
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

Automatic Hot Patch Generation for Android Kernels
Zhengzi Xu, Nanyang Technological University; Yulong Zhang, Longri Zheng,

Liangzhao Xia, and Chenfu Bao, Baidu X-Lab; Zhi Wang, Florida State University;
Yang Liu, Nanyang Technological University

https://www.usenix.org/conference/usenixsecurity20/presentation/xu

Automatic Hot Patch Generation for Android Kernels

Zhengzi Xu
Nanyang Technological University

Yulong Zhang
Baidu X-Lab

Longri Zheng
Baidu X-Lab

Liangzhao Xia
Baidu X-Lab

Chenfu Bao
Baidu X-Lab

Zhi Wang
Florida State University

Yang Liu
Nanyang Technological University

Abstract
The rapid growth of the Android ecosystem has led to the

fragmentation problem where a wide range of (customized)
versions of Android OS exist in the market. This poses a se-
vere security issue as it is very costly for Android vendors
to fix vulnerabilities in their customized Android kernels in
time. The recent development of the hot patching technique
provides an ideal solution to solve this problem since it can
be applied to a wide range of Android kernels without in-
terrupting their normal functionalities. However, the current
hot patches are written by human experts, which can be time-
consuming and error-prone.

To this end, we first study the feasibility of automatic patch
generation from 373 Android kernel CVEs ranging from 2012
to 2016. Then, we develop an automatic hot patch generation
tool, named Vulmet, which produces semantic preserving hot
patches by learning from the official patches. The key idea
of Vulmet is to use the weakest precondition reasoning to
transform the changes made by the official patches into the hot
patch constraints. The experiments have shown that Vulmet
can generate correct hot patches for 55 real-world Android
kernel CVEs. The hot patches do not affect the robustness of
the kernels and have low performance overhead.

1 Introduction

Android platform has become the biggest mobile platform in
the modern mobile device industry. The rapid growth of the
Android ecosystem makes our lives convenient by bringing us
thousands of new devices with various (customized) Android
operating systems. However, most of these devices cannot
receive timely updates. Table 1 gives the Android version
distribution from 500 million devices as of October 20181.
The table shows that the recent release of Android Pie (9.0) in
August 2018 reaches only very few devices after two months.
However, from the August 2018’s monthly release, the An-
droid Security Bulletin [1] stopped to carry security patches

1With user consent, we collected Android versions and patch levels from
devices with the Baidu app installed.

Table 1: Android version distribution (OCT 2018)

Android Major Version Release Date Percentage
Android 4.x Oct 2011 6.65%
Android 5.x Nov 2014 18.11%
Android 6.x Oct 2015 19.96%
Android 7.x Aug 2016 25.47%
Android 8.x Aug 2017 29.60%
Android 9.x Aug 2018 0.04%
Others - 0.17%

for Android 6.x and below. As a result, based on the statistics
in Table 1, 44.72% of Android devices will not receive any
security patches unless vendors can upgrade the firmware
themselves. Fig. 1 provides further detailed analysis of the
Android patch level of the same 500 million devices. Only
20% of the devices can catch up with the 3-month-old security
patch updates; only 60% of the devices can catch up with the
6-month-old security patch updates; and 20% of the devices
only have security updates more than a year ago.

The low upgrade rate has resulted in legacy Android sys-
tems with unpatched vulnerabilities. However, Android ven-
dors are not motivated to fix those vulnerabilities. It is costly
to apply changes to kernels, as it requires to go through te-
dious testing process to ensure that the changes do not break
existing functionalities [18]. Therefore, the legacy systems
will remain vulnerable for a very long period. Attackers can
leverage the known vulnerabilities to attack easily.

To address this known vulnerability threat, tremendous ef-
forts have been made to patch old Android systems. Among
all the possible solutions, the hot patch technique provides
a convenient way to fix the vulnerabilities without interrupt-
ing the normal functionalities of the program [47]. It greatly
improves the user experience since it can ensure the system
security without rebooting the devices. Based on the hot patch
idea, Chen et al. have proposed an adaptive Android kernel
live patching framework [14]. The framework hooks the vul-
nerable function and applies a pre-constructed hot patch to it.

USENIX Association 29th USENIX Security Symposium 2397

0%
2%
4%
6%
8%
10%
12%
14%
16%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
Pa

tc
h

Le
ve

l
10

/1
/1

5
1/

1/
16

4/
1/

16
6/

1/
16

8/
1/

16
9/

5/
16

10
/5

/1
6

11
/7

/1
6

1/
1/

17
2/

5/
17

4/
1/

17
5/

5/
17

7/
1/

17
8/

5/
17

10
/1

/1
7

11
/1

/1
7

12
/1

/1
7

1/
5/

18
2/

18
/1

8
4/

1/
18

5/
1/

18
6/

5/
18

7/
13

/1
8

9/
1/

18
10

/5
/1

8

Number of devices with patch levels newer than this date
Number of devices on this patch level

Figure 1: Android patch level distribution as of Oct 2018

The hot patch will block the malicious input to the function
to ensure the security. Mulliner et al. [38] have built a frame-
work, named PatchDroid, which can insert the hot patches
into the binary for third-party unsupported Android kernels.
It checks constraints during patching the vulnerabilities to
ensure the stability of the system. These works try to build
the framework to insert the hot patch into the legacy system.
However, the hot patches are still needed to be provided to
the system. The framework cannot generate the patches auto-
matically.

Writing hot patches based on the officially released patches
is challenging. At source code level, programmers can modify
any parts of the vulnerable functions to fix the bug, while in
binary, it is difficult to find exactly the locations to place the
same modifications. To get a hot patch in the suitable place, se-
curity experts are required to understand the semantics of the
official patch and write a corresponding hot patch. However,
this is a time-consuming process and error-prone. It is not
acceptable for the IT industry with the fast development cycle
and limited security budgets. Therefore, there is a need to
develop an automatic solution to correctly convert an official
patch into a hot patch.

To this end, this paper proposes a solution to automate the
hot patch generation process. We propose a proper definition
of the problem and set the requirements and assumptions that
involved. To have a complete understanding on the vulner-
ability patches, we first analyze most of the Android CVEs
from the year 2012 to 2016 and categorize them based on
their patching behaviors. With the insight from the analysis,
we develop Vulmet, which can automatically generate hot
patches by extracting the semantics of the official patches
using program analysis. Vulmet will find a suitable place in
the function, build and apply a semantic equivalent hot patch
to fix the vulnerability. To test the effectiveness of Vulmet,
we have generated the hot patches for real-world Android
CVEs. The hot patches can prevent the exploits with only
little overhead on the system.

Overall, this paper has made the following contribution:
1. We formally define the process of automatic hot patch

generation via learning from the semantics of the official
patches. We elicit three requirements of the process and define
its operation scopes.

2. We conduct an empirical study by collecting, summa-
rizing, and categorizing different real-world Android kernel
vulnerability patches based on their behaviors and distill four
insights.

3. We propose an approach to automatically generate hot
patches, and implement a tool, named Vulmet, to simulate the
hot patch generating process and test its performance using
the vulnerabilities in the real-world legacy Android system.
The experiments show that the generated hot patch can fix the
vulnerabilities with low overheads.

The rest of the paper is organized as follows. In Section 2,
we define the automatic hot patch generation problem with
a real-world example. Next, in Section 3, we conduct a sur-
vey of Android vulnerability type and define the scope of the
patch which can be used to generate the hot patch. Then, Sec-
tion 4 presents the automatic hot patch generation framework.
Section 5 evaluates of different aspects of Vulmet with dif-
ferent experiments. Section 6 lists the related works in patch
generation. At last, Section 7 concludes the paper.

2 Automatic Hot Patch Generation

In this section, we define of the automatic hot patch generation
problem, state requirements and assumptions, and illustrate it
with an example.

2.1 Problem Definition

We define the automatic hot patch generation as follow:
Given a vulnerable function F and its official patch P at

location L, we would like to find a suitable location L′ of F
in binary form to insert an automatically generated hot patch
P′, which has the same semantics as P.

In this work, to achieve the goal of hot patch generation, we
have conducted a vulnerability and patch survey to collect the
vulnerable functions F with the official patches P. Then, we
develop Vulmet to automatically set up the metrics to measure
whether a location is suitable to insert the hot patch and select
the most suitable one as L′. After that, Vulmet leverages
the weakest precondition to transform the constraints of the
original semantics into new constraints to form the hot patch
P′ at L′.

2.2 Requirements

To ensure the generated hot patches are practical, we have set
the requirements to measure whether it is suitable to patch
Android kernels.

2398 29th USENIX Security Symposium USENIX Association

Figure 2: Example of the special case for Rule 1

Requirement 1: the generated hot patch should preserve the
semantics as the corresponding official patches, which guar-
antees its correctness.
Requirement 2: the generated hot patch should not break the
system, which ensures its robustness.
Requirement 3: the generated hot patch should incur low
overhead, which ensures its efficiency.

2.3 Operation Scopes
To ensure the robustness of the patched program, we have
defined three rules to limit the operations used in the hot
patches.
Operation Rule 1. The patch can only be placed at the be-
ginning or end of the functions or at the beginning or end of
function calls.

In binary executables, the function level information is lim-
ited. For a given source code statement, it is difficult to locate
a particular line of binary instruction. In addition, the instruc-
tion location changes in different versions of the functions.
However, no matter what changes have been made inside a
function, its boundary remains the same. With the help of
IDA PRO [10], the function beginning and end place can be
pinpointed. These places are stable even if the contents of the
function have been slightly changed. Therefore, to ensure the
hot patch is practical in Android kernels, we only allow the
patch to be placed at the beginning or end of a function or the
call of the function.
Operation Rule 1 has one special situation, which has

been shown in Fig. 2. In the case where function A calls
function B, the hot patch can be applied to the beginning or
end of function A (Hook Point I and IV) and the call to func-
tion B (Hook Point II and III). By hooking at the beginning
or end of the call to function B (Hook Point II and III), we
can achieve the equivalent semantics as if we are hooking
in the middle of function A. Therefore, the hot patch still
obey Operation Rule 1, but looks like to have the ability
to hook in the middle of the function.
Operation Rule 2. The patch can read the valid content of the
memory but it is prohibited from modifying the contents.

