X improvement in communication over
Mohassel and Rindal. The protocol of Gordon et al. proceeds
through a dual execution of masked circuit evaluation: for cir-
cuit wire { carrying value w;, one pair of parties holds w; + A,
while the other holds w; + A/, where A;, A\ are random mask
values known to the opposite pair. To ensure that nobody has
cheated in the execution, the two pairs of parties compute
and compare w; + A; + A. This already supports computation
over an arbitrary ring, with malicious security. However, if
w; is a fractional value, the two random masks may result
in different rounded values, causing the comparisons to fail.
We show how to handle rounding errors securely, allowing
us to leverage the efficiency of this protocol for fixed point
computation.

2488 29th USENIX Security Symposium

USENIX Association

Four party, linear-time, oblivious shuffle. The experimen-
tal results of Mazloom and Gordon have complexity O(V o+
E)log(Va+E), where o. = ou(€, 8) is a function of the desired
privacy parameters, E is the number of edges in the graph, and
V is the number of nodes. The authors also show how to im-
prove the asymptotic complexity to O(Va+ E), removing the
log factor by replacing a circuit for performing an oblivious
shuffle of the data with a linear-time oblivious shuffle. They
don’t leverage this improvement in their experimental results,
because it seems to require encrypting and decrypting the
data inside a secure computation. (Additionally, for malicious
security, it would require expensive zero-knowledge proofs.)

Operating in the 4-party setting allows us to construct a
highly efficient, linear-time protocol for oblivious shuffle. One
of the challenges we face in constructing this shuffle protocol
is that we have to authenticate the values before shuffling, and
verify correctness of the values after shuffling, and because
we are committed to computing over elements from Z,, we
need to authenticate ring values. Recently, Cramer et al. [5]
proposed a mechanism for supporting arithmetic circuits over
finite rings by constructing authentication in an “extension
ring”: to compute in Z, they sample o <— Zys, and use a
secret-sharing of ox € Zx+s for authentication. We adopt their
construction in our shuffle protocol to ensure the integrity of
the data during shuffling.

One of the benefits of using 4 parties is that we can separate
the operations between two groups of parties, such that one
group, for example Alice and Bob, is responsible for access-
ing the data during Gather and Scatter, while the other group,
Charlotte and David, performs the shuffling. In contrast, in the
2-party setting, if one party knows the shuffling permutation,
then the other party must access each data element in a man-
ner that hides the data index. This seemingly requires using
a short decryption key inside the secure computation, rather
than a more efficient, 2-party secret sharing scheme. On the
other hand, if neither party knows the shuffling permutation,
we need to use a permutation network incurring the additional
log overhead. When comparing our four-party, maliciously
secure, oblivious shuffling protocol with the semi-honest con-
struction of Mazloom and Gordon, they require 540X more
AES calls and 140X communication than we do.
Computation over a ring. Both the work of Nayak et al. [18]
and Mazloom and Gordon [16] use Boolean circuits through-
out the computation. Boolean circuits are a sensible choice
when using sorting and shuffling circuits, which require bit
comparisons. Additionally, as just discussed, Boolean circuits
provide immediate support for fixed point computation, re-
moving one further barrier. However, for the Apply phase,
where, for example, we compute vector gradients, computa-
tion in a ring (or field) is far more efficient. With the intro-
duction of our four-party shuffle, which is not circuit-based,
and after modifying Gordon et al. [10] to support fixed-point
computation, there is no longer any reason to support compu-
tation on Boolean values. We construct a method for securely

converting the shared, and authenticated values used in our
shuffle protocol into the "masked" ring values required for our
four-party computation of the Apply phase. For the problem
of Matrix Factorization on dataset of 1 million ratings, the
Apply phase of Mazloom and Gordon [16] requires 550X
more AES calls and 370X more bandwidth than ours.

2 Preliminaries

2.1 Graph-parallel computation

The Graph-parallel abstraction as it is used in several frame-
works such as MapReduce [6], GraphLab [13] and Power-
Graph [9], consists of a sparse graph that encodes computa-
tion as vertex-programs that run in parallel, and interact along
edges in the graph. These frameworks all follow the same
computational model, called the GAS model, which includes
three conceptual phases: Gather, Apply, and Scatter. The
framework is quite general, and captures computations such
as gradient descent, which is used in matrix factorization for
recommendation systems, as well as histograms or counting
operation, and many other computations. In Matrix Factor-
ization, as an example, an edge (u,v,data) indicates that user
u reviewed item v, and the data stored on the edge contains
the value of the user’s review. The computation proceeds in
iterations, and in each iteration, every node gathers (copy)
data from their incoming edges, applies some computation to
the data, and then scatters (copy) the result to their outgoing
edges. Viewing each vertex as a CPU or by assigning multiple
vertices to each CPU, the apply phase which computes the
main functionality, is easily parallelized. [18, 19] constructed
frameworks for securely computing graph-parallel algorithms.
They did this by designing a nicely parallelizable circuit for
the gather and scatter phases.

2.2 MPC with differentially private leakage

The security definition for secure computation is built around
the notion of protocol simulation in an ideal world execution
[8]. In the ideal world, a trusted functionality takes the inputs,
performs the agreed upon computation, and returns the result.
We say the protocol is secure if a simulator can simulate the
adversary’s protocol view in this ideal world, drawing from
a distribution that is indistinguishable from the adversary’s
view in the real world execution. The simulator can interact
with the adversary, but is otherwise given nothing but the
output computed by the ideal functionality.’

In prior work, Mazloom and Gordon [16] proposed a relax-
ation to this definition in which the simulator is additionally
given the output of some leakage function, £, applied to all
inputs, but L is proven to preserve differential privacy of the

3This brushes over some of the important technical details, but we refer
the reader to a formal treatment of security in Goldreich’s book [8].

USENIX Association

29th USENIX Security Symposium 2489

input. They define several varying security models. Here we
focus on one variant, which supports more efficient proto-
col design. We assume that thousands of clients have secret
shared their inputs with 4 computation servers, and we use
E to denote the full set of inputs. We denote the set of secret
shares received by server i as E;. We denote the input of party
J as e;. Note that the servers learn the input size of each client.
Formally, the security definition is as follows.

Definition 1 [16] Let F be some functionality, and let T be
an interactive protocol for computing F, while making calls
to an ideal functionality G. T is said to securely compute F
in the G-hybrid model with £ leakage, known input sizes, and
(x,€,0)-security if L is (€,d)-differentially private, and, for
every PPT, malicious, non-uniform adversary A corrupting a
party in the G-hybrid model, there exists a PPT, non-uniform
adversary S corrupting the same party in the ideal model,
such that, on any valid input shares, E1,E>,E3,Ey

C

G E }
HYBRID E,Ey E K
{ 7, A(z) (152,53, 54,) z€{0,1}* ,keN

{IDEALf,.S(z,L(V).Vj:\ej\)(El7E27E3,E4;K)}ZE{O’]}*KeN ey

Mazloom and Gordon construct a protocol for securely
performing graph-parallel computations with differentially
private leakage. In their protocol, the data is secret shared
throughout each iteration: when the Apply phase is executed
at each graph node, it is computed securely on secret shared
data, with both input and output in the form of secret shares.
The leakage is purely in the form of access patterns to mem-
ory: as data moves from edge to neighboring node and back
again, during the Gather and Scatter phases, the protocol al-
lows some information to leak about the structure of the graph.
To minimize and bound this leakage, two additional actions
are taken: 1) The edges are obliviously shuffled in between
when the data is gathered at the left vertex, and when it is gath-
ered at the right vertex. This breaks the connections between
the left and right neighboring nodes, and reduces the graph
structure leakage to a simple degree count of each node. 2)
"Dummy" edges are created at the beginning of the protocol,
and shuffled in with the real edges. These dummy edges en-
sure that the degree counts are noisy. When the dummy edges
are sampled from an appropriate distribution, the leakage can
be shown to preserve differential privacy. Note that when the
input size of each party is known, the degree count of certain
nodes may not need to be hidden, allowing for better perfor-
mance. For example, if the data elements owned by user u are
weighted edges of the form (u,v,dara), it is essential that the
degree of node v remain private, as its degree leaks the edge
structure of the graph, but the degree of node u is implied by
the input size of user u. The implications of this are discussed
more fully in their work.

Neighboring graphs: We represent multi-sets over a set V
by a |V| dimensional vector of natural numbers: D € N V1. We

refer to the ith element of this vector by D(i). We define a
metric on these multi-sets in the natural way: |D; — D;| =
£/ D1 (i) — D).

Applying this to graphs, for each v € V, we let in—deg(v)
denote the in-degree of node v, and we define the in-
degree profile of a graph G as the multi-set D;,(G) =
{in—deg(v1),...,in—deg(v,)}. Then, we have the following
definition.

Definition 2 We say two graphs G and G' have distance at
most d if they have in-degree profiles of distance at most d.: |
Din(G) —Din(G') |< d. We say that G and G are neighboring
if they have distance 1.

