SANNS: Scaling Up Secure

Approximate k-Nearest
Neighbors Search

Hao Chen (Microsoft)
Illaria Chillotti (KU Leuven)
Yihe Dong (Microsoft)
Oxana Poburinnaya (University of Rochester)
llya Razenshteyn (Microsoft)
Sadegh Riazi (UCSD)

Secure computation

« Two or more parties want to perform some computation on
their private data, and only reveal the output

» Example applications:
e Private set intersection
 Privacy-preserving machine learning

» Security notions: passive/semi-honest, covert,
active/malicious

k-Nearest Neighbor Search (k-NNS)

* Given:
« Dataset: n points P from a metric space M = (X, D)

* Query: P
* Apointg € X

» Goal:
 Find k data points closest to the query g ®

« Can be used for similarity search

® o
e 9]
®

Secure k-NNS

 Server holds a dataset, client holds one or several queries

« Goal:
 Server |learns nothing

* Client learns nothing about the dataset except (approximate)
answers to the queries

« Accuracy vs. time, communication, number of rounds
 Focus on the Euclidean distance

 Applications: face recognition/biometric identification,
searching medical data, etc.

Prior work

* [Erkin, Franz, Guajardo, Katzenbeisser 2009] [Sadeghi,
Schneider, Wehrenberg 2009] [Barni, Bianchi, Catalano,
Raimondo, Labati, Failla, Fiore, Lazzeretti, Piuri, Scotti,
Pivo 2010] [Evans, Huang, Katz, Malka 2011] [Demmler,
Schneider, Zohner 2015] [Songhori, Hussain, Sadeghi,
Koushanfar 2015] [Riazi, Chen, Shrivastava, Wallach,
Koushanfar 2016] [Shaul, Feldman, Rus 2018] [Asharov,
Halevi, Lindell, Rabin 2018] [Riazi, Javaheripi, Hussain,
Koushanfar 2019]

* All except one work implement linear scan securely

Possible solutions

e Linear scan
* Query time: n distance computations
e Too slow for massive datasets

 Sublinear-time algorithms
» Approximate answers
« Might not work well with secure computation

Our solution: hybrid protocols

We propose two algorithms for secure approximate k-NNS:
« Optimized linear scan
* Cluster-based algorithm

We implemented them securely using a combination of

Homomorphic encryption (HE), Garbled circuits (GC), and
Oblivious ROM (OROM)

Algorithm 1: Optimized linear scan

- Linear scan: compute Alice: query g Bob: dataset
distances + select k smallest P = {p;}*,

HE
« Compute distance using HE l

and top-k selection using GC [((jjg - piI> - 7,) mod m}™, i,

* top-k selection becomes the l GC
bottleneck IDs of k closest points

Distance computation I I

n | dataset d

I

* llg — p:ill* = llqll® + llp:ll* — 24q, p:)

query

« Enough to compute —2(q, p;) d

« Use BFV scheme [Brakerski 2012] [Fan, Vercauteren 2012] as
implemented in Microsoft SEAL

- Client encrypts the query, sends it to the server, server performs
additions and multiplications by a plaintext

« Heavily vectorized

Randomized approximate top-k
* For n values with t bits each, naive circuit need O(tnk) gates

» Randomized circuit with 0(t - (n + poly(k))) gates
« For every input x;, x,, ..., x,, circuit outputs k smallest numbers whp

e Partition into [random groups of size n/I

* Find minimum in each group: 0(tn) gates total

« Compute top-k among the minima: O(tkl) gates

« Can choose [= 0(k*/§) such that correctw.p. 1 — 6§

« Overall, 0(n + k3/8) comparisons, 0(t - (n + k*/6)) gates

Algorithm 2: Clustering-based approach

 k-means clustering on the dataset o

« Compute u centers closest to the

query o

* Return closest points from these @
clusters

 Run linear scan with retrieved
points

Implementing Algorithm2 securely

« Compute distances to centers using HE
* Choose several closest centers using GC

* Retrieve (secret shares of) points from the corresponding
clusters using OROM (one entry per cluster)

« Compute distances to the retrieved points using HE
» Choose closest points using GC

Oblivious Read-only Memory (ROM)

Alice: i = Bob: a1 ...1]

Securely returns a[i] to Alice

 Linear communication complexity if done in GC
» Use [Doerner, Shelat 2017]: O(logn) communication
* ~]logn rounds