1 int q6lsm_snd_model_buf_alloc(struct lsm_client *client,

2 size_t len){

3 struct cal_block_data *cal_block = NULL;

4 size_t pad_zero = 0, total_mem = 0;

5 ...

6 cal_block =

7 cal_utils_get_only_cal_block(lsm_common.cal_data);

8 if (cal_block == NULL)

9 goto fail;

10 ...

11 if (!client->sound_model.data) {

12 client->sound_model.size = len;

13 pad_zero = (LSM_ALIGN_BOUNDARY -

14 (len % LSM_ALIGN_BOUNDARY));

15 + if ((len > SIZE_MAX - pad_zero) ||

16 + (len + pad_zero >

17 + SIZE_MAX - cal_block->cal_data.size)) {

18 ...

19 goto fail;}

20 ...}

21 ...}

Figure 3: Official Patch for CVE-2015-8940

Modifying the memory contents directly may be dangerous.
A careless writing operation may change the program control
follow and tamper the important data, which will result in
unexpected behaviors of the program. Therefore, to enforce
the security, we restrict the patch operation to be only reading
the content without writing to the memory.

Operation Rule 3. The patch can only fix vulnerability with
small changes and within one function.

Patches are usually small to address a specific security
problem. If the patch modifies most parts of the function, it
is equivalent to implement a new function. Hot patch has the
limitation to fix this kind of bugs without introducing other
problems [47]. Moreover, a large cross-function patch is rare
and may involve the redesigning of the program logic, which
is not suitable for hot patching. Therefore, we limit the hot
patch to fix vulnerability within one function. However, if a
large official patch can be divided into small patches within
one function, the small patches can be converted into hot
patches separately.

2.4 Real-world Example
In this section, a real-world example is given to demonstrate
the concept of converting the official patch into the hot patch.

Fig. 3 has shown the official source code patch for
CVE-2015-8940 [6] in Android Qualcomm msm kernel 3.10.
This patch fixes the integer overflow bug in function q6lsm-
_snd_model_buf_allo() by adding a sanity check at line
15 to 17.

To convert it into a hot patch, we first follow Operation
Rule 1 to hook the beginning of the function q6lsm-
_snd_model_buf_allo() at line 1. Then we need to find a
semantic equivalent patch as the official patch at this point.
The official patch contains one sanity check of variable len,
SIZE_MAX, pad_zero, and cal_block->cal_data.size.
Not all of these variables’ values are known at the begin-

USENIX Association 29th USENIX Security Symposium 2399

Table 2: Variable Relationships
Patch Variable Equivalent Value
len len (same as function input)
SIZE_MAX constant
pad_zero constant - (len % constant)
cal_block-
>cal_data.size

cal_utils_get_only_cal_block()

ning of the function. To build an semantic equivalent patch,
we need to use variables whose values are known to represent
the same sanity check. Since we are hooking at the beginning
of the function, we can get the value of the function input
parameters, client and len. Then we need to use weakest
precondition reasoning, a program analysis technique, to find
out the relationships between the input parameters and the
sanity check variables.

Table 2 shows the relationships between the variables. The
detailed algorithm to determine the relationships automati-
cally is presented in Section 4. With them, we can generate
an equivalent sanity check at the beginning of the program by
replacing the official patch variable with the variables. The
generated equivalent sanity check looks like:

1 if ((len > constant1 - (constant2 - (len % constant2)))

2 || (len + ((constant2 - (len % constant2))

3 > constant1 - func_return_value))

4 {return 0;}

The generated patch will only read the contents of the
function inputs without any writing operation so that the
Operation Rule 2 is satisfied. Moreover, since the patch
only fixes the vulnerability in one function, Operation
Rule 3 is also satisfied. Therefore, the generated patch com-
plies with the operations in the definition.

3 Patch Type Analysis

To generate the hot patch from an official patch, we need
to make sure that the official patch fixes the vulnerability in
certain ways, which are able to be converted to a hot patch.
Therefore, we conduct an empirical study on the different
types of Android vulnerabilities. In the study, we provide the
vulnerability patch categorization and distribution results as
well as the insights found from the observations. After that,
we are able to discuss the type of vulnerability patch that
Vulmet is able to support.

To have a comprehensive understanding of different types
of patches, we have manually analyzed the recent Android ker-
nel CVE vulnerability patches. We make an effort to collect
most of the Android kernel vulnerabilities, which are pub-
licly disclosed by Google. As Vulmet works on the legacy
vulnerabilities, we choose CVEs from the year 2012 to 2016,
which mainly reside in Linux major version 3. We also ignore

Table 3: Patch Type Categorization

Type Sub Type

Sanity Testing
Precondition Validation
Error Handling

Function Call
Ensuring Atomicity
Freeing Resources
Call User Define Functions

Change of Variable Values
Zeroing Memory
Initialization
Increase Buffer Size

Change of Data Types n.a.
Redesign n.a.
Others n.a.

the older vulnerability, since it has a low chance to affect the
recent Android devices.

3.1 Patch Categorization
Since our work focuses on the patch generation, the patch
category should reflect the modifications to the function code
rather than the consequence of the vulnerabilities. There are
many patch categorization works on classifying the patches
based on the type of the vulnerability they are fixing [51]
[25] [56] [48]. However, only few works focus on the patches
themselves. [36] has proposed a categorization schema based
on the patch modification, which fits our need well. Therefore,
we adopt the idea of this work and combine some of their
patch type groups to form our patch categorization schema.
The different patch modification category is listed in Table 3.
Sanity Testing checks a certain condition and makes
the decision to change the program control flow. Based
on the different variable values it checks, Sanity Testing
can be further divided into two subgroups. Precondition
Validation type tries to check the function input parameters,
and Error Handling tries to check the return value of the
function call to add the error handling logic to the program.

The Function Calling patch type fixes the vulnera-
bility via calling the functions. Based on the different
function it calls, it can be divided into three subtypes.
Ensuring Atomicity adds in the calls to synchronization
functions such as lock() and unlock() to ensure the atomic
operations. Freeing Resources calls the free() func-
tion to remove the unused resources. Call User Define
Functions includes other function calls to achieve different
purposes.

The Change of Variable Values patch type requires
the modification of the memory contents. Zeroing Memory
sets the memory to 0 to prevent information leak. Some
of the Zeroing Memory patches are implemented us-
ing function call to memset(). We regard this type as
the Zeroing Memory not the Function Call. Variable
Initialization sets a default value to the variable. Buffer

2400 29th USENIX Security Symposium USENIX Association

Table 4: Patch Type Allocation
Type NO. Percent Example
Sanity Testing 157 42.1% CVE-2014-3145
Function Calling 65 17.4% CVE-2014-8709
Change of Variable
Values

37 9.9% CVE-2014-1739

Change of Data
Types

9 2.4% CVE-2016-2062

Redesign 65 17.4% CVE-2016-8457
Others 40 10.7% CVE-2014-9683

Size Increase is a special case where the patch increases
the buffer to avoid overflows.

The Change of Data Types is a unique type where the
variable type is changed, for example, from int to long int.
Redesign refers to the rewrite the function logic with a lot
of different program changes. The Others patch type spec-
ifies some minor changes that cannot be put into the major
categories.

We have collected 375 CVEs. Except for 2 cases, whose
official patches cannot be found, we have summarized and
categorized the 373 CVE patches into different groups based
on the patch categorization schema. The allocation of different
types of patches is presented in Table 4. According to the table,
Sanity Testing the most commonly used patch pattern,
which accounts for 42.1%. This kind of fix tries to read and
check the value of the variable to make decisions. It meets the
Operation Rule 2, which does not write memory contents.
This type of patches are good candidates for generating hot
patches.

3.2 Observations
We have obtained four interesting observations during the
study of the vulnerability patches.
Observation 1: Vulnerability patch changes are generally
small compared to other program updates. Most of the
patches in the Android kernels are small in size with only a
few lines of code changes. In the 373 CVEs, there are only 64
CVEs that either have more than 30 lines of modification or
modify more than 5 functions in one patch. This observation
is consistent to the work [40], which states that in Chrome
and FireFox bug fixes, small patches account for the largest
percentage amount all the security-related patches. This ob-
servation suggests that hot patch is a possible solution to fix
a large number of vulnerabilities in Android since it favors
small changes.
Observation 2: Large vulnerability patches often consist
of several small individual patches. Moreover, for the larger
vulnerability patches, they often consist of many small indi-
vidual fixes. In the 64 large patches, there are 50 patches
that are the combination of several small changes in dif-
ferent functions. For example, the patch for vulnerability

Table 5: VULMET support patch types
Type Supported / Unsupported
Sanity Testing Supported
Function Call Partially Supported
Change of Variable Values Unsupported
Change of Data Types Unsupported
Redesign Unsupported
Others Partially Supported

CVE-2016-8457 [8] is considered as big, since it has more
than 50 lines of code changes. However, they can be divided
into several small fixes in different places of the functions. The
reason is that there is a vulnerability pattern, which appears
multiple times inside the function. Therefore, the similar fixes
need to be inserted into the function for every occurrence of
the same patterns, which results in a large fix when aggregated.
This observation indicates that we are able to analyze some
of the large and complex vulnerability fixes using the divide
and conquer approach. By appropriately dividing the large
patch, one can get smaller patches, which can be converted
into hot patches individually.
Observation 3: The patch pattern may be different re-
gardless of the vulnerability types. After summarizing the
different type of patches, we have compared them with the dif-
ferent type of vulnerabilities. We find that there is no evidence
to show that the patch type and vulnerability type have strong
co-relations. In general, the patches for same type vulnera-
bility may be written in different ways; and the same type of
code change can fix different types of vulnerabilities. There-
fore, the patch type should be summarized differently from
the vulnerability type, which shows that our way of patch
classification is reasonable.
Observation 4: Some patches consist of both non-security
upgrade and vulnerability patch. There are some patches,
which have non-security upgrade apart from having vulnera-
bility fixes. The reason for mixing the two kinds of patches
in the same commit may be that the programmer does not
want to disclose the vulnerability directly to the public. By
mixing them with some function upgrades, it makes them
hard to be detected by the attackers. For example, in the fix of
CVE-2016-8457, there is a piece of the code does the normal
function update jobs without fixing the vulnerability. This
observation explained the reason why some of the patches
are large patches with a mix of many types of code changes.
In fact, the real security patch may be small, but when being
added in some other updates, it becomes large and difficult to
be analyzed.