Definition 3 A randomized algorithm L : G — Ry is (€,9)-
edge private if for all neighboring graphs, G1,G» € G, we
have:

Pr[L(G)) € T) < €*Pr[L(G2) € T]+ 8

2.3 4-party computation protocol

We use the secure computation protocol by Gordon et al. for
four parties, tolerating one malicious corruption [10]. We pro-
vide an overview of the construction here. The four parties
are split into two groups, and each group will perform an eval-
uation of the circuit to be computed. The invariant throughout
each evaluation is that both evaluating parties hold x + A, and
y+A,, where x and y are inputs to a circuit gate, and A, A,
are random mask values from the ring. After communicating,
both parties hold z 4 A;, where z is the result of evaluating
the gate on x and y, and A, is another uniformly chosen mask.
To maintain this invariant, the evaluating parties need secret
shares of Ay, Ay, AA, and A. Securely generating these shares
in the face of malicious behavior is typically quite expensive,
but, relying on the assumption that only one party is corrupt,
it becomes quite simple. Each pair of parties generates the
shares for the other pair, and, to ensure that the shares are cor-
rectly formed, the pair sends duplicates to each recipient: if
any party does not receive identical copies of their shares,
they simply abort the protocol.

During the evaluation of the circuit, it is possible for a
cheating party to perform an incorrect multiplication, vio-
lating the invariant. To prevent this, the two pairs securely
compare their evaluations against one another. For wire value
z, one pair should hold z+ 2., and the other should hold z+ 2.
Since the first pair knows A/ and the second pair knows A,
each pair can compute z+ A, + 1. They compare these values
with the other pair, verifying equality. Some subtleties arise
in reducing the communication in this comparison; we allow
the interested reader to read the original result.

2.4 Notation

Additive Shares: We denote the 2-out-of-2 additive shares
of a value x between two parties P; and P; to be [x]; and [x],

2490 29th USENIX Security Symposium

USENIX Association

and between two parties Py and P4 to be [x]3 and [x]4 (x =
[x]1 + [x]2 = [x]3 + [x]4). When it is clear, we use [x] instead
of [x]; to denote the share of x held by the i’ party. Additive
secret shares are used in all steps of the graph computation
model except for the Apply phase. In Apply phase, data is
converted from additive secret shares to masked values and
back.

Function inputs Our protocol includes many function calls
in which P; and P, either provide additive shares of some
input, or they each provide duplicates of the same input. The
same is true for Pz and Ps. We therefore denote inputs to func-
tionalities and protocols as a pair: the first element denotes
the input of P; and P,, and the second denotes that of P; and
P4. When Py and P, each provide an additive share of some
value E, we simply denote the input by [E]. For example, the
input to Fymac is denoted by (([X],a),[X]): P; and P, submit
additive shares of X, and each separately provide a copy of a.
P5 and P4 provide a different additive sharing of X.

Masked Values: For a value x € Zy, its masked value is
defined as my = x+ Ay, where A, € Zyi1, is sampled uniformly
at random. In our four party computation model, for a value
X, P; and P, hold the same masked value x + A, and P; and
Py hold the same x+ A/, A, is provided by P; and P4 while Py
and P, hold shares of A,. Similarly, X, is provided by P; and
P, while P; and P4 hold shares of A’..

Doubly Masked Values: Four players can locally compute
the same doubly masked value for x from their masked values,
defined as dy = x+ A, + A, =m + N, =ml + A\,

Share or Masked Value of a Vector: When X is
a vector of data, i.e, X = {x1,...,x,}, we define [X] =
{x]s s [xal b Ax = Ay s oo A, b mx = {my,...,my, } and
dx ={dy,,....dx, }.

Fixed Point Representation: All inputs, intermediate values,
and outputs are k-bit fixed-point numbers, in which the least d
significant bits are used for the fractional part. We represent a
fixed-point number x by using a ring element in Zy+s, where
s denotes our statistical security parameter.

MAC Representation: We adapt the technique used in
SPDZ2k [5] for authenticating ring elements. For a value
x € Zy and for a MAC key o € Zps, the MAC on value X is de-
fined as MACq(x) = 0x € Zyk+. In our framework, MACq (x)
is always kept in the form of additive secret shares. *

We note that in our framework, all the values, the additive
shares, and the masked values are represented as elements in
the ring Z,«+s. However, the range of the data is in Z, and
the MAC key is in Zps.

4Technically, calling this a MAC is an abuse of terminology, since it
is not a secure authentication code if ow is ever revealed. However, when
computing on secret shared data, it is common to use shares of owx to prevent
any incorrect manipulation of the data.

3 Building blocks

In this section, we explain the details of each small component
and building block in graph operations, present their real vs.
ideal world functionalities, and provide the security proofs
for each of them, under a single malicious corruption. We
partition the 4 parties into 2 groups, with the first consisting
of P and P», and the second Pz and Py. For ease of explanation,
we name the parties in the first group, Alice and Bob, and
parties in the second group, Charlotte and David.

3.1 MAC Computation and Verification

One of the main challenges we face in constructing a mali-
cious secure version of the graph operations is that we have
to authenticate the values before each operation begins, and
then verify correctness of the results after the operation is
done. This is simple in a Field, but we choose to compute in
a ring to help support fixed point operations. We adapt the
MAC computation and Verification technique proposed in
SPDZ2k [5]. In this part, we describe the ideal functional-
ity and the real world protocol to generate MAC values for
additive secret shares over a ring.

FUNCTIONALITY Fvac

Inputs: Py, Po: [X] = {[x1],. .., [x:]}, MAC key o
Ps, Py: [X].
Functionality:
e Verify that X = [X]; + [X]» = [X]3 + [X]4. If the
check does not pass, send abort to all parties.

e If P, P, submit different values of o, send abort to
all parties.

e Compute Y = oX.

Outputs: P, P, receive nothing.
P3, Py receive [Y].

Figure 1: MAC computation ideal functionality

Theorem 1 The MAC computation protocol Iyac (Figure
2) securely realizes the ideal functionality Fuac (Figure 1)
with abort, under a single malicious corruption.

3.2 Share-Mask Conversion

We construct a method for securely converting the shared, au-
thenticated values which was used in the Shuffle and Gather
phases, into the "masked" ring values required for our four-
party computation of the Apply phase.

Theorem 2 The share-mask conversion protocol
Hsharemask(H[mex) (Figure 4) securely realizes the
ideal functionality Fsharemask(Fixj—m,) (Figure 3) with abort,
under a single malicious corruption.

USENIX Association

29th USENIX Security Symposium 2491

PROTOCOL Iyac

Inputs: Py, P»: [X], MAC key a.
P3, P4: [X]. F is a PRF.
Protocol:

1. Py, P, sample a random PRF key k, by making a call
to Feoin-

2. Py sends [Y)] = {a[X;] + F(i)|i =1,...,n} to Ps.

3. Pysends [Y (V] = {a[X;] — F(i)|i=1,...,n} to P.

4. Four parties make a call to F ¢ (0, [X]3.4).

P3, Py receive [a] and [Y] < [0X].
Py, P, receive nothing.

5. P3, P4 compute [Z] = [Y —Y (V] and verify Z = 0 by
making a call to Feheckzero([Z]). If the functional-
ity returns false, they send abort to P; and P, and
terminate.

Outputs: P, P, output nothing.
P3, P4 output [Y].

Figure 2: MAC computation protocol

FUNCTIONALITY .‘}—sharemask (f}'—[x]%mx)

Inputs: P, P»: [B], [X], [Y](Y = BX).
Ps, Py: B.
Functionality:

e Reconstruct B, X, and Y from P; and P,. Verify that
P3 and P4 have sent shares of the same .

e Verify that Y = BX. If the check fails, send abort to
all parties.

e Sample shares [Ax]1, [Ax]2, [My]1, [Ny]2 uniformly
at random, then reconstruct Ay and A} .

e Compute my = X +Ax and mjy =X +Ay.

Outputs: P; receive (my, Ay, [Ax]1), P2 (mx, Ny, [Ax]2)
P receive (m&,?ux, [7\&]3), Py (m&,)»x., [7\&]4)

Figure 3: Ideal Functionality to convert additive secret-shares
to masked values

3.3 Mask-Share Conversion

At the end of the Apply phase, the result of the 4-party com-
putation is masked values that need to be converted back to
additive shares, before updating the edges. This conversion
step is very simple. Each party locally converts their masked
values to additive shares, without any interaction: given x+ A,
and [A,], simply output [x] = x+ X, — [A].

3.4 Four-Party Evaluation With Truncation

This section presents the small sub-components that are uti-
lized in the Apply operation.

Fixed point arithmetic A fixed point number is represented
by an element of the ring Z,. The d least significant bits are

PROTOCOL Igharemask (H[x]ﬁmx)

Inputs: Py and P»: [B], [X], [Y] = [BX].

P; and Py: B.
Functionality:
1. Py, P, and P3 make calls to Feoin to sample [A}]
2. Py, P», and P4 make calls to Foin to sample [Ay]n
3. Py, P3, and P4 make calls to Foi to sample [Ax];
4. P,, P3, and P4 make calls to Fcoin to sample [Ax]>
5. Py and P compute [myx] = [X] + [Ax], [m}] = [X]+

(Ml Y] = [Y]+ [B]Ay (where Ay = [Ax]1 + [Ay]2).

Py and P, reconstruct my <— open([my]).