3.3 VULMET Work Scope

Based on the vulnerability patch study and the Vulmet oper-
ation scope in Section 2.3, we have defined the scope of the

USENIX Association 29th USENIX Security Symposium 2401

Figure 4: Framework Overview of VULMET

vulnerability types which Vulmet is able to handle. Table 5
has shown the patch types, which can be supported by Vulmet.
First, Vulmet will support the Sanity Testing since it only
checks (reads) the value in the function and makes decisions,
which satisfy all the Operation Rules in Section 2.3. Second,
for the Function Call type, Vulmet is able to go into the
callee function and analyze the changes. If the changes do not
involve the memory write operation, Vulmet can support the
patch. Thus, Vulmet partially supports the Function Call
type. Third, for the type of Change of Variable Values
and Change of Data Types, since they both need to write
the value to the memory which is against Operation Rule
2, they are not supported by Vulmet. Forth, Vulmet does
not support the type Redesign since it greatly changes the
original function semantics and violates Operation Rule
3. Last, in type Others, we have manually gone through each
case. There are some cases, which do not contain writing
operations to the memory. Vulmet can generate hot patches
from these cases. For example, in CVE-2018-17182 [9], the
patch removes the entire vulnerable function. In our patch
categorization, it belongs to the Others type. Vulmet is able
to generate an equivalent semantic patch by skipping the func-
tion. The detailed discussion is shown in Section 5.1.1. How-
ever, there are also cases that involve the change of memory
content. Therefore, Vulmet can partially support this type.

4 Methodology

In this section, we present the detailed algorithms for auto-
matic hot patch generation.

4.1 Overview

Fig. 4 shows the overview of Vulmet. When a patch has been
officially released, suitable patches will be selected for the hot
patch generation. For a patch candidate, there are different
locations inside the vulnerable function that the hot patch can
be inserted. Vulmet will choose the best location to insert
the patch by calculating the side effect for each place. After
that, it will leverage on the weakest precondition analysis to
find the semantic equivalent constraints of the official patches.
Those constraints will be converted into the hot patch, which
can be applied to the binary programs.

4.2 Patch Filtering
The first step of Vulmet is to determine whether an official
patch can be converted into a hot patch. As stated in Section 2,
the hot patch operation is limited to enforce the program se-
curity. Therefore, only the official patches, whose operation
semantics comply with the requirements, can be used to gen-
erate the hot patch. To achieve it, Vulmet will extract the
official patch by diffing the vulnerable code and patched code.
Then, for each statement in the patch, it will be classified
as the normal operation and the prohibited operation. The
prohibited operation includes the assignment of variable or
pointer values and the call to memory modifying functions.
If the official patch does not contain prohibited operations,
Vulmet will select it as a candidate to generate the hot patch.
Otherwise, the patch is filtered out.

4.3 Insertion Location Optimization
4.3.1 Motivation and Problem Definition

According to Rule 1 at Section 2.3, hooking function at the
beginning or the end is the requirement to ensure patch’s
practicality. Therefore, Vulmet can only hook the target vul-
nerable function and the functions (i.e. callee function) which
are called by the target function. Each of the hooking place
is considered as a possible location to apply the hot patch.
Among the several places inside the target function, Vulmet
is designed to find the best one. Some of patch points may not
contain enough information on the variable values to calculate
the semantic equivalent constraints. Some of them will have
unexpected effects since the function may be executed until it
reaches the patch point. To find the best point, those different
aspects need to be taken into consideration.

To illustrate the problem, we reuse the example at Fig. 3
in Section 2.4. In this example, previously, we assume the
patch point is at line 1. In fact, there are two more points that
can also apply the hot patch. They are line 1 (the beginning
of function q6lsm_snd_model_buf_allo()) and line 7
(the call to function cal_utils_get_only_cal_block()).
Both of the two points will have enough information to calcu-
late the relationship between the function parameters and the
variables used in the official patch. Therefore, in either of the
two points, Vulmet can generate a semantic equivalent hot
patch to fix the vulnerability.

However, patching the function at different locations will
result in different side effects, which may harm the normal
executions. In this case, if we insert the patch in the call

2402 29th USENIX Security Symposium USENIX Association

to function cal_utils_get_only_cal_block() at line 7
and the patch kills the execution, some instruction from line
1 to line 7 has already be executed (Note: at line 5 codes are
omitted for simplicity). There may be some program changes
such as memory allocation. However, if the function is killed
in the middle, it may not finish the proper clean up process,
such as freeing the allocated memory. This may introduce new
program flaws and make the patched function unsafe. Instead,
if the hot patch is applied at line 1 and kills the function,
then the instructions with side effects will not be executed.
Therefore, patching at line 1 is relatively safer than patching
at line 7. Vulmet is designed to select the best point among
the candidates.

We define this problem as an insertion location optimiza-
tion problem. The goal is to find an insertion point, which
has adequate information to calculate the semantic equivalent
constraints and has the least side effects on the program. The
reason for choosing the point which incurs least side effects is
that patching at this point will have the most similar semantics
to the original patches. It is inevitable that, in some cases, the
side effects will result in the function working differently than
the original target function. In this case, Vulmet chooses to
sacrifice the normal functionalities to make sure the patch can
block the vulnerabilities since the first priority is to protect
the system. Therefore, by choosing the point with least side
effects, Vulmet tries to patch the vulnerabilities while keeping
as many normal functionalities as possible.

4.3.2 Demonstration Example

The workflow of the algorithm is as the following.
First, all the possible insertion points are listed. (In the
running example of Fig. 3, the beginning of function
q6lsm_snd_model_buf_allo() and the call to function
cal_utils_get_only_cal_block().) Since the hot patch
works on the binary level, there may be inlined functions,
which have been merged into their caller functions. Those
inlined functions will not be considered as a proper insertion
point. The detailed method to handle the inlined function
will be given in Section 4.4.3. (After the compilation, the
functions at line 1 and line 7 are not inlined in the resulted
binary.)

Second, the algorithm will try to build two program paths.
The first one (path I) starts from the function beginning and
ends at the patch insertion point. The second path (path II)
starts from the insertion point and ends the official patch
location. To build the two paths, Vulmet will remove the
branches in the code and flatten the loops by unrolling them
once. The resulted path is a sequential program slice. (In
Fig. 3, the paths for insertion point at line 1 is path I: 1-1 and
path II: 1-15 and the path for insert point at line 7 is path I:
1-7 and path II: 7-15.)

Third, to ensure, at the insertion point, there is enough in-
formation to build the semantic equivalent constraints, the

Table 6: Relationship between the Semantics Calculation and
the Weakest Precondition Reasoning

Semantics Calculation Precondition Reasoning
Official Patch Semantics Postconditions

Instructions and Statements Predicate Transformers
↓ ↓

Hot Patch Constraints Weakest Preconditions

algorithm will try to back-propagate the variables in the of-
ficial patches through the path II. If all the variables can be
traced back through the path, the insertion point will contain
adequate information to build the hot patch. (As discussed in
Section 2.4, the two insertion points have enough informa-
tion.)

Fourth, the algorithm will check whether there is any side
effect introduced if the patch is applied. If the patch insertion
point is at the beginning of the vulnerable function, there will
be no side effect generated. Otherwise, Vulmet will examine
the path I to obtain the statement which can lead to side
effects. The side effects include the change of the global
variables, the assignment of pointers, the allocation of a piece
of memory without freeing it, as well as any of the calling to
the system functions. The algorithm will choose the insertion
point, whose path to the official patch has least side effects.
(Since line 1 of the function in Fig. 3 is the beginning of the
vulnerable function, patching at it has no side effects on the
function. Line 1 will be selected as the optimal patch insertion
point.)

4.4 Weakest Precondition Reasoning

After selecting the patch insertion point, the next step is to
produce the hot patch at that point by calculating the seman-
tic equivalence of the official patch. In Vulmet, this process
is reformed into a weakest precondition reasoning task. In
programming, a precondition is a statement that should be
true before the function is called. While, a postcondition is a
statement that will be true if the function finishes and all the
preconditions are met. Table 6 demonstrates the relationship
between the semantics calculation and the weakest precondi-
tion reasoning. Given an official patch, its semantics can be
converted into one or more postconditions. The statements
in the vulnerable functions will define the transformers in
solving the weakest precondition. The process of getting the
hot patch constraints is equivalent as calculating the weak-
est preconditions. The resulted weakest preconditions are the
semantic equivalent hot patch of the official patch.

4.4.1 Determined Statement Transformation

To solve the weakest precondition problem, Vulmet takes
an input postcondition P and a statement s in the original

USENIX Association 29th USENIX Security Symposium 2403

vulnerable function. It solves the condition via the calcula-
tion of the predicate transformers [17]. Then, it outputs the
weakest precondition of s with respect to P, which is denoted
by wp(s,P). The rules of the calculations for the determined
statement transformation are listed:

wp (skip,P)⇔ P (1)
wp (x := e,P)⇔ P [x 7−→ e] (2)
wp (s1 : s2,P)⇔ wp (s1,wp (s2,P)) (3)
wp (if b then s1 else s2 end,P)⇔

(b∧wp (s1,P))∨ (¬b∧ (s2,P)) (4)

Rule 1: When the statement has no effects on the post-
condition P, the statement is skipped. The precondition is
the same as the postcondition. Rule 2: When there is an
assignment statement, the corresponding variable x inside the
postcondition is transformed into e. The resulted precondition
will be expressed in term of e. Rule 3: If the statements are
sequential, the weakest precondition is calculated backward.
The precondition of the second statement will be the post-
condition for the first statement. Rule 4: If there is a branch
statement, the precondition will be depending on the branch
conditions. The branch conditions will be aggregated as part
of the precondition.

The four rules will specify the determined statement trans-
formation to get the weakest precondition. All the values in
the transformation will be calculated precisely. Therefore, this
process guarantees the equivalence between the post- and pre-
conditions so that the generated hot patch will be semantically
equal to the official patch.

4.4.2 Demonstration Example

The basic workflow of weakest precondition reasoning is
demonstrated with a real-world example. For the simplic-
ity, the demo is shown with C language, whereas the actual
reasoning is based on LLVM. Fig 5 has shown the official
patch for CVE-2014-9873 [5]. The official patch tries to add
a sanity check for variable write_len at line 11 and 12. To
generate the hot patch, the patch semantic will be converted
into a weakest precondition reasoning problem.

The postcondition P is write_len <= 0, the statements
are the instructions from line 4 to 10. The output will be
the precondition in term of the function input parameters,
which is the same as the hot patch semantic. The problem is
solved with the determined statement transformation. First,
by Rule 3, the algorithm works backward. Therefore, the al-
gorithm will start at line 10. Second, by Rule 2, the value of
write_len is replaced by the equation on the right-hand side
in line 10. The resulted precondition is (int)(*(uint16_t
*)(buf+2)) - cmd_code_len <= 0. Third, by Rule 3,
in line 8 and 9, the branch condition will be aggregated
into the precondition to determine the value of the variable
cmd_code_len. Forth, again by Rule 2 at line 7, the value

1 void extract_dci_pkt_rsp(struct diag_smd_info

2 *smd_info, unsigned char *buf)

3 {

4 int cmd_code_len = 1;

5 int write_len = NULL;

6 uint8_t recv_pkt_cmd_code = 0;

7 recv_pkt_cmd_code = *(uint8_t *)(buf+4);

8 if (recv_pkt_cmd_code != DCI_PKT_RSP_CODE)

9 cmd_code_len = 4;

10 write_len = (int)(*(uint16_t *)(buf+2)) - cmd_code_len;

11 + if (write_len <= 0)

12 + return;

13 ...

14 }

Figure 5: Example: CVE-2014-9873

Table 7: Variable Reasoning
Post-
condition

Precondition

write_len
>=0

*(buf + 2) - cmd_code_len >= 0 (1)

(1) *(buf + 2) - 4 >= 0 and recv_pkt_cmd_code !=
DCI_PKT_RSP_CODE
*(buf + 2) - cmd_code_len >=

0 and recv_pkt_cmd_code ==

DCI_PKT_RSP_CODE (2)
(2) *(buf + 2) - 4 >= 0 and *(buf + 4) !=

DCI_PKT_RSP_CODE
buf + 2 - cmd_code_len >= 0 and *(buf + 4)
== DCI_PKT_RSP_CODE (3)

(3) *(buf + 2) - 4 >= 0 and *(buf + 4) !=
DCI_PKT_RSP_CODE
*(buf + 2) - 1 >= 0 and *(buf + 4) ==

DCI_PKT_RSP_CODE (4)

of variable recv_pkt_cmd_code is changed into the value
of buf. Line 4 to 6 only contain the assignment statements
with constant values at the right-hand side. There, the post-
condition will be transformed into precondition by replacing
the variable values with their corresponding constants.

Table 7 has summarized the steps of the transformation
from postcondition to the precondition. The original seman-
tics will be changed into the precondition by the transformer
rules. The final precondition Equation (4) in Table 7 will
be the hot patch semantics.

4.4.3 Function Calls

For the non-determined statements, such as function calls and
loops, Vulmet uses algorithms to summarize the semantics.
The detail explanation for handling the function calls and the
loops will be given in the following sections.

Handling function call is a major task in program analysis.
In this work, by Operation Rule 1 in Sec. 2.3, a function
call can be regarded as a hooking point, whose input param-
eters and return value can be obtained. Therefore, Vulmet
will use function calls to extract variable values for the hot

2404 29th USENIX Security Symposium USENIX Association

patch generation. However, there are some cases where the
functions are not suitable to be used as the hooking points.
Therefore, Vulmet need to handle those cases to generate
accurate patches.
Inlined function The first case is where the function is in-
lined during the compilation process. The inlining process
will merge the binary instructions of the function into its
caller’s instructions. The start of the inlined function will be
in the middle of another function. Therefore, it is difficult
to find a precise location to hook those functions. Vulmet
handle the inlined function in a different way.

Before the function analysis start, Vulmet will perform a
check to figure out the inlined function in the target program.
Then, it will import the contents of the inlined functions into
their caller functions. The framework will treat the inlined
function as a part of the target function’s code when analyzing
it. In general, the inlined function has two attributes. First, it
only contains a small piece of code to perform simple tasks.
Second, it hardly ever calls other functions. The two attributes
make the function easy to be inlined. Also, they allow Vulmet
to import the code to do the analysis.
Value modification function There are function calls in the
middle of the original function. The callee function may mod-
ify the values, which are used in the calculation of the weak-
est precondition. In order to have an accurate result, Vulmet
needs to analyze the callee functions to understand how the
values are changed inside them. After that, Vulmet can use
the modification as the determined statement transformation
to calculate the precondition. Vulmet uses SVF [49,50], a tool
that provides inter-function analysis to determine whether a
particular variable has been changed inside the function. Vul-
met will skip all the irrelevant functions without any value
changes. Next, for the functions with value changes, Vulmet
will go inside the callee function and calculate the changes
made by the function. The changed semantics are summarized
and used to represent the functions. After that, Vulmet will
start to perform the weakest precondition reasoning to get the
hot patches.

Algorithm 1 describes the workflow for the function han-
dling process. The functions in the algorithm refer to the
callee functions inside the target vulnerable function. First,
all the functions on the analysis path will be input into the
algorithm. Next, Vulmet will try to look up the function label
in binary to check whether it has been inlined. If it is inline,
Vulmet will import the function into its caller for analysis.
If the function is not inlined, it will continue to determine
whether the point is the ideal insertion point. If the point is
selected as the insertion point, it will extract the function input
variable information and continue to weakest precondition
solving. If the function is not the insertion point, it will check
whether the function modifies the variable with the help of
SVF. If the function modifies the relevant variable, Vulmet
needs to go deep into the function and performs further anal-
ysis to summarize the changes. If the function modifies an

Algorithm 1 Function Handling

1: function handle_func(func f)
2: Lookup f in binary
3: if f ’s name is found (not inlined) then
4: Check f for insertion point
5: if f is insertion point candidate then
6: Add f to insertion point analysis process
7: else
8: Check whether f modifies relevant variables
9: if f modifies relevant variables then

10: Analyze the code in f
11: else if f dose not modify then
12: Skip f and return
13: else if f is too complex then
14: Skip f with red flag
15: end if
16: end if
17: else
18: Import the source code of the inlined function f
19: end if
20: end function

irrelevant variable or does not modify any variable, Vulmet
will skip it. If the callee function calls another function, which
results in nested function calls, Vulmet will treat the function
as complex and skip the analysis.

4.4.4 Loops

Loops are another major problem in program MODanalysis.
Since in static analyze, it is difficult to determine the exact
number of iterations that the loop will be executed and the
exact output values. Some works, such as [53], propose loop
summarization algorithms, which could yield approximation
results for some types of loops. However, since hot patches
need to be precise to completely fix the vulnerabilities, the
approximation in loops may greatly affect the accuracy of the
patches.

Since loops are in different types, Vulmet develops dif-
ferent strategies to handle different loops. The first type of
loop is the one that contains the official patch. In this type,
the patch semantics are repeated several times according to
the loop iterations. Vulmet will extract the loop iteration
conditions and perform the weakest precondition solving on
them. Then, it will construct a semantic equivalent loop at
the insertion point. The hot patch semantics will be included
inside the constructed loop. The second type of loop is the
one that appears in the middle of the analysis path. To handle
this type of loop, Vulmet needs to first determine whether
the loop modifies any of the relevant value used for weakest
precondition solving. If no relevant value is changed, the loop
can be skipped. Otherwise, Vulmet leverages the idea of [53]
to perform the loop summarization. It will generate the ranges

USENIX Association 29th USENIX Security Symposium 2405

of the values which have been changed inside the loop. Then,
Vulmet takes the conservative way to choose the largest range
of the value to form the hot patch semantics so that the gen-
erated patch can fix the vulnerability with the possibility of
affecting the normal functionalities. Last, if the loop is too
complex with new function calls or multi-level nested loops
inside, we choose to skip the loop without any analysis.

4.5 Binary Hot Patch Generation

The last step is to generate the hot patch based on the pre-
condition constraints. Vulmet uses an empty function as the
template and set the function to have the same number and
type input parameter as the original target function. Then it
inserts all the constraints to it and compiles the function into
binary executables which can be hot patched to the kernels.

The major challenge is to determine the actual address of
the variables used in the patches. Since Vulmet hooks the
function at the beginning or end, the address of the input
parameters and the return value can be determined. For the
address of variables inside structures, Vulmet will look up the
relative address from the source code. The relative address
will be added to the base address, which is obtained from
hooking, to give the exact address of the variables.

Vulmet supports the hot patch for real-world Android plat-
form with architectures ARM 32 bits and 64 bits. To suit
for various architectures, Vulmet is designed to output the
weakest preconditions of the patches. These can be used to
generate the binary instruction of different architectures to
support different platforms.

The generated hot patch includes a binary executable with
the patching logic and a file to record the hooking point(s).
To apply the hot patch, one can use the standard hot patching
procedure to load the hot patch into the memory and build a
trampoline at the hooking point to direct the control flow of
the program to the loaded patch. After the execution of the
patch, it will either pass the control back to the function or
return the function to prevent the vulnerability.