7. Py sends his shares [mj], [Y'] to P3. P, sends his
shares [mj], [Y'] to Py.

8. P53 and Py computes [Z] = B[m}]| — [Y'] and make a
call to Fcheckzero([Z]). If the functionality outputs

b = false, they call abort. Else, if b = true, they open
ny < open([m]).

o

9. All parties compute dy = mx + Ay = my + Ay, P
and P3 compare h; = H(dx) with each other, while
P, and P4 compare hy = H(dx) with each other. If
any group sees a mismatch, they call abort.

Outputs: Py, P, output my, [Ax], V.
P3, Py output mly, [Ny], Ax.

Figure 4: Real-world protocol to convert additive shares to
masked values

used for the fractional part of the number. We provide a way
to perform multiplication with masked values on fixed point
numbers.

Masked value: In our protocol, we use masked values for
the computation. Instead of holding shares [x], one group has
(my = x+ Ay, A, [Ay]) and the other has (m, = x+ A/, A, [A}]).

Addition: Addition is performed locally by adding the
masked values together.

For Pi and P»: (my, M, [A]) + (my, A [A]) = (my +
my, K+ A5,] + M)

For Py and Py: (m, Ay, [A]) + (i, Ay, [A])
mg,, e+ Ay, [N] + W])

Multiplication Without Truncation: Assume that P; and
P> want to perform a secure multiplication on the mask
values (x+A,) and (y+2,), and the desired output is
(xy+ Az, AL [A;]). P and P, hold secret shares [A,], [Ay], and
[AxAy +A;]. These shares are provided by P; and Py.

Locally P; and P, compute

Pr: [mz)y = mymy — [Ax]my — [Ay]m + Az + Ay .

Py: [mely = =[Aalmy = My + [As 4 Ay]

and exchange the shares to reconstruct m; = xy + A;. They
output (mz, AL, [A;]). Similarly, P3 and P4 output (m}, A, [AL]).

(', +

2492 29th USENIX Security Symposium

USENIX Association

Multiplication With Truncation: In our setting, x and y are
fixed-point numbers with d bits for the fraction. The result of
the multiplication is a number that has its least 2d significant
bits in the fractional portion. A truncation is needed to throw
away the d least significant bits: the output of the multiplica-
tion is the masked value of the truncation of xy in stead of
that of xy. We provide a method to handle the truncation for
our four-party mask evaluation.

First, we have a simple observation: if z,A;, A/ are integers,

the following holds:
A AL A AL
5] = 15r) + 5] +e
. A

=57+ LQ—;,J + | 53] + €1 + &, whereg; € {0,1}.
571, if0<z<2
k|22, if2F -2 <z <2

Assume that —2" < xy < 2 is the domain where xy lies in.
We have two different cases.

First, we consider the case of a non-negative xy, which
is represented by a ring element z = xy in the range [0;2].
The above equation works without any modifications when
(z+;) and (z+A.) are both less than 2. This happens with
probability of at least 1 —2/~%*1 (we note that 2! < 2%).

Second, we consider the case of a negative xy. A negative
Xy is represented by a ring element z = 2% — |xy| in the range
[2k —27;2% —1]. With probability of at least 1 —2/~*+1 both A,
and A, will be chosen such that (z-+21,) > 2¥ and (z+1) > 2%,
causing modular reduction in our computation. Specifically,
for group 1, P and P> hold z+ X, — 2% = z++A; mod 2K, A,
and can compute the following in the integer domain:

(a2 _mod 24)+2 (A =24+ | _ (=2)+htl;
L 2d J = L 2d J = L 2d J
= |2+ |2+ | 5] +e wheree € {0,2)
k_ s +A; mod 2K)+AL

Let m: = (2 = |57 +e) + |55) = [P0

A, K X
- |57] mod 2k and ml = (2% - L%J +¢) + [5] =

/ k
L7<ZMZ r;(z)zdz HMJ - L;%J mod 2¥. They are the masked

value of the truncation of xy for group 1 and 2 respectively.

For z € Zy, trun(z) = {

Py and P, can compute m, and L;‘—;J themselves without any
interaction as they know xy+ A, and A. P; and P4 can provide
Py and P, with shares H%H At the end, P; and P, obtain the
output of the truncated mask evaluation: (mZ,L;"—:,J , [L;‘—dj])
Similarly, P; and P obtain (m, L;‘—dJ , [L;—;J]) The error of the
truncated multiplication is at most zd%,. Importantly, the error

does not impact proper cross-checking of the two parallel
evaluations.

Vectorization for dot products A naive way to perform a dot
product between two vectors u = {uy,...,un },v = {vi,...,vn}
is to perform n multiplications then add the shares up. We use
the vectorization technique to bring this down to the cost of
one multiplication. The details are shown in Figure 6.

Communication cost Each multiplication with truncation
requires the four parties to communicate only 6 rings in total

when done in batch. For each gate, Fyiple costs 2 rings (one
ring sent from P; to P>, and the other from Pj to P;) and the
opening of m. and m.. each costs 2 rings. Feoin is free when
common random seeds are used, and two hashes are needed
to be sent for the whole batch. We note that the cost is the
same for dot product gate.

FUNCTIONALITY Feval

Inputs: For each input wire w:
Py, Po: my = X+ My, [XW], 7\(4;7
P3, Py: i, = xp + N, [AL] Ay
Functionality:
e Reconstruct A received from Py, P, and verify if it
is equal to A received from P3, P4. Reconstruct A/
received from Pz, P4, and verify if it is equal to A/
received from Py, P,. If any of these verification fails,
send abort to all parties.

e Compute
— (b Y) = fune (my Xy [A])
= A Y]) = fune)y o, D)
Outputs: Py, P, receive (msv1> 7»151), [7»&1)])
Py, Py receive (ms”, A, D).

Figure 5: Ideal Functionality to handle Masked Evaluation
With Truncation

Theorem 3 The protocol I,y (Figure 6) securely realizes
the ideal functionality Fe,q (Figure 5) with abort, under a
single malicious corruption.

4 Differentially Private Graph Parallel Com-
putation in Maliciously Secure Four-Party
Settings

Our construction follows the graph-parallel computation
model in which the computation is done using three main
operations; Gather, Apply and Scatter. We partition the play-
ers into two groups, and in each group, there are two players.
For ease of explanation, we name the parties in the first group
Alice and Bob (Py, P»), and parties in the second group, Char-
lotte and David (P3, Ps). These parties collaboratively com-
pute a functionality, for example Matrix Factorization. During
the computation, each group is responsible for performing
an operation that its results then will be verified by the other
group. For example, one group securely shuffles the data,
and the other group verifies that the data is not maliciously
tampered, then the latter group performs the operations that
access the data (e.g., gather), and then the former group veri-
fies the correctness of that operation. As described previously,
each data access operation, Gather or Scatter, is always fol-
lowed by a Shuffle operation, in order to hide the graph edge

USENIX Association

29th USENIX Security Symposium 2493

Teval

Inputs: For each input wire w: Py, Po: myy = Xy -+ Aypy Ay, (A P3, Py 1), = x + X0 Aoy, [AL]-
Evaluation: For each gate (a,b, ¢, T) following topological order:
Evaluation Group 1 (P; and P,)

Lif T =+ me < mg +mp; [Ae] < [Aa] + [Ap]s M. = A, + A,
2. if T = - (Dot Product/Multiplication Gate)
(a) ([1 ha o, +7Vc]) ch/zdj]) A .{FTriple(avbac);
(b) [mL} — 27:] (mu,- cMp, — Mg, * [kb,v} —myp, - p"a,-]) + [,"l:l 7\%- . kb,v + }\,L]
(©) me < open([me]); me < | (me +4)/24) = [Ao /29 s A = [A/27)5 [Ae] = [[Ae/29]]
Evaluation Group 2 (P3 and Py)
Lif T =+ ml, < ml+mj; [A] <= M)+ M) Ae < Ao+ Ay
2. if T = - (Dot Product/Multiplication Gate)

@ ([T XA+ [8/240]) = Fripe @ byc);

(b)] = Xy (o oyl [N, 1=l [N 1)+ [2 2, 0]

(©) i, open((ml]); ml < [(m+Xe) /2] = [Me/2): Ae = [Ae/24)5 [N] = [[20/29]]
Cross Check

1. All parties make a call to Foin to sample the same random nonce r, compute the double masked value for each wire
d,y = my, + X, = ml, +Ay,. They each computes h; < hash(d{||...||dn||r).

Py sends h; to P, and P4. P3 sends h3 to P, and Py.

P, verifies that h; = h3. If true, he sends 0 to F,, ¢ functionality, else he sends 1. P4 does the same thing when verifying 4| = h3.
Repeat the previous instructions with the variable exchanged as follows, P> sends 4, to Py and P3, and Py sends /4 to Py and P3.

P and Ps separately verify they received same values from P, and Py, and provide input to the ¥,, functionality, accordingly.

AU

All the parties will receive the result from ¥,, in order to determine to continue or to abort.

“4-party logical OR

Output: All parties output masked values of the output wires. Py, P, output (my,’, A, [7\,‘(/1)D P3, P4 output (m(, , ks,l), D).

(1) 5/01) (1)

Figure 6: Protocol to handle Masked Evaluation With Truncation

structure. As long as the group that accesses the data does
not know the permutation pattern of the shuffle, our scheme
remains secure. In our explanation of the construction, we
assume Alice and Bob are responsible to access the data, and
Charlotte and David handle the shuffling. At the beginning
of each phase, all four parties contribute to compute MAC
values of data. After computation, the verification group ver-
ifies MAC values, to prevent the malicious adversary from
modifying the data.

4.1 Construction Overview

Data Structure: In our framework, the data is represented in
a graph structure G = (V, E), in which vertices contain user
and item profiles, and edges represent the relation between
connected vertices. Each edge, represented as E, has five main
elements, (E.lig, E.rig, E.lgata, E.rdata, E.isReal), where isReal
indicates if an edge is “real” or “dummy”’. Each vertex, V,
contains two main elements, (Vig, Vyata). The Vyata storage
is large enough to hold aggregated edge data from multiple

adjacent edges during the gather operation.

Dummy Generation: Before the main protocol begins, a
number of dummy edges will be generated according to an
appropriate distribution, and concatenated to the list of real
edges, in order to provide (g, 8)-Differential Privacy. There-
fore, the input to the framework is a concatenated list of real
and dummy edges, and list of vertices. The circuit for gen-
erating these dummies, together with the noise distribution,
is taken directly from the work of Mazloom and Gordon, so
we do not describe it again here. The cost of this execution
is very small relative to the rest of the protocol, and it is only
performed once at the beginning of the any computation, re-
gardless of how many iterations the computation has (both the
histogram and the matrix factorization computations require
only one dummy generation operation). These dummy edges
are marked with a (secret shared) flag isReal, indicating that
dummies should not influence the computation during the
Apply phase. However, they still have node identifiers, so they
contribute to the number of memory accesses to these nodes
during the Gather and Scatter phases. The protocol we use

2494 29th USENIX Security Symposium

USENIX Association

Edge => [E] := ([E.lia). [E.rial | E-luo). | E-ana). | E-isReal])

Vertex => [V] := ([V,,;],[Vrmw])

[o]

Input Preparation

Alice User Data

E = [E]s +[E]lB

E =[Elc +[Elp
Charlotte ‘!I

Figure 7: Input preparation phase: input data is secret-shared
between both groups of parties

for generating dummy edges appears in Figure 2 of Mazloom
and Gordon ([15], Definition 2).

Step 0. Input preparation: We assume the input data is ad-
ditively secret-shared between parties in each group, so that
parties in each group, together can reconstruct the data. For
example, Alice and Bob receive 2-out-of-2 secret shares of E,
such that [E], + [E]z = E mod 2¢*%, as shown in Figure 7.

Step 1. Oblivious Shuffle: In this step, Charlotte and David
shuffle the edges. Shuffling edges between the gathering of
data at the left nodes and the gathering of data at the right
nodes ensures that the graph edge structure remains hidden.
Alice and Bob are responsible to verify that the shuffle op-
eration has been done correctly. To facilitate that, before the
shuffle begins, they need to compute a MAC tag for each
edge. To compute the MAC:s, first Alice and Bob agree on
a random value @, then all parties call a functionality, Fuac,
to securely compute shares of MAC tags, [M]([M] = [0E]).
To perform the shuffle, Charlotte and David agree on a ran-
dom permutation 7, then each locally shuffles its shares of the
edges E along with its shares of the corresponding MAC tags,
according to permutation . At the the end of this step, Alice
and Bob receive the shuffled edges from the other group, and
call the verification function, Fcheckzero. If the verification
fails, it means one of the parties in the shuffling group, either
Charlotte or David, has cheated and modified the edge data,
and the protocol aborts; otherwise they continue to the next
phase.

Step 2. Oblivious Gather: The next operation after Shuffle
is the Gather operation, which requires access to the node
identifiers, and will be handled by Alice and Bob. In turn,
Charlotte and David should be able to verify the correctness of
the Gather operation. Therefore, before the Gather operation,
Charlotte and David agree on a random value f3, and all parties
make a sequence of calls to the Fyac functionality, generating
a new MAC tag for each data element of each edge. That
is, they create three tags per edge: one tag for each of the
two vertex ids, and one tag for the edge data. The Gather
operation is performed on only one side of each edge at a

time; in one iteration of the protocol, data is gathered at all of
the left vertices, and in the next iteration, it is gathered at all
of the right vertices. Gather for the left vertices is described
in Figure 13: for each edge, Alice and Bob first reconstruct
the id of the left vertex E.l;4, locate the corresponding vertex,
and then append the data of the other end of the edge, i.e. the
data of the right vertex, [E.rgata] with its MAC tags, to the left
vertex data storage. They do the same for all the incoming
edges to that vertex. Note that in the next iteration of the
algorithm they follow the same procedure for the right vertex,
if applicable. When Alice and Bob access the left side of
each edge, they learn the number of times each left vertex is
accessed, which leaks the degree of each vertex in the graph.
However, due to the dummy edges that we shuffled-in with the
real ones, what they learn is the noisy degree of each vertex,
which preserve deferential privacy. At the end of this phase,
Charlotte and David verify that Gather was executed correctly
by calling Fcheckzero, Verifying that the data was unmodified.
They abort if the verification fails. We note that, in addition
to modifying data, a malicious adversary might try to move
data to the wrong vertex. From a security standpoint, this is
equivalent to the case that the adversary moves data to the
correct vertex during Gather, but modifies the shares of the
authenticated identifier. To simplify the analysis, we assume
that the adversary moves data to the correct vertex.

Step 3. Oblivious Apply: This operation consists of three
sub-operations. First, additive shares of data are converted
to masked values, then the main functionality (e.g. gradient
descent) is applied on the masked values (at each vertex),
and finally the masked values are converted back to additive
secret-shares, which then will be used in the following phases
of the framework.

Step 3.1. Secure Share-Mask Conversion: All the parties
participate in the Apply phase, providing their shares as input
to the Arithmetic Circuit that computes the intended function-
ality. However, in order to prepare the private data for the
Apply operation, the secret-shared values need to be trans-
formed into "masked" values. In order to convert shares to
masked values, each group agrees on a vector of random mask
values, denoted as A for Alice-Bob and A for Charlotte-David.
Then they call the Fgharemask functionality and collaboratively
transform the share values [V] to masked values V + A and
V4N

Step 3.2. Computing the function of interest on input
data: As part of the Apply phase, the parties compute the
function of interest on the input data: for example, they per-
form addition for Histograms, or gradient descent for Matrix
Factorization. The parties execute the four-party protocol
described in Figure 6 to evaluate the relevant circuit.

Step 3.3. Secure Mask-Share Conversion: At the end of the
Apply phase, data is in the masked format and needed to be
converted to secret-shared values. As described previously,
each party can locally convert their masked values to additive

USENIX Association

29th USENIX Security Symposium 2495

secret-shares, without interacting with other parties.

Step 4. Oblivious Scatter: The result of each computation
resides inside the corresponding vertex. We need to update
the data on the edges with the freshly computed data. In this
step, all players copy the updated data from the vertex to the
incoming (or outgoing) edges. The players refer to the list of
opened ID’s obtained during Gather to decide how to update
each edge. Recall, edges are held as additive secret shares; the
update of the edge data can be done locally. Finally, they
re-randomize all the shares.

This explanation and accompanying diagrams only show the
graph operations applied on the left vertices of each edge. To
complete one round of the graph computation, we need to
repeat the steps 1-4 on the right vertices as well.

4.2 Oblivious Graph Operations

The hybrid world protocol is presented in Figure 9. There we
assume access to ideal functionalities for Shuffle, Gather, Ap-
ply and Scatter. In this section, we explain how we instantiate
each of these ideal functionalities, and provide the security
proofs for each protocol under a single malicious corruption.

Fsgas: Four-Party Secure Graph Parallel
Computation Functionality

Input: User input is a directed graph, G(E,V), secret
shared between the parties:

Alice,Bob hold secret shares of E, such that, for each
edge, [E], + |E] = E mod 2++5.

Charlotte, David hold secret shares of E, such that
[E]c+[E]p = E mod 28+,

([E]a, [E]B [E]c, [E]lD € Zokss, and E € Zyk).

Functionality:
1. Waits for input from all parties.

2. Verifies that [E]4 + [E]p = [E]c + [E]p. If not, sends
abort to all parties.

3. Reconstructs E, then computes E() = func(E).
4. Secret shares E() to Py, P>; and EM o Ps3, Py.
5. Computes the leakage £(G), sends it to all parties.

Output: Secret shares of the updated edge values
(e.g. user and item profiles). The parties also obtain the
leakage £(G).

Figure 8: Fggas: Four-party ideal functionality for securely
applying the graph parallel model of computation.

4.2.1 Four-Party Oblivious Shuffle

The Shuffle operation is used to hide the edge structure of
the graph: during the Gather and Scatter operations, the ver-
tex on each side of an edge is accessed, and shuffling the
edges between these two phases hides the connection between

sgas: Four-Party Secure Graph Parallel
Computation Protocol

Input: User input is a directed graph, G(E,V), secret
shared between the parties:

Alice,Bob hold secret shares of E, s.t. for each edge,
[E], +[E]g = E mod 2k+5.