5 Evaluation

We have evaluated Vulmet for the correctness, robustness,
and efficiency of its generated hot patches. Correctness quan-
tifies the patches’ ability to fix the vulnerability, robustness
quantifies the patches’ ability to maintain the stableness of
the program, and efficiency quantifies how much overhead the
patches introduce. We have designed experiments to test the
effectiveness of the patches in the three aspects. In the experi-
ments, all the patches are tested on the Android Open Source
Project (AOSP) platform Google Nexus 5X with Android
kernel version 7.1.1 r31 bullhead build.

Table 8: Prevention of CVE exploit attacks
CVE NO. Before Patch After Patch
CVE-2014-3153 System crash Safe
CVE-2016-4470 System crash Safe
CVE-2014-4943 System crash Safe
CVE-2018-17182 System crash Not exploited

5.1 Correctness Evaluation

In this section, we evaluate the correctness of the generated
hot patches. The experiment consists of three parts. First, we
test the patches with real-world CVE exploits. Second, for the
vulnerabilities whose exploit is not available, we manually
verify the correctness of the patches. Third, we manually write
hot patches and compare the generated hot patches against
them to check whether the generated patches fix the vulnera-
ble in the same way as human experts.

5.1.1 Experiment 1: Patches against Exploits

We assess the correctness of the generated hot patch against
real-world exploits. We manually collect exploits for the An-
droid CVEs and use them to attack the system patched by
Vulmet. To the best of our knowledge, we have found 3 work-
ing exploits for the vulnerabilities with the hot patches. In
addition, we have also tested the hot patch for the recent crit-
ical vulnerability, CVE-2018-17182. Table 8 lists the four
exploits and shows the program running results before and
after the application of the hot patches. The result suggests
that all the patches have successfully prevented the attacks
from the exploits. For CVE-2014-3153, CVE-2016-4470,
and CVE-2014-4943, the hot patches have fixed the vulner-
ability completely. For CVE-2018-17182, the hot patch can
successfully prevent the exploit but cannot stop the system
from crashing. It is because that the patch can only partially
fix the vulnerability. In the following, we discuss the patch
correctness in detail with code examples.

CVE-2014-3153 is a privilege escalation vulnerability in
function futex_requeue() function. As shown in Fig. 6,
the official patch fixes the vulnerability in three different loca-
tion of the functions.

For the first patch in Fig. 6(a), Vulmet extracts the se-
mantics of checking the equivalent of variable uaddr1 and
uaddr1 at line 2. Then, it converts the semantics into the hot
patch at the beginning of the function futex_requeue().
The two variables used in the official patch are also the func-
tion input parameters. Vulmet checks the analysis path to
ensure there are no changes on the two variables. Therefore,
the semantic will remain the same as the official patch. In
addition, since the official patch is inside another sanity check
(shown in (a) at Line 1), Vulmet will also keep the semantics

2406 29th USENIX Security Symposium USENIX Association

1 if (requeue_pi) {

2 + if (uaddr1 == uaddr2)

3 + return -EINVAL;

4 ...

5 }
(a)

1 +if (requeue_pi

2 + && match_futex(&key1, &key2)) {

3 + ret = -EINVAL;

4 + goto out_put_keys;

5 +}
(b)

1 +if (match_futex(&q.key, &key2)) {

2 + ret = -EINVAL;

3 + goto out_put_keys;

4 +}
(c)

Figure 6: Official Patch: CVE-2014-3153

when constructing the hot patch to keep as much original
semantics as possible. The generated semantic is as follow:

hook f u t e x _ r e q u e u e
check r e q u e u e _ p i :
i f n o t 0 :

check uaddr1 , uaddr2 :
i f uaddr1 == uaddr2 :

r e t u r n t h e f u n c t i o n

For the second patch in Fig. 6(b), there is a function call in-
side the official patch, which has been inlined at the compiled
binary. Vulmet imports the code for the inlined function and
extracts its semantics. Then the semantic is combined with
the original official patch semantic, which is listed below.

check :
r e q u e u e _ p i && key1 && key2

&& key1−>bo th . word == key2−>bo th . word
&& key1−>bo th . p t r == key2−>bo th . p t r
&& key1−>bo th . o f f s e t == key2−>bo th . o f f s e t

Then, Vulmet tries to solve the conditions of all the vari-
ables appear in the semantics. requeue_pi is one of the
input parameters so that its semantics remain the same. For
the union pointers key1 and key2, Vulmet looks for a good
patch insertion points, where the value of key1 and key2 is
same as the value in the official patches. After the analysis,
Vulmet finds a non-inlined function call hash_futex() after
the sanity checks. At that point, the value of key1 and key2

1 static int pppol2tp_setsockopt(.....)

2 {

3 ...

4 if (level != SOL_PPPOL2TP)

5 - return udp_prot.setsockopt(sk,

6 - level, optname, optval, optlen);

7 + return -EINVAL;

8 ...}

Figure 7: Official Patch: CVE-2014-4943

can be extracted. Thus, the tool will generate the hot patch by
creating the patch at the point to get the value of key1 and
key2 and checks them to make decisions.

For the third patch in Fig. 6(c), Vulmet follows the same
steps as the second patch, since the semantics of both of their
official patches are the same.

CVE-2014-4943 is another function that has a known
exploit [4]. It is a privilege escalation vulnerabil-
ity located at function pppol2tp_setsockopt() and
pppol2tp_getsockopt(). Therefore, the official patch
fixes the vulnerability in two different functions. However,
both of fixes follow the same way to fix the vulnerabilities.
Vulmet will generate the hot patch for each of the individual
fix in the same steps.

Fig. 7 shows the official patch of CVE-2014-4943 for func-
tion pppol2tp_setsockopt(). It tries to replace the value
of the return statement. Instead of calling a function, the new
return statement just returns a constant value. To generate
a hot patch, Vulmet will first look at the sanity check that
contains the return statement. It builds a similar check state-
ment at the beginning of the function to check the value of the
variable since it is a function input parameter, whose value
can be obtained via hooking. After that, if the condition is
met, Vulmet just returns the function. It will produce a hot
patch with the same semantics as the original patch. The hot
patch generation for the function pppol2tp_getsockopt()
follows the same steps.

CVE-2016-4470 is a denial of service bug inside
key_reject_and_link() in Linux kernel [7]. As in Fig. 8,
the official fix adds in a sanity check to test the value of the
variable link_ret at line 9 as shown in Fig. 8. The value is
an indicator of whether the function __key_link_begin()
is successfully executed. If it fails to run, the variable edit
will not be initialized and the bug will be triggered. Vulmet
generates the hot patch by first selecting a good insertion point.
After analyzing different possible places, Vulmet has chosen
to hook where the function call __key_link_begin() at
line 6 has finished. It checks the return value of the function.
If it is 0 (error), it will return the caller function to avoid fur-
ther execution. Although there are some instructions between
the insertion point and the official patching point (Line 8 has

USENIX Association 29th USENIX Security Symposium 2407

1 int key_reject_and_link(.....){

2 ...

3 if (keyring) {

4 if (keyring->restrict_link)

5 return -EPERM;

6 link_ret = __key_link_begin(keyring,

7 &key->index_key, &edit);}

8 ...

9 + if (keyring && link_ret == 0)

10 __key_link_end(keyring,

11 &key->index_key, edit);

12 ...

13 }

Figure 8: Official Patch: CVE-2016-4470

omitted some instructions), the program analysis results sug-
gest they will not affect the value of the variable link_ret.
Therefore, the hot patch provides the same semantics as the
official patch to fix the vulnerability.

CVE-2018-17182 is a cache invalidation bug in the Linux
kernel [9] [20]. The logic of the error handling func-
tion vmacache_flush_all() inside the kernel is incorrect,
which results in potential exploit even when a strong sandbox
is present.

The official patch fixes the vulnerability in two parts. First,
it changes the sequence number from 32 bit to 64 bit, so that it
avoids the overflow bug to trigger the error handling function.
Second, it removes the buggy error handling function. There
are two different semantics in the official patch. For changing
the bit of the sequence number, Vulmet is not able to generate
an equivalent semantic of it, since modifying the memory
contents is prohibited by the security requirements. However,
Vulmet can fix the second part since removing a function
has an equivalent semantic as returning the function at the
beginning. Thus, Vulmet can generate a patch for part of the
official patch. After applying the hot patch to the function, at-
tackers can still trigger the overflow bug which may crash the
program, but they are not able to exploit further to get the dan-
gling pointer at the error handling function. The program is
protected since the program will stop before the vulnerability
is reached. The hot patch has partially fixed the vulnerability
with a possible crash due to the remaining overflow bug. The
fix semantic is listed below.

hook f u n c t i o n v m a c a c h e _ f l u s h _ a l l ()
k i l l t h e f u n c t i o n once c a l l e d

5.1.2 Experiment 2: Manual Verification

Since the exploits are not always available for every CVE, it
is difficult to conduct experiments on every patch against real-
world attacks. Therefore, for the patches without exploits, we

Table 9: Manual Analysis on Patch Correctness
Correct Patch Incorrect Patch

Number 55 4

manually audit them to check whether the generated patches
have fixed the patch or not. In total, Vulmet has generated hot
patches for 59 different CVEs. Excluding the 4 CVEs, which
have known exploits, there are 55 to be manually verified.
We believe that 59 vulnerabilities are sufficient to test the
performance of Vulmet since we are working on the real-
world Linux kernel vulnerabilities. Table 9 has given the
overall results for the manual verification.

The results have suggested that Vulmet has successfully
generated correct patches for 55 out of 59 vulnerabilities.
We have examined the four failed cases to understand the
error made by Vulmet. There are three patches which are
considered as incorrect because the patches contain part of
operations that need to modify the memory. Since the majority
parts of these patches are sanity checks, when selecting the
patch generation candidates, Vulmet regards them as good
ones. During the analysis, it will neglect the minor memory
writing operations. However, the memory writing operations
in the patches are the keys to fix the vulnerabilities. Therefore,
Vulmet will have difficulties to generate correct patches. In
order to fix this issue, Vulmet needs to enhanced its semantic
analysis to detect the memory writing operation.