Charlotte, David hold secret shares of E, s.t. for each
edge, [E]c+ [E]p = E mod 2k+5.

([E]a, E]B, [E]c, [E]lD € Zyk+s, and E € Zok).

Protocol:

Note: The following steps are conducted on the left vertex
of each edge (for example in computing Histogram). In or-
der to perform one single iteration of Matrix Factorization,
these steps should be done twice, once on the left vertices,
then on the right vertices.

1. Oblivious Shuffle Four players make a call to
Fenuffie([E]) to shuffle their shares. They receive
shares of shuffled edges, [E(V)] « [r(E)].

2. Oblivious Gather The parties call Fgather([E <1)])
to aggregate edge data into vertices. Alice, Bob re-
ceive:

V] = [{Vi, Vi, }ocos (Vi Vi s

W] = [{W1,..W1,}, ..., {Wy, .. Wy, }], and [B], where
V is the vector of gathered vertices, and W = BV is
V’s MAC.

Charlotte, David receive MAC key B.

Note: Gather leaks the noisy degree of the vertices,
however, this leakage preserves differential privacy.

3. Oblivious Apply The players call %,y to compute
the function of interest on the vertex data. Alice and
Bob use input ([V],[W],[B]) while Charlotte, David
each provide B. Four players receive updated values

of shares of vertices [{V1<]1>..V1(i1)}., . {V,,(ll).. n(,l)}]

4. Oblivious Scatter This step is done locally without
any interaction with other parties, and each party
uses ([{Vl(]l)..Vl(I_l)}7 e {Vn(,])..V,,(jl)}D to update the
edges and receive [E(2)].

Each group sends [E <2)] to Frerand and receives
[EG)] before entering the next round of computa-
tion (Step 1).

Output: Secret shares of the edge values (e.g. user and
item profiles)

Figure 9: Ilg,s: Four-party protocol in the hybrid-world for
securely applying the graph parallel model of computation.

the neighboring vertices. Additionally, the Shuffle operation
mixes the dummy edges in with the real ones, which hides
the exact degree of each vertex.

Theorem 4 The Oblivious Shuffle protocol Hgnysse (Figure
11 securely realizes the ideal functionality Fenusne (Figure
10) with abort, under a single malicious corruption.

Proof Theorem 4. The Oblivious Shuffle protocol: To prove

2496 29th USENIX Security Symposium

USENIX Association

Fshuffle

Inputs:Py, Py: [E] (s.t. [E]; + [E]2 = E).
Ps, Py: [E} (s.t. [Eb + [E}4 =F).
Functionality:

o Verify that [E]; + [E]p = [E]3 + [E]s. If the check
fails, send abort to all parties.

e Sample a random permutation 7. Shuffle the shares
[E]3 and [E]4, according to : [E(V]3 « m([E]3).
[EW]y n((E4)

Outputs: Py, P3 receive [E <1>]3.
P,, P, receive [E(l)]4.

Figure 10: Oblivious Shuffle Ideal Functionality

the security of our Oblivious Shuffle, we provide a simulation
for P; and P;. The simulations for other parties are identical.
First, a simulation for P;:

e S receives P;’s input [E]; from the distinguisher and
places it in the input tape of P;.

e 0: S samples a random O and hands it to P to simulate
the output from Feoin. S then observes the message that
Py sends to Fyac: if Py does not send the intended mes-
sages (0, [E]1), S submits abort to Fsnuffie> and outputs
the partial transcript. Else, S submits P;’s input [E]; to
the ideal functionality Fehufrie and receives [E (1)].

o [EM],[MM)]: § samples random ring elements as shares
[M(V], hands [E(] (where [EM)] = [E']) and [M™)] to
Py to simulate the messages [E(V],[M(V)] P; receives
from Fyac. S computes [Z] himself to mirror P;’s action.

e b: S observes the messages that P sends t0 Fcheckzero- If
Py modifies his shares [Z], S hands b = false to P; as the
output of Fcheckzero, OUtputs the partial view, and aborts.
Else, S hands b = true to P; and outputs whatever P
outputs.

Claim 1 For the simulator S corrupting party Py as described
above, and interacting with the functionality Fspuffie,

<

{HYBRIDnshufflevﬂ(z) (E, K) }26{071}* ;keN
{IDEALj’VshufHeaS(Z) (E;x) }16{071}*7K€N

Case 0: If the adversary behaves honestly, the joint distri-
butions in the hybrid and ideal executions are:

{HYBRIDﬂshufﬂeﬂ(Z) (E’K)}ZG{OJ}*»KGN -

{a, [E(l)]7 [M(l)],b =true,01,02,03,04}

{IDEAL,’]:shufﬂevS(Z) (E,%) }26{071}*-K€N -

{a’a [E(l)]a [M(l)]j; = trueabvl 752353354}

Oblivious Shuffle

. ’ () >
Alice|[E]l, _/ [E]s [Bob
Charlotte a g [E]p |David
@ Shuffle MAC
F _ Computation
Charlotte MAC David
[M]c = [aE]c [M]p =[aE]D
T T T T T Shuffle Edges
Charlotte, v David
‘Shufflen([EJc,[MJc> Shuffle,,([E]D,[M]D)
Alice Bob

[EMe,IM Ve

Shuffle MAC
Verification

FCheckZero(a[E(l)] — [M(l)])

True/False True/False

Figure 11: Oblivious Shuffle Real-World Protocol

The messages [0/, [, [M(V)], [MM)], [EM] and [E(V] are
all uniformly and independently distributed. Furthermore,
[o], [&], [M(1)], [M()] are independent of the output, and the
output distributions are identical. Thus, the joint distributions
between both worlds are identical.

Case 1: If P; deviates from the protocol in Step 2 by pro-
viding the incorrect o or incorrect shares [E]; to Fyac, abort
occurs in both worlds, and the joint distributions, {a, L} and
{a, L}, are identically distributed.

Case 2: If Py deviates from the protocol in Step 4 by provid-
ing the wrong shares [Z] to Fcheckzero, S hands b = false to P
in the ideal world and aborts. In the hybrid world, Fcheckzero
outputs b = false and all parties abort. It is clear that the joint
distributions in both worlds are identical.

In conclusion, the joint distributions between the two
worlds are identical.

Now, a simulation for Ps:

e [M]: S receives [E]3 and places it in the input tape of
P3. S observes the message that P; sends to Fyac: if
P; modifies [E]3 before sending it to the functionality,
$S aborts and outputs the partial view. Else, § samples
random ring elements as shares [M]3 and hands them to
P to simulate the output P; receives from Fyac in the

hybrid world.

e T: S queries the ideal functionality with P5’s input, [E]s,

USENIX Association

29th USENIX Security Symposium 2497

and obtains the output [E()]3. S computes T such that
[EW]3 < n([E]3), then agrees on the permutation T with
Ps in Step 3 (playing the part of P). S computes [m(1)]
[T(m)] to mirror P3’s action.

e b: S observes the messages that Pz sends to P; in Step 3.
If P3 sends [E'(V]3 = [EW]34-D or [m'(V] = [m(V]3 +-D’
where D # 0 mod 2%, D' # 0 mod 25, S aborts and
outputs the partial view. Else, S outputs whatever P3
outputs.

Claim 2 For the simulator S corrupting party P3 as described
above, and interacting with the functionality Fenuffie,

£

{HYBRIDnshufflevﬂ(Z) (E;%) }26{011}* xeN

{IDEALﬂhufflevs(Z) (E,x) }ze{o_ 1}* keN

Case 0: If P5 follows the protocol honestly, the joint distri-
butions in the hybrid and ideal execution is:

{HYBRIDy ¢\ a(;) (E.) }ze{oﬁl}* xeN —

{[M]vnvb701702703,04}

{IDEALy, . 50) (B) }ze{oal}*vKEN -

{[M]7%7’5151752553;54}

The messages [M],[M] and m, T are all distributed uni-
formly at random, and independently from the remainder
of the view, including the joint distribution over the output
shares. The output distribution is identical in both worlds as
well. Thus, the joint distributions between both worlds are
identical.

Case 1: If P; deviates from the protocol in Step 2 by sending
the wrong shares of [E], abort happens in both worlds, and the
joint distributions in both worlds are both { L} and identical.

Case 2: S observes what P3 sends to Py in Step 3. If he does
not send the intended messages: P; sends [E'(V)] = [E(1) +
D] or [M'V] = [M"Y) + D'] where D # 0 mod 2¥,D' # 0
mod 255 S abort in the ide~al exgcution. The joint distribu-
tion in the ideal world is {[M], T, b = false, | }. In the hybrid
world, there is a small chance that P; and P, do not abort.
This happens if P3 chooses the additive terms D and D’ such
that oD + D’ = 0 mod 2¢*S. The probability that this hap-
pens is at most 27° as shown in Section 3.1. So, with prob-
ability 1 —27¥, the joint distribution in the hybrid world is
{[M],[r],b = false, L }. Thus, the joint distributions in both
worlds are statistically close.

In conclusion, the joint distributions in both worlds are
statistically close. B

4.2.2 Four-Party Oblivious Gather

Gather operation aggregates the data from neighboring edges
to each vertex. The data will be stored at the vertices for
further computation handled by Apply operation.

fgather

Inputs: Py, P;: [E] (s.t. [E]; + [E]» = E).
P3, Py: [E] (st [E]3 + [E]s = E).
Functionality:
e Sample a random MAC key B.

o Wait for shares [E] from all parties. Verify that [E]; +
[E]2 = [E]3 + [E]4. If the verification fails, send abort
to all parties. Else, reconstruct E.

e For all vertices v € V, set v <— 0.
e For each edge e € E do:

Forv € V s.t. v.id = lig: v.Append(e.rqata)
e Compute W « BV.

Outputs: Py, P, receive [{Vi .V}, oos{Va, - Vi, }] &
W1, W13, oo s AWy - Wa, 31, [B]. P3, Py teceive .

Figure 12: Oblivious Gather Ideal Functionality

Theorem 5 The Oblivious Gather protocol (Figure 13) se-
curely realizes the ideal functionality Fgather (Figure 12) with
abort, under a single malicious corruption.

4.2.3 Four-Party Oblivious Apply

Apply computes the main functionality of the framework on
the input data. In the Gather operation, the data is aggregated
into vertices, therefore Apply runs the computation on the
vertex data.

Theorem 6 The oblivious Apply protocol I,pp1y (Figure 15)
securely realizes the ideal functionality Fapply (Figure 14)
with abort, under a single malicious corruption.

4.2.4 Four-Party Oblivious Scatter

During the Scatter operation, the updated data in the vertices
are pushed back to their corresponding edges in the graph,
replacing the old values stored in the edges. This step is done
locally by each party, P and P,, with no interaction between
them. Therefore, this step is secure. After updating the edges,
the shares are re-randomized to break the correlation between
the edges (edges with the same left (or right) id are updated
with the same shares during scattering phase. If any of the
parties cheats and modifies the data before scattering to the
edges, it will be detected in the following phase, which is the
Shuffle operation of the next round.

2498 29th USENIX Security Symposium

USENIX Association

Oblivious Gather (left)

Gather MAC

[E.ldle [E.Lulp ("Ompulallon
Charlotte| [E.rumlc [E.raaalp |David
[E.isReal]lc [E.isReal]p
[E.isReallp
[E.lialp
Alice| [E-rauala [E.rguals [E-Taaals |BoOb
[E.isReal]s
[MAC,(E.lia)]a [MAC(E.1ia)]5
Alice| [MACH(E. ryaa)la [MAC)(E.r4aa)lz |Bob
[MAC(E. isReal)] s [MAC;(E.isReal)]

Gather Edges
Bob

[MAC;(V:g)15 < append([MAC4(E.1;4)]5)
[Vaatals < append(LE. raaral . [E. is Realls)

Open(E.liq)
Alice Find(V|V = E.l;y),

[MAC,(Vig)14 < append ([MAC(E.Ti)1x)

[Vaarala < append([E. rauala, [E.isRealls)

[MAC(Viara)la < append([MAC/y(E. Tdata)|4 [MACs(Vaara) 18 < append(lMACME- Tdata)|B
,IMAC,(E.isReal)] 1) ,IMAC;(E.isReal)]3)

Gather MAC
Charlotte David Verification

p
Via, IMAC;(Vid)lc @ Via, IMAC;(Via)lp
Via

Feneckzero(B[Via] — [MACs(Via)])]

True/False True/False

Figure 13: Oblivious Gather Real-World Protocol

Fapply
Inputs: P, P: ViV bs e Vi - Vi, 3
[{Wll..Wli},l..,{W,,l.AW,,j}], [B]-
P3, P4Z [3
Functionality:

o Verify that B[V] = [W]. If the verification fails, send
abort to all parties. Else, reconstruct V.

o Forve [{Vi,. Vi, b, {Vi, - Vi, }:
Compute v\!) « func(v).
Note: func is the computation applied on the data,

e.g. computing Gradient Decent for Matrix Factor-
ization or Addition in Histogram algorithm.

Output: All parties receive: [{Vl(ll>..V1(])}, {V,Ell)..Vn(/.])}].

i

Figure 14: Oblivious Apply ideal functionality

4.3 Four-Party Secure GAS computation

In this section, we formally define our overall framework in a
hybrid-world model. But first, we define the leakage function
L(G) to be the noisy degree of each vertex in the graph, as
was done by Mazloom and Gordon [15] (Definition 7). That
is, in the ideal world, after receiving secret shares of the graph
description, the functionality creates an array containing the

Happly

Inputs: Py, Po: [{V1,-V1, }5 s {Viy - Vi, }1
[{Wi 1 "Wli}’ B {Wnl "VVH,’}L Bl.
Ps, Py: B.
Protocol:

1. Setting up the circuit Four parties agree on a circuit,
C,, for each vertex. Py, P, initialize the input wires
with shares [{V1,..V1,}, s {Vi, Vi, }]-

2. Secure Share-Mask Conversion Four parties call
9'[)(] _ym,» converting the input wires’ additive shares
to masked values.

e Py, Py use input ([{Vi,.Vi,}, .o {Vi, - Vi, }.»
[{Wll"Wl,‘}v"'7{Wn1"Wn,'}}’ [m)
P3, Py use input .

e For each vertex, Py, P, receive (my, Ay, [Av]).
P3, Py receive (my,, Ay, [A]]).

3. Apply Functionality
For v &€ [{V1,-V1;}, s {Viy - Vi, }]:
Four parties execute e, (Figure 5), to obtain
the masked values of the updated vertex data.

4. Secure Mask-Share Conversion Each party locally
converts their masked values to additive shares.

e Py and P, computes [V] < (V+Ay) —[Av],
e P53 and P, computes [V] « (V+1A;,) — [A]].

Output: All parties output: [{Vl(ll), .V1<‘_]) b {V,,(l]), .Vn(j1) -

Figure 15: Protocol for securely computing Apply.

vertex degrees. It then generates an equal length array of in-
teger noise values, each independently sampled from some
appropriate distribution. ° The functionality perturbs the ver-
tex degrees by adding the two arrays, and returns the result
to the simulator. Mazloom and Gordon describe a particular
distribution that is easy to sample inside a secure computa-
tion, and prove that it provides differential privacy. We use
the same one in our experiments.

Theorem 7 ([16]) The randomized algorithm L is (g,0)-
approximate differentially private.

Theorem 8 The protocol Ilsgas (Figure 9) securely computes
the ideal functionality Fegas (Figure 8) with L leakage in the

(ﬂhuffley .{]:gathera .q’—applya ﬂcatter)'hybrid model with abort, un-
der a single malicious corruption.

5 Implementation and Evaluation

We implemented our four-party secure computation
framework in C++. The source code is available at

3In addition to proving that the noise distribution provides privacy, we
also require that all the noise values are positive, except with probability 8.

USENIX Association

29th USENIX Security Symposium 2499

https://github.com/sama730/National-Scale-Secure-Parallel-
Computation. We measure the performance of our framework
on a set of benchmark algorithms in order to evaluate our
design. These benchmarks consist of the histogram and
matrix factorization problems, which are commonly used
for evaluating highly-parallelizable frameworks. In all
scenarios, we assume that the data is secret-shared across
four non-colluding cloud providers, as motivated in Section 1.
We compare our results with the closest large-scale secure
parallel graph computation schemes, such as GraphSC [18]
and OblivGraph [16].

5.1 Implementation

In our four-party framework, the histogram and matrix fac-
torization problems can be represented as directed bipartite
graphs.

Histogram: In the histogram computation, which for example
can be used to count the number of people in each zip code,
left vertices represent data elements (people), right vertices
are the counters for each type of data element (the zip code),
and existence of an edge indicates that data element on the
left has the data type of the right node (e.g. the user on the
left belong to the zip code on the right).

Matrix Factorization: In matrix factorization, left vertices rep-
resent users, right vertices are items (e.g. movies in movie
recommendation systems or a product in targeted advertising
systems), an edge indicates that a user ranked that item, and
the weight of the edge represents the rating value.

Vertex and Edge representation: In all scenarios, our statisti-
cal security parameter s = 40. We choose k = 40 to represent
k-bit fixed-point numbers, in which the least d significant bits
are used for the fractional part. For histogram d = 0 and for
matrix factorization d = 20. This requires data and MACs to
be secret shared in the Z,so ring. In our matrix factorization
experiments, we factorize the ratings matrix into two matri-
ces, represented by feature vectors that each has dimension
10. We choose these parameters as to be compatible with the
GraphSC and OblivGraph representations.

5.2 Evaluation

We run the Histogram experiments on graphs with sizes rang-
ing from 1 million to more than 300 million edges, which can
simulate the counting operation in census data gathering [1].
For example, if each user contributed a salary value and a
zip-code, using our framework we can compute the average
salary in each zip-code, while ensuring that the access pat-
terns preserve user privacy. We run matrix factorization with
gradient descent on the real-world MovieLens datasets [11]
that contains user ratings on movies. We report the result for
one complete iteration of the protocol, performing GAS oper-
ations one time on both the left and right nodes. The results
are the average of five executions of the experiments.