Another failed case is the one discussed in the previous
section, CVE-2018-17182. In this case, only part of the se-
mantics can be converted to the hot patch. Therefore, Vulmet
only gives an incomplete patch which can only prevent the
exploits but not fixing the problems. From the failed cases, we
know that to have a precise semantics of the original patches
is one of the keys for generating the correct hot patches.

5.1.3 Experiment 3: Comparison with Human Written
Patches

In this section, we would like to compare the generated
patches with the human written ones. We manage to hire
security researchers to understand the official patches and
manually write hot patches for comparison. We have com-
pared all the 55 correctly generated hot patches against the
human written ones. Table 10 has summarized the compari-
son results between the human-written patches and the auto-
generated patches. In addition, since human audition may be
biased, we have also listed all the hot patch semantics online
at [11].

The results show that most of the generated patches work
in the same way as the human written ones. This is because
both of the Vulmet and the human follow the same way of
understanding the semantics of the official patches. In the
following, we will discuss the similarities and differences

2408 29th USENIX Security Symposium USENIX Association

Table 10: Comparison with Human Written Patches
Similar Patch Dissimilar Patch

Total number 54 1
CVE examples CVE-2014-3145 CVE-2016-4470

between generated patches and human written patches.
Similar Patch: CVE-2014-4656 It is an integer overflows
vulnerability in snd_ctl_add() function. As listed below,
the official fix tries to check the input parameter kcontrol’s
id index to see whether it is larger than the MAX value minus
the kcontrol’s count. The official patch has put the fix at
the beginning of the function. Since the generated patch also
aims to fix the problem at the same point, there is no need for
Vulmet to do further semantic transformations. The generated
patch is similar to the official one and so is the human written
hot patch.

i f (i d . i n d e x > UINT_MAX − k c o n t r o l −>c o u n t)

Dissimilar Patch: CVE-2016-4470 The patch is discussed
in the previous section with Fig. 8. For this case, the
human-written patch is different from the generated one. The
human-written patch tries to hook at the callee function af-
ter the official sanity check. It checks the variable value of
edit. This value is an indicator of whether the function
__key_link_begin() has been successfully executed. If
the variable edit is found uninitialized, the function will be
killed since link_ret will not be properly assigned.

These differences are introduced because the experts can
understand the root cause of the vulnerability and apply the
patch to fix the problem directly. Whereas, Vulmet depends
on the semantics of the official patches and follows a back-
ward analysis path to transform them to hot patch semantics.
However, both of the two patches can fix the vulnerability.
Therefore, although with a slight difference in semantics, the
generated hot patch can successfully patch the vulnerability
as the human expert.

5.2 Robustness Evaluation
Since the hot patches modify the original programs, they may
break other functionalities, which may lead to unexpected sys-
tem faults. Therefore, it is important to ensure that the system
robustness is not affected after applying the patches. In this ex-
periment, we evaluate the robustness of the patched programs
by testing patched kernels with Android benchmarks.

To build the testing environment, we choose the Android
bullhead to build with Linux kernel version 3.10 and roll
back commits to producing a kernel with many unpatched
vulnerabilities. In this particular kernel, Vulmet manages
to convert 21 vulnerability patches into hot patches. Then
we apply these patches to the kernel and run the AnTuTu

Table 11: Patch Robustness Analysis
CVE NO. Kernel Ver. Build State
CVE-2014-4656 3.10 bullhead robust
CVE-2015-7515 3.10 bullhead robust
CVE-2015-8543 3.10 bullhead robust
CVE-2016-2468 3.10 bullhead robust
CVE-2016-8399 3.10 bullhead robust
Overall - - 21/21 ro-

bust

benchmark [2] and the CF-bench [3] on the patched program
to monitor any of the abnormal behaviors, such as crashes and
hangs. Table 11 has summarized the results for the experiment.
For demonstration purpose, we select 5 CVEs as the example
and list the final results with all the 21 patches.

The results show that all the hot patches do not crash or
hang the program. To further examine the patch robustness
in the real-world situation, we have selected and installed top
100 Android applications from the Google App Store. We
use scripts to open, load, and close the application on the
patched system and monitor abnormal behaviors. The result
shows that all the application can be properly executed, which
suggests that the patches maintain good robustness in the real-
world situation. In conclusion, the generated patch does not
break the normal functionalities of the patched program.

5.3 Efficiency Evaluation

Since the hot patches inject code into the original functions,
it is important to ensure that the additional code does not add
much overhead to the programs. A less efficient hot patch may
introduce performance bug to the system, which affects its
normal usage. In this experiment, we evaluate the efficiency
of the hot patches by measuring the overhead of the program
after patching.

We test the system performance before and after the patch-
ing with AnTuTu benchmark on Google Nexus 5X device.
We control the experiment settings to be the same to test one
hot patch a time. Each of the experiment is repeated 10 times
and the scores are averaged to avoid variations due to noises.
Table 12 lists the performance of the kernels with 5 individual
CVE patches as well as the overall performance with all the
21 patches applied.

Overall, the results suggest that the hot patches do not intro-
duce noticeable overhead system-wise. For the CPU running
time benchmark (3rd column), the patched kernel does not
have significant differences with the original one. For exam-
ple, the kernel with all the patches applied only adds 0.06s for
the total running, which is less than 0.1% in overhead. For the
memory running time benchmark (5th column), the overall
run time for the patched system is even shorter than the orig-
inal one. For the score benchmarks (2nd and 4th columns),

USENIX Association 29th USENIX Security Symposium 2409

Table 12: Patch Overhead Analysis
CVE id CPU

Score
CPU
Time

Mem
Score

Mem
Time

Original Ker-
nel

20620.0 1:22.30 4428.3 1:24.52

CVE-2014-
4656

20597.9 1:22.78 4576.7 1:23.37

CVE-2014-
9789

20525.5 1:22.51 4398.1 1:25.12

CVE-2015-
7515

20731.0 1:22.34 4548.3 1:23.88

CVE-2016-
8399

20455.7 1:22.36 4368.8 1:24.66

CVE-2016-
10233

20715.5 1:22.31 4542.6 1:24.32

Overall 20587.2 1:22.36 4506.1 1:23.98

all the results are within the reasonable ranges, which are
either slightly higher or lower compared to the original ker-
nel results. Therefore, the patches make low overhead on the
system.

5.4 Threat to Validity and Future Works
In this section, we discuss the limitations of Vulmet and
propose potential future works to improve it. First, the as-
sumption has been made that the hot patch cannot modify the
memory content of the original program. Though it guaran-
tees the stableness of the patched program, it also limits the
workable type of the generated hot patches. There is a large
percentage of vulnerabilities which cannot be fixed by Vulmet
using the existing hot patches. In the future, we would like to
develop algorithms to analyze the semantics of the memory
contents and propose safe memory modification operations.
The major challenge is two folds. First, the function stack
information needs to be kept after applying the patch changes.
Since we are not creating the new function stacks, we need to
make sure the newly added patches do not overflow the old
stacks. Second, Vulmet needs to be able to insert the changes
in the middle of the functions. The write operation is different
from the read operation. At the binary level, a memory write
operation is often followed by some read operations, which
have data dependency on the previous write operation. There-
fore, it is better to change the value at the same place as the
original patch. Thus, to locate the binary instruction in the
middle of the function is important to implement the write
operation in Vulmet. After identifying the patches whose
write modification is safe, Vulmet can generate the hot patch
to cover more vulnerabilities.

Second, Vulmet relies on the precise summarization of the
official patch semantics to generate correct hot patches. In
the experiments, some generated hot patches are incomplete
because the semantics are not fully extracted by Vulmet. It

needs to have formal semantic analysis capability to define the
changes made by the original patches. With this, Vulmet will
have less chance to miss out the important semantics of the
official patches so that the overall accuracy will be improved.

Third, there are some patches being too complex to be ana-
lyzed. It is difficult to find the precise semantics of the large
patches. Therefore, current Vulmet only works on patches
with changes in one function. In the future, we plan to intro-
duce root cause analysis to help to identify the main changes
that can patch the vulnerabilities. Vulmet can generate the
hot patches based only on the main changes so that it does not
need to recover the full semantics for the complex patches.

6 Related Works

6.1 Automatic Patch Generation
Automatic patch generation is a hot topic in security re-
searches [37]. Many different approaches have been proposed
to address this problem. The first approach attempts to sum-
marize patch patterns and use them to generate new patches
to fix similar vulnerabilities. For example, in 2005, [45] has
proposed automatic patch generation algorithms for the buffer
overflow vulnerabilities. By monitoring the program opera-
tions in a sandboxed environment during attacks, it generates
patches that can work at the same environment. [23] proposes
PAR, which generates security patches by learning from the
human-written patches. They manually examine the human-
written patches and develop the patch template. Then, they
locate the faults by running the test case and apply corre-
sponding templates to fix the bugs. [33] mines a large number
of human fixes and applies mathematical reasoning model
to search for templates to fix the bugs. [32] also summarizes
patch templates from the human patches and apply them to fix
Java vulnerabilities. Instead of writing the templates manually,
the work uses the clustering method to categorize different
patch patterns and summarize the pattern for each of the cat-
egories. DeepFix [19] learns the patch patterns using deep
learning with multi-layered sequence-to-sequence neural net-
work and fix vulnerability with the patterns.

The second approach tries to generate patches by testing
different patch candidates with the testcases. The patch that
can pass the test will be selected. Shieldgen [16] generates the
patch for the unknown vulnerabilities via analyzing the zero-
day attack instances. [24, 52] propose and improve GenProg,
which automatically searches for patches using a genetic pro-
gramming algorithm to evolve the variant to find the correct
patches. They use mutation and crossover operators to change
the original program and simulate the program evolution. Dur-
ing this evolution, different patch behaviors can be executed
so that the best one can be selected to fix the bug. [44] also
leverages on program evolution to automatically search for
patches in the assembly code programs. They demonstrate
that the patch generation at the binary level is as efficient

2410 29th USENIX Security Symposium USENIX Association

as at the source code level. [28–30, 42, 46] propose tools to
generate patches and conduct an analysis of the effectiveness
of the generation process. They define the operations that
the patch can perform on the program and generate possible
patch operations. They use heuristics and program analysis
methods to rank the possible patch operations based on their
possibility to fix the vulnerability. Then, they try different
patches against the test cases to get the one which allows the
test cases to pass. AutoPaG [26] also tries to generate patches
for the out-of-bound read vulnerabilities in the Linux kernel.
It can catch the violations and summarize the root causes
during the runtime. The patch is then built to address these
problems.

The third approach aims to analyze the cause of the vul-
nerability and build the patches to prevent that. Minthint [21]
generates hints to help the programmers repair the bugs. Sta-
tistical correlation is used to find statements that are possible
to appear at the patch location. SIFT [31] uses static pro-
gram analysis to generate input filter for the integer overflow
programs. [54] has proposed AppSealer, a tool which can au-
tomatically generate patches for known component hijacking
vulnerabilities in Android applications. It uses the program
analysis to identify the program slice which leads the vulner-
able places and builds patches to block malicious program
flows. [43] tries to generate filters for the web server to pre-
vent malicious inputs. It helps the developer by automating
the error-prone filter writing process. [27] studies real-world
concurrency bugs and generates patches via analyzing the
program flows. SearchRepair [22] has combined all three ap-
proaches. It generates Satisfiability Modulo Theories (SMT)
constraints for defects, uses program analysis to locate bugs,
and searches patches using test suits. [39] also uses SMT
to solve the constraints to generate patches for buffer over-
flow bugs. [35] combines program analysis with data mining
to generate patches with a low false positive rate. Direct-
fix [34] tries to generate simplest source code patches using
a semantics-based repair method so that the patches can be
accepted by the developers.

Unlike these related works, our work has proposed a new
approach by learning semantics from the official patches,
which does not require the test cases. Since the generated
patches have the same semantics as the official patches, they
can fix the real vulnerabilities rather than merely pass the
tests.

6.2 Hot Patching Framework

ClearView [41] is an automatic error patching framework at
the binary level. It builds models for the normal execution
of the program and detects abnormal executions, which are
considered as errors. Once errors occur, it looks for the in-
variants and generates patches based on them. ClearView will
perform the self-evaluation to determine whether the patches
fix the errors. Bouncer [15] adopts attack detector DFI [12]

to identify vulnerability exploits. Then it leverages both static
and dynamic symbolic execution to generate the filters to
drop the bad input before passing to the vulnerable program.
Embroidery [55] is a hot-patching framework for outdated
Android systems. It uses both static and dynamic analysis to
build a binary rewriting engine to patch the vulnerabilities.
Instaguard [13] is a hot-patching framework for Android aims
to fix the vulnerabilities without adding code to the original
programs. Instead, it uses the patch specification to generate
rules to mitigate the vulnerabilities. Our work is complimen-
tary for those works as our output hot patches can serve as
the inputs for their patching frameworks.

7 Conclusions

In this work, we have defined the automatic hot patch gener-
ation problem. We studied the patch behaviors of the recent
real-world Android vulnerabilities and proposed approaches
to automatically generate hot patches, which can be applied
directly to the Android kernels without affecting the user ex-
periences. To demonstrate the capability of the approach, we
have developed a tool, named Vulmet, which can generate
the semantic equivalent code changes by learning from the
semantics of the official vulnerability patches via program
analysis. The experiments demonstrated Vulmet’s capability
to generate correct hot patches for fixing the real-world CVEs.
The generated hot patches were tested to show that they can
maintain the robustness of the program while keeping a very
low overhead.

Acknowledgement

This research was supported (in part) by the National
Research Foundation, Prime Ministers Office, Singapore
under its National Cybersecurity R&D Program (Award
No. NRF2018NCR-NCR005-0001), National Satellite of
Excellence in Trustworthy Software System (Award No.
NRF2018NCR-NSOE003-0001) administered by the Na-
tional Cybersecurity R&D Directorate, and Alibaba-NTU JRI
project (M4062640.J4A).

References

[1] Android security bulletin. https://source.android.
com/security/bulletin.

[2] Antutu benchmark. http://www.antutu.com/en/.

[3] Cf-bench. https://play.google.com/store/
apps/details?id=eu.chainfire.cfbench&hl=
en_SG.

[4] Cve-2014-4943 patch. https://git.
kernel.org/pub/scm/linux/kernel/

USENIX Association 29th USENIX Security Symposium 2411

https://source.android.com/security/bulletin
https://source.android.com/security/bulletin
http://www.antutu.com/en/
https://play.google.com/store/apps/details?id=eu.chainfire.cfbench&hl=en_SG
https://play.google.com/store/apps/details?id=eu.chainfire.cfbench&hl=en_SG
https://play.google.com/store/apps/details?id=eu.chainfire.cfbench&hl=en_SG
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3cf521f7dc87c031617fd47e4b7aa2593c2f3daf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3cf521f7dc87c031617fd47e4b7aa2593c2f3daf

git/torvalds/linux.git/commit/?id=
3cf521f7dc87c031617fd47e4b7aa2593c2f3daf.

[5] Cve-2014-9873 patch. https:
//source.codeaurora.org/quic/
la/kernel/msm/commit/?id=
ef29ae1d40536fef7fb95e4d5bb5b6b57bdf9420.

[6] Cve-2015-8940 patch. https:
//source.codeaurora.org/quic/
la/kernel/msm-3.10/commit/?id=
e13ebd727d161db7003be6756e61283dce85fa3b.

[7] Cve-2016-4470 patch. https://git.
kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=
38327424b40bcebe2de92d07312c89360ac9229a.

[8] Cve-2016-8457 patch. https://github.
com/aosp-mirror/kernel_msm/commit/
e5c1b001a822e8b38680655c400e7b3f67cc3323.

[9] Cve-2018-17182 patch. https://git.
kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=
7a9cdebdcc17e426fb5287e4a82db1dfe86339b2.

[10] Ida pro. https://www.hex-rays.com/products/
ida/.

[11] List for hot patch semantics. https://sites.google.
com/view/usenix-auto-patch-paper.

[12] Castro, M., Costa, M., andHarris, T. Securing software
by enforcing data-flow integrity. In Proceedings of
the 7th symposium on Operating systems design and
implementation (2006), USENIX Association, pp. 147–
160.

[13] Chen, Y., Li, Y., Lu, L., Lin, Y.-H., Vijayakumar, H.,
Wang, Z., and Ou, X. Instaguard: Instantly deployable
hot-patches for vulnerable system programs on android.
In 2018 Network and Distributed System Security Sym-
posium (NDSS’18) (2018).

[14] Chen, Y., Zhang, Y., Wang, Z., Xia, L., Bao, C., andWei,
T. Adaptive android kernel live patching. In Proceed-
ings of the 26th USENIX Security Symposium (USENIX
Security 17) (2017).

[15] Costa, M., Castro, M., Zhou, L., Zhang, L., and Peinado,
M. Bouncer: Securing software by blocking bad input.
In ACM SIGOPS Operating Systems Review (2007),
vol. 41, ACM, pp. 117–130.

[16] Cui, W., Peinado, M., Wang, H. J., and Locasto, M. E.
Shieldgen: Automatic data patch generation for un-
known vulnerabilities with informed probing. In Se-
curity and Privacy, 2007. SP’07. IEEE Symposium on
(2007), IEEE, pp. 252–266.

[17] Dijkstra, E. W., and Scholten, C. S. Predicate calculus
and program semantics. Springer Science & Business
Media, 2012.

[18] Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur,
M. S., Conti, M., and Rajarajan, M. Android security:
a survey of issues, malware penetration, and defenses.
IEEE communications surveys & tutorials 17, 2 (2015),
998–1022.

[19] Gupta, R., Pal, S., Kanade, A., and Shevade, S. Deepfix:
Fixing common c language errors by deep learning. In
AAAI (2017), pp. 1345–1351.

[20] Horn, J. A cache invalidation bug in linux memory
management.

[21] Kaleeswaran, S., Tulsian, V., Kanade, A., and Orso,
A. Minthint: Automated synthesis of repair hints. In
Proceedings of the 36th International Conference on
Software Engineering (2014), ACM, pp. 266–276.

[22] Ke, Y., Stolee, K. T., Le Goues, C., and Brun, Y. Re-
pairing programs with semantic code search (t). In
Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on (2015), IEEE,
pp. 295–306.

[23] Kim, D., Nam, J., Song, J., and Kim, S. Automatic patch
generation learned from human-written patches. In Pro-
ceedings of the 2013 International Conference on Soft-
ware Engineering (2013), IEEE Press, pp. 802–811.

[24] LeGoues, C., Dewey-Vogt, M., Forrest, S., andWeimer,
W. A systematic study of automated program repair: Fix-
ing 55 out of 105 bugs for $8 each. In 34th International
Conference on Software Engineering, ICSE 2012, June
2-9, 2012, Zurich, Switzerland (2012), IEEE, pp. 3–13.

[25] Li, F., and Paxson, V. A large-scale empirical study
of security patches. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security (2017), ACM, pp. 2201–2215.

[26] Lin, Z., Jiang, X., Xu, D., Mao, B., and Xie, L. Au-
topag: towards automated software patch generation
with source code root cause identification and repair. In
Proceedings of the 2nd ACM symposium on Information,
computer and communications security (2007), ACM,
pp. 329–340.

[27] Liu, H., Chen, Y., and Lu, S. Understanding and gen-
erating high quality patches for concurrency bugs. In
Proceedings of the 2016 24th ACM SIGSOFT interna-
tional symposium on foundations of software engineer-
ing (2016), ACM, pp. 715–726.