Experiment settings: We run all the experiments on AWS
(Amazon Web Services) using four r4.8xlarge instances, each
has 32 processors and 244 GiB RAM, with 10 Gbps network
connectivity. For the LAN experiments, all instances were in
the same data center (Northern Virginia). For the WAN exper-
iments, they were spread across Northern Virginia (P; and Py)
and Oregon data centers (P and P3). The pairs (P;, Py) and
(P, P3) each communicate O(1) ring elements in total, thus,
we did not bother to separate these pairs in our WAN experi-
ments. We use three metrics in evaluating the performance of
our framework: running time in seconds, communication cost
in MB, measured by the number of bits transferred between
parties, and circuit size, measured by the number of AND
Gates/AES operations.

The size of the graphs in all Histogram and MF experiments

is as follows: (6K users, 4K items, 1M edges), (72K users,
10K items, 10M edges), (138K users, 27K items, 20M edges),
and (300M users, 42K items, 300M edges) for Histogram
only. . In all the experiments, the privacy parameters are set
ase=0.3,8=2".
Run time and Communication Cost: Figure 16a demon-
strates that the run time required to compute the Histogram
protocol on a graph with 300 million edges is less than 4.17
mins, using multiprocessor machines in the LAN setting. Ta-
ble 1 shows the results in more detail. Figure 16b shows the
amount of data in MB, transferred between the parties during
the Histogram protocol. Communication cost shows linear de-
crease with increasing the number of processors. Both graphs
are in log-log scale.

Execution Time (seconds)

2 2 2

Number of Processors Number of Processors

(a) Running Time (b) Communication Cost

Figure 16: Run time(s) and Communication cost(MB) of
Histogram on graph sizes 1M, 10M, 20M and 300M edges

Table 1: Details of running time (sec) for computing His-
togram problem on different input sizes

Processors / Edges M 10M 20M 300M

1 13.8 85.0 207.7 2149.4
2 7.5 46.5 98.1 1136.5
4 4.3 28.0 57.8 643.2
8 2.7 16.2 34.4 382.5
16 1.8 11.2 23.3 279.2
32 1.5 10.1 21.7 250.4

2500 29th USENIX Security Symposium

USENIX Association

Similarly, Figure 17a shows that computing Matrix Fac-
torization on large scale graph data sets takes less than 6
minutes, using our four-party framework, in our AWS LAN
setting. The running time is expected to decrease linearly as
we increase the number of processors, however due to some
small overhead incurred by parallelization, the run time im-
provement is slightly sub-linear. Table 2 shows the results
in details. Figure 17b shows the communication cost during
Matrix Factorization on large data sets. Both graphs are in
log-log scale.

of Edges - #of Edges
N ™M ~ el ™
ERUM Sl Tl —= 1M 4 S el —— 1M

~s T --=- 20M ~— el —--- 20M

Execution Time (seconds)
/
i
i
Communication Cost (MB)

Number of Processors Number of Processors

(a) Running Time (b) Communication Cost

Figure 17: Run time(s) and Communication cost(MB) of
Matrix Factorization on graph sizes 1M, 10M and 20M edges

Table 2: Details of running time (sec) for computing Matrix
Factorization problem on different input sizes

Processors / Edges M 10M 20M
1 258.3 1639.7 3401.8
2 132.9 834.7 1913.7
4 80.4 455.6 1055.9
8 44.6 292.2 613.1
16 28.2 190.6 423.7
32 25.1 163.4 357.2

We measure the run time for each of the graph oblivious
operations in our framework, to understand the effect of each
step in the performance of the framework as a whole. Figure
18a and 18b demonstrates the run time break-down of each
oblivious operation in Histogram and Matrix Factorization
problem, on the input graph with only 1 million edges. The
oblivious Shuffle operation has the highest cost in calculating
the Histogram, while Apply phase is taking the most time
in Matrix Factorization, due to the calculation of gradient
descent values, which are more expensive than counting.
Comparison with previous work: We compare our results
with OblivGraph which is the closest large-scale secure paral-
lel graph computation. OblivGraph used garbled circuits for
all the phases of the graph computation, while we use arith-
metic circuits. In both approaches, the amount of time needed
to send and receive data, and the time spent computing AES,
are the dominant costs. We compare the two protocols by the
communication cost and the number of AES calls in each of
them. In Table 3 and 4, we demonstrated both the gain in our
four party oblivious shuffle against the two party shuffle [21]

2 2 2 2° 2 2 2
Processors Processors

(a) Histogram (b) Matrix factorization

Figure 18: Run time for each operation in Histogram and
Matrix Factorization on graph size 1M edges (LAN)

used in OblivGraph and the gain in the Apply phase with the
use of arithmetic circuits in the four party setting.

Table 3: Estimated number of AES operations per party for a
single iteration of matrix factorization: |E| is total number of
edges (real and dummies), IVl number of vertices.

OblivGraph This work
Oblivious Shuffie 7128(|E[log|E[— |E| + 1) 132/E]
Oblivious Gather 0 72|E|
Share Conversion - 72|E| + 30|V
Oblivious Apply 279048| E| + 4440|V | 252|E| +4|V|
Oblivious Scatter 0 20|E|
Total 7128|E[log |E| + 271920E|+ 548|E|+ 34]V]

4440|V| 47128

Table 4: Estimated total communication cost for all par-
ties(bits), for a single iteration of matrix factorization: K is the
number of bits per ciphertext, s = 40, |E| is total number of
edges (real and dummies), IVl number of vertices. The length
of the fixed point numbers used is k = 40 bits

OblivGraph This work
Oblivious Shuffle 4752« (|E|log [E|—|E|+ 1) 432(k+s)|E
Oblivious Gather 32K|E]| 160(k+s)|E
Share Conversion - (192|E|+120|V|)(k+s)
Oblivious Apply 186032k|E| 4 2960k |V | (212|E| 4+ 120|V|)(k +s)
Oblivious Scatter 0 0
Total 4752K|E[log |E| 1 1S13126]E] (996]E] + 240[V])(k +)

+2960K|V | +4752

Table 5, compares our running time with those of GraphSC
[18] and OblivGraph [16], while computing matrix factoriza-
tion on the real-world, MovieLens dataset, with 6040 users,
3883 movies, 1M ratings, and 128 processors.

Effect of differential privacy parameters on the run time:
We study the effect of differential privacy parameters on the
performance of our framework using multiprocessor machines
in the LAN setting, Figure 19. We also provide the number of
dummy edges required for different value of € and d in Table 6.
Note that the stated number of dummy edges are for each right
node in the graph. For example, in a movie recommendation
system based on our framework, we require 118 dummy edges

USENIX Association

29th USENIX Security Symposium 2501

GraphSC [18] OblivGraph [16] This work
Time 13hrs 2hrs 25s

Table 5: Run time comparison on this work vs. OblivGraph
vs. GraphSC. Single iteration of Matrix Factorization on real-
world dataset, MovieLens with 6K users ranked 4K movies
with 1M ratings

per movie, to achieve (0.3,270)-Differential Privacy.

250 - . =03, c5=2"‘°1
. =03, 6=2716
200 - . =1, 6=27%
- =1, 6=2716

150 4

100 4

50 A

Execution Time (seconds)

1 2 4 8 16 32
Number of Processors

Figure 19: Effect of differential privacy parameters, € and &
on run time in Matrix Factorization with graph size 1M edges

Table 6: Number of dummy elements required for each type
depending on different privacy parameters

H €=0.05 e=0.3 e=1 &=5 H
5=2"% 707 118 35 7
d=2"1 374 62 19 4

LAN vs. WAN runtime Figure 20 shows a dramatic slow-
down in the run time when we deployed the computation
servers across data centers, rather than having them in the
same geographic region. Nevertheless, even in the WAN set-
ting, we still greatly out-perform the LAN implementations
of GraphSC and OblivGraph.

6 Conclusion

In this work, we combine the best results of secure multi-party
computation with low-communication cost, and a security re-
laxation that allows the computation servers to learn some
differentially private leakage about user inputs, and construct
a new framework which can compute the histogram problem
on 300 million users in almost 4 mins and the Matrix Fac-
torization problem on 20 million records in about 6 mins. It
reduces the overall runtime of the state of the art solution by
320X, and its communication cost by 200X. Furthermore, in
contrast to prior work, our system is secure against a malicious
adversary that corrupts one of the computing servers.

1001 < —— Within DataCenter
~< —-==- Across DataCenters

101

Execution Time (seconds)

2’ 2! 2’ 2’ 2! 2’
Number of Processors

Figure 20: Run time of Matrix Factorization on graphs size
1M, showing the effect of network delay in LAN vs WAN.

Acknowledgments

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) and Space and
Naval Warfare Systems Center, Pacific (SSC Pacific) under
Contract No. N66001-15-C-4070. It is also supported by NSF
award #1564088.

References
[1] The 2020 united states census. https://2020census.gov.

[2] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar
Lichter, Yehuda Lindell, Ariel Nof, Kazuma Ohara, Adi
Watzman, and Or Weinstein. Optimized honest-majority
MPC for malicious adversaries - breaking the 1 billion-
gate per second barrier. pages 843-862, 2017.