2412 29th USENIX Security Symposium USENIX Association

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3cf521f7dc87c031617fd47e4b7aa2593c2f3daf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3cf521f7dc87c031617fd47e4b7aa2593c2f3daf
https://source.codeaurora.org/quic/la/kernel/msm/commit/?id=ef29ae1d40536fef7fb95e4d5bb5b6b57bdf9420
https://source.codeaurora.org/quic/la/kernel/msm/commit/?id=ef29ae1d40536fef7fb95e4d5bb5b6b57bdf9420
https://source.codeaurora.org/quic/la/kernel/msm/commit/?id=ef29ae1d40536fef7fb95e4d5bb5b6b57bdf9420
https://source.codeaurora.org/quic/la/kernel/msm/commit/?id=ef29ae1d40536fef7fb95e4d5bb5b6b57bdf9420
https://source.codeaurora.org/quic/la/kernel/msm-3.10/commit/?id=e13ebd727d161db7003be6756e61283dce85fa3b
https://source.codeaurora.org/quic/la/kernel/msm-3.10/commit/?id=e13ebd727d161db7003be6756e61283dce85fa3b
https://source.codeaurora.org/quic/la/kernel/msm-3.10/commit/?id=e13ebd727d161db7003be6756e61283dce85fa3b
https://source.codeaurora.org/quic/la/kernel/msm-3.10/commit/?id=e13ebd727d161db7003be6756e61283dce85fa3b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=38327424b40bcebe2de92d07312c89360ac9229a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=38327424b40bcebe2de92d07312c89360ac9229a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=38327424b40bcebe2de92d07312c89360ac9229a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=38327424b40bcebe2de92d07312c89360ac9229a
https://github.com/aosp-mirror/kernel_msm/commit/e5c1b001a822e8b38680655c400e7b3f67cc3323
https://github.com/aosp-mirror/kernel_msm/commit/e5c1b001a822e8b38680655c400e7b3f67cc3323
https://github.com/aosp-mirror/kernel_msm/commit/e5c1b001a822e8b38680655c400e7b3f67cc3323
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7a9cdebdcc17e426fb5287e4a82db1dfe86339b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7a9cdebdcc17e426fb5287e4a82db1dfe86339b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7a9cdebdcc17e426fb5287e4a82db1dfe86339b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7a9cdebdcc17e426fb5287e4a82db1dfe86339b2
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://sites.google.com/view/usenix-auto-patch-paper
https://sites.google.com/view/usenix-auto-patch-paper

[28] Long, F., and Rinard, M. Staged program repair with
condition synthesis. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering
(2015), ACM, pp. 166–178.

[29] Long, F., and Rinard, M. An analysis of the search
spaces for generate and validate patch generation sys-
tems. In Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on (2016), IEEE, pp. 702–
713.

[30] Long, F., and Rinard, M. Automatic patch generation
by learning correct code. ACM SIGPLAN Notices 51, 1
(2016), 298–312.

[31] Long, F., Sidiroglou-Douskos, S., Kim, D., and Rinard,
M. Sound input filter generation for integer overflow
errors. Acm sigplan notices 49, 1 (2014), 439–452.

[32] Ma, S., Thung, F., Lo, D., Sun, C., andDeng, R. H. Vurle:
Automatic vulnerability detection and repair by learning
from examples. In European Symposium on Research
in Computer Security (2017), Springer, pp. 229–246.

[33] Martinez, M., and Monperrus, M. Mining software
repair models for reasoning on the search space of auto-
mated program fixing. Empirical Software Engineering
20, 1 (2015), 176–205.

[34] Mechtaev, S., Yi, J., and Roychoudhury, A. Direct-
fix: Looking for simple program repairs. In Proceed-
ings of the 37th International Conference on Software
Engineering-Volume 1 (2015), IEEE Press, pp. 448–458.

[35] Medeiros, I., Neves, N. F., and Correia, M. Automatic
detection and correction of web application vulnerabil-
ities using data mining to predict false positives. In
Proceedings of the 23rd international conference on
World wide web (2014), ACM, pp. 63–74.

[36] Mokhov, S. A., Laverdiere, M.-A., and Benredjem, D.
Taxonomy of linux kernel vulnerability solutions. In
Innovative Techniques in Instruction Technology, E-
learning, E-assessment, and Education. Springer, 2008,
pp. 485–493.

[37] Monperrus, M. Automatic software repair: a bibliog-
raphy. ACM Computing Surveys (CSUR) 51, 1 (2018),
17.

[38] Mulliner, C., Oberheide, J., Robertson, W., and Kirda,
E. Patchdroid: Scalable third-party security patches for
android devices. In Proceedings of the 29th Annual Com-
puter Security Applications Conference (2013), ACM,
pp. 259–268.

[39] Muntean, P., Kommanapalli, V., Ibing, A., and Eckert,
C. Automated generation of buffer overflow quick fixes

using symbolic execution and smt. In International
Conference on Computer Safety, Reliability, and Secu-
rity (2014), Springer, pp. 441–456.

[40] Nguyen, H. A., Nguyen, A. T., Nguyen, T. T., Nguyen,
T. N., and Rajan, H. A study of repetitiveness of code
changes in software evolution. In Proceedings of the
28th IEEE/ACM International Conference on Automated
Software Engineering (2013), IEEE Press, pp. 180–190.

[41] Perkins, J. H., Kim, S., Larsen, S., Amarasinghe, S.,
Bachrach, J., Carbin, M., Pacheco, C., Sherwood, F.,
Sidiroglou, S., Sullivan, G., et al. Automatically patch-
ing errors in deployed software. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles (2009), ACM, pp. 87–102.

[42] Qi, Z., Long, F., Achour, S., and Rinard, M. An analysis
of patch plausibility and correctness for generate-and-
validate patch generation systems. In Proceedings of
the 2015 International Symposium on Software Testing
and Analysis (2015), ACM, pp. 24–36.

[43] Razmov, V., and Simon, D. R. Practical automated filter
generation to explicitly enforce implicit input assump-
tions. In Computer Security Applications Conference,
2001. ACSAC 2001. Proceedings 17th Annual (2001),
IEEE, pp. 347–357.

[44] Schulte, E., Forrest, S., andWeimer, W. Automated
program repair through the evolution of assembly code.
In Proceedings of the IEEE/ACM international confer-
ence on Automated software engineering (2010), ACM,
pp. 313–316.

[45] Sidiroglou, S., and Keromytis, A. D. Countering net-
work worms through automatic patch generation. IEEE
Security & Privacy 3, 6 (2005), 41–49.

[46] Sidiroglou-Douskos, S., Lahtinen, E., Long, F., and Ri-
nard, M. Automatic error elimination by horizontal code
transfer across multiple applications. In ACM SIGPLAN
Notices (2015), vol. 50, ACM, pp. 43–54.

[47] Sotirov, A. Hotpatching and the rise of third-party
patches. In Black Hat Technical Security Conference,
Las Vegas, Nevada (2006).

[48] Soto, M., Thung, F., Wong, C.-P., Le Goues, C., and Lo,
D. A deeper look into bug fixes: patterns, replacements,
deletions, and additions. In Proceedings of the 13th
International Conference on Mining Software Reposito-
ries (2016), ACM, pp. 512–515.

[49] Sui, Y., andXue, J. Svf: interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th Interna-
tional Conference on Compiler Construction (2016),
ACM, pp. 265–266.

USENIX Association 29th USENIX Security Symposium 2413

[50] Sui, Y., Ye, D., and Xue, J. Detecting memory leaks
statically with full-sparse value-flow analysis. IEEE
Transactions on Software Engineering 40, 2 (2014), 107–
122.

[51] Tian, Y., Lawall, J., and Lo, D. Identifying linux bug
fixing patches. In Proceedings of the 34th Interna-
tional Conference on Software Engineering (2012),
IEEE Press, pp. 386–396.

[52] Weimer, W., Nguyen, T., Le Goues, C., and Forrest, S.
Automatically finding patches using genetic program-
ming. In Proceedings of the 31st International Confer-
ence on Software Engineering (2009), IEEE Computer
Society, pp. 364–374.

[53] Xie, X., Chen, B., Zou, L., Lin, S.-W., Liu, Y., and Li, X.
Loopster: static loop termination analysis. In Proceed-

ings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (2017), ACM, pp. 84–94.

[54] Zhang, M., and Yin, H. Appsealer: Automatic gener-
ation of vulnerability-specific patches for preventing
component hijacking attacks in android applications. In
NDSS (2014).

[55] Zhang, X., Zhang, Y., Li, J., Hu, Y., Li, H., and Gu, D.
Embroidery: Patching vulnerable binary code of frag-
mentized android devices. In Software Maintenance and
Evolution (ICSME), 2017 IEEE International Confer-
ence on (2017), IEEE, pp. 47–57.

[56] Zhong, H., and Su, Z. An empirical study on real bug
fixes. In Proceedings of the 37th International Confer-
ence on Software Engineering-Volume 1 (2015), IEEE
Press, pp. 913–923.

2414 29th USENIX Security Symposium USENIX Association

	Introduction
	Automatic Hot Patch Generation
	Problem Definition
	Requirements
	Operation Scopes
	Real-world Example

	Patch Type Analysis
	Patch Categorization
	Observations
	VULMET Work Scope

	Methodology
	Overview
	Patch Filtering
	Insertion Location Optimization
	Motivation and Problem Definition
	Demonstration Example

	Weakest Precondition Reasoning
	Determined Statement Transformation
	Demonstration Example
	Function Calls
	Loops

	Binary Hot Patch Generation

	Evaluation
	Correctness Evaluation
	Experiment 1: Patches against Exploits
	Experiment 2: Manual Verification
	Experiment 3: Comparison with Human Written Patches

	Robustness Evaluation
	Efficiency Evaluation
	Threat to Validity and Future Works

	Related Works
	Automatic Patch Generation
	Hot Patching Framework

	Conclusions