[3] T-H. Hubert Chan, Kai-Min Chung, Bruce M. Maggs,
and Elaine Shi. Foundations of differentially oblivi-
ous algorithms. In Symposium on Discrete Algorithms,
SODA ’19, pages 2448-2467, 2019.

[4] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi,
Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast large-
scale honest-majority MPC for malicious adversaries.
pages 34-64, 2018.

[5] Ronald Cramer, Ivan Damgard, Daniel Escudero, Peter
Scholl, and Chaoping Xing. SPD Z,: Efficient MPC
mod 2% for dishonest majority. pages 769—798, 2018.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. In Proceedings
of the 6th Conference on Symposium on Opearting Sys-
tems Design & Implementation - Volume 6, OSDI’ 04,
pages 10-10, Berkeley, CA, USA, 2004. USENIX As-
sociation.

2502 29th USENIX Security Symposium

USENIX Association

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Wein-
stein. High-throughput secure three-party computation
for malicious adversaries and an honest majority. pages
225-255, 2017.

Oded Goldreich. Foundations of Cryptography: Volume
2, Basic Applications, volume 2. Cambridge University
Press, 2009.

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In Pre-
sented as part of the 10th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 12),
pages 17-30, Hollywood, CA, 2012. USENIX.

S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. Se-
cure computation with low communication from cross-
checking. pages 59-85, 2018.

F. Maxwell Harper and Joseph A. Konstan. The movie-
lens datasets: History and context. ACM Trans. Interact.
Intell. Syst., 5(4):19:1-19:19, December 2015.

Xi He, Ashwin Machanavajjhala, Cheryl J. Flynn, and
Divesh Srivastava. Composing differential privacy and
secure computation: A case study on scaling private
record linkage. pages 1389-1406, 2017.

Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos Guestrin, and Joseph M. Hellerstein.
Graphlab: A new framework for parallel machine learn-
ing. CoRR, abs/1408.2041, 2014.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, S1G-
MOD ’10, pages 135-146, New York, NY, USA, 2010.
ACM.

Sahar Mazloom and S. Dov Gordon. Differentially pri-
vate access patterns in secure computation. Cryptol-
ogy ePrint Archive, Report 2017/1016, 2017. http:
//eprint.iacr.org/2017/1016.

Sahar Mazloom and S. Dov Gordon. Secure computa-
tion with differentially private access patterns. pages
490-507, 2018.

Payman Mohassel and Peter Rindal. ABY?>: A mixed
protocol framework for machine learning. pages 35-52,
2018.

Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi
Weinsberg, Nina Taft, and Elaine Shi. GraphSC: Parallel
secure computation made easy. pages 377-394, 2015.

[19] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg,
Privacy-
preserving matrix factorization. pages 801-812, 2013.

Marc Joye, Nina Taft, and Dan Boneh.

[20] Sameer Wagh, Paul Cuff, and Prateek Mittal. Differen-
tially private oblivious RAM. PoPETs, 2018(4):64—-84,

2018.

[21] Abraham Waksman. A permutation network. Journal

of the ACM (JACM), 15(1):159-163, 1968.

[22] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Au-
thenticated garbling and efficient maliciously secure

two-party computation. pages 21-37,2017.

A Assumed Protocols

We assume that we have access to the following oracles: Fcoin
(Figure 21), .‘}-rerand (Figure 22), .q:checkZero (Figure 23)’ .‘Fl—riple

(Figure 25).

FUNCTIONALITY 9¢oin - Generating Random
Value

The ideal functionality F.oin chooses a random r € Zyy+s
then gives r to all the parties.

Figure 21: Sample a random ring element

FUNCTIONALITY %erana - Rerandomize additive
shares

Input Two parties Pj, P> hold shares of [X].
Functionality

o The ideal functionality waits for shares [X] from the
parties, reconstruct X.

e The ideal functionality samples random values A,
sends [X(]; =Ato Py and [X(V], =X —Ato P,.

Output The parties receive [X <1)]

Figure 22: Rerandomize additive shares

FUNCTIONALITY %checkZero

Input Two parties (Py, P, or P3, Py) hold shares of [Z].
Functionality

e The ideal functionality waits for shares [Z] from the
parties, reconstruct Z.
Output If z; = 0 mod 28" Vi € {1,...,n}, output True.
Else, send False to all parties.

Figure 23: Ideal Functionality to verify if [Z] is a share of 0.

USENIX Association

29th USENIX Security Symposium 2503

http://eprint.iacr.org/2017/1016
http://eprint.iacr.org/2017/1016

?Triple

Inputs: All parties have input (A,B,c), where A,B are
input wires, and c is output wire. A = {ay,...,ay}, B=
{b] s ...,bn}, c= 221:1 a,-bi.

Py and P, both provide A, A. P; and P4 both provide
A, AB.

Functionality:

o If either pair sends mismatched messages, send
abort to all parties.

e Sample A, uniformly at random.
e Compute Ac + Y7 | AgAp, and [A./ 2dj.

Output:
Py and P, receive [Y/L; AgAp, +Acl, and [[Ae/2¢]].
P3 and Py receive [Ay A, +Ac], and [IAL/27]).

TFmuit Ideal Functionality to perform multiplication
up to an additive attack

Inputs: P; and P, have inputs o. P3 and P4 have inputs

X] (X ={x1,.yxn }).
Functionality:

e Verify that P; and P, send the same . If not, send
abort to all parties.

o If the corrupted party is P3 or P4: wait for the attack
terms U = {uy,...,u, } from that party, compute Z =
a(X +U) mod 2K+,

e Send shares [a] and [Z] to P3 and P.

Output: P; and Py receive [0 and [Z]. Py and P, receive
nothing.

Figure 24: Triple Generation

Figure 26: Multiplication up to an Attack

Mtriple

Inputs: All parties have input (A,B,c), where A,B are
input wires, and c is output wire. A = {ay,...,ay}, B=
{b1,....bp}, c =X} ab;.

P; and P4 both provide A4, Ap.

Protocol:

e Py, P3, and Py query Feoin to sample shares [A. +
YY" Aa;Ap,]1 and shares [[Ae/2¢]11

e P, P3, and Py query Feoin to sample shares [A. +
L1 a2

e P; and Py reconstruct A + Y7 Ay Ap, and com-
pute [[Ac/27]]2. P3 sends [|Ac/2%]]> to Py, while
P, sends its hash to P,. P, verifies shares sent from
P; and Py.

e P3, P, and P, query Feoin to sample shares [\, +
Y71 Aghy 1 and shares [|AL/24]]

e P4, P, and P, query Fooin to sample shares [+
Xy Ayl

e Py and P» reconstruct A + Y AyAy and com-
pute [[AL/27]]>. Py sends [[Ac/2%]] to Py, while
P> sends its hash to Py. P4 verifies shares sent from
Py and P;.

Output:
Py and P, receive [Y; AgAp, +Acl, and [|Ac/2¢]
P3 and Py receive [Ay Ay + 2], and [[A /24]

.
B

Figure 25: Triple Generation

IIpue Real-world protocol to perform multiplication
up to an additive Attack

Inputs: P and P, have inputs o. P3 and P4 have inputs
[X]. F is a PRF.
Protocol:

1. P; and P, make two calls to Fcin to sample two
random numbers A, 7. They both send r to P3 and
Ao — 1 to Py. Then they compute (ot — Agy). They
both send (o0 — Aq) to P3 and Py. P3 and Py verify
that they receive the same values, otherwise, they
abort.

2. Py and P, agree on a random key k, k. They both
send kj to P3, then kp to Py. P3 and Py verify that
they receive the same values, otherwise, they abort.

3. P, P, and P3 compute [Ay]; = Fy, (i), [A;]1 =
Fk] (i + }’l)

4. Py, P, and P4 compute [Ay,]> = Fy, (i).

5. P and P, reconstruct A, and compute [A;]r =
Aoy, — [Az]1- P sends [A;]o to Py while P, send
hash([A;]2) to Py. P4 verifies that they receive the

correct messages from P; and P,. If not, he calls
abort.

6. P3 and Py compute [x; — Ay,] < [xi] — [Ay,]. They
open (x; —Ay,).

7. P3 and Py compute [z] < (00— Ag)(xi — Ay,) +
(Ao (xi = A) + [Ax J (00— Rar) + [Ag)]

Output: P; and P4 output [o] and [Z] = {[z1], ..., [za] }- P
and P, output nothing.

Figure 27: Multiplication up to an Attack

2504 29th USENIX Security Symposium

USENIX Association

	Introduction
	Preliminaries
	Graph-parallel computation
	MPC with differentially private leakage
	4-party computation protocol
	Notation

	Building blocks
	MAC Computation and Verification
	Share-Mask Conversion
	Mask-Share Conversion
	Four-Party Evaluation With Truncation

	Differentially Private Graph Parallel Computation in Maliciously Secure Four-Party Settings
	Construction Overview
	Oblivious Graph Operations
	Four-Party Oblivious Shuffle
	Four-Party Oblivious Gather
	Four-Party Oblivious Apply
	Four-Party Oblivious Scatter

	Four-Party Secure GAS computation

	Implementation and Evaluation
	Implementation
	Evaluation

	Conclusion
	Assumed Protocols