Experiments

. Per-client Query
Algorithm Preprocessing OT Phase Total Distances Top-k ORAM
Linear scan None 1.83s/21.6s | 33.3s/139s | 19.8s/25.6s | 13.5s/111s None
= 894 MB 451 GB 98.7 MB 441 GB
7 Clustering 12.6s/24.7s | 0.346s/4.34s | 8.06s/59.7s | 221s/3.67s | 1.96s/18.0s | 3.85s/38.1s
484 MB 156 MB 1.77 GB 56.7 MB 645 MB 1.06 GB
Linear scan Nore 1.85s/20.6s | 284s/133s | 149s/206s | 13.5s/112s Nore
1= 894 MB 450 GB 86.1 MB 441 GB
S Clustering 11.0s/20.6s | 0.323s/4.09s | 6.95s/47.8s | 1.66s/3.13s | 1.93s/16.6s | 3.37s/27.9s
407 MB 144 MB 1.58 GB 44.1 MB 620 MB 920 MB
< | Linear scan None 20.0s/232s | 375s/1490s | 202s/201s | 173s/1280s None
&= 9.78 GB 47.9 GB 518 MB 47.4 GB
= g Clustering 86.0s/167 s 1.04s/13.4s | 30.1s/181s | 6.27s/102s | 722s/61.0s | 16.5s/107 s
3.71 GB 541 MB 5.53 GB 59.4 MB 2.35GB 3.12GB
; Linear scan None 1.99s/233s | 229s/133s | 827s/14.0s | 14.6s/118s None
S 960 MB 4.85GB 70.0 MB 478 GB
5 Clustering 727s/134s | 0.273s/3.17s | 454s/352s | 0.68s/231s | 1.64s/13.8s | 2.22s/18.8 s
247 MB 108 MB 1.12 GB 24.4 MB 528 MB 617 MB

Table 1: Evaluation of SANNS in a single-thread mode. Preprocessing is done once per client, OT phase is done once per query.
In each cell, timings are given for fast and slow networks, respectively.

Experiments

. Threads

Algorithm 0 5 1 g 16 Y i 75 Speed-up
Linear scan 333s | 23.2s | 134s | 8.04s | 478s | 425s | 3.96s | 4.14s 8.4
= 139s | 76.4s | 469s | 32.5s | 25.7s | 22.1s | 209s | 21.3s 6.7
7 Clustering 8.06s | 484s | 3.16s | 2.18s | 1.65s | 1.55s | 1.44s | 1.47s 5.6
50.7s | 35.2s | 23.6s | 244s | 20.1s | 142s | 11.1s | 12.1s 5.4
Linear scan 284s | 199s | 114s | 739s | 453s | 3.94s | 3.94s | 4.05s 7.2
= 133s | 755s | 445s | 31.9s | 2455 | 22.0s | 22.5s | 21.1s 6.3
2 é Clustering 695s | 420s | 262s | 203s | 1.52s | 1.43s | 1.37s | 1.39s 5.1
47.8s | 28.5s | 22.0s | 23.0s | 184s | 147s | 11.0s | 11.5s 4.3
< | Linear scan 375s | 234s | 118s | 81.8s | 65.8s | 55.0s | 53.1s | 58.5s* 7.1
&= 1490s | 800s | 480s | 343s | 266s | 231s | 214s | 216s* 7.0
2 g Clustering 30.1s | 180s | 10.8s | 7.21s | 485s | 4.58s | 423s | 4255 7.1
181s | 97.5s | 60.0s | 545s | 48.1s | 37.2s | 30.3s | 284s 6.4
_ Linear scan 229s | 1545s | 10.1s | 6.66s | 4.14s | 3.73s | 3.78s | 3.64s 6.3
§ 133s | 73.1s | 46.1s | 33.8s | 26.2s | 24.1s | 22.0s | 21.7s 6.1
5 Clustering 454s | 2.66s | 1.87s | 1.40s | 1.17s | 1.15s | 1.12s | 1.16s 4.1
352s | 214s | 149s | 16.8s | 142s | 11.5s | 10.8s | 9.19s 3.8

Table 2: Evaluation of SANNS query algorithms in the multi-thread mode. Each cell contains timings for fast and slow networks.
Optimal settings are marked in bold. For the numbers marked with an asterisk, we take the median of the running times over
several runs, since with small probability (approximately 20 — 30%), memory swapping starts due to exhaustion of all the
available RAM, which affects the running times dramatically (by a factor of ~ 2 x).

Conclusion

« We improved the performance of secure k nearest neighbors

 (Much) faster secure implementation of the linear scan
« Small Boolean circuit for top-k (two new constructions)

* First secure implementation of a sublinear time algorithm
* New algorithm tailored to secure computation

« A number of optimizations to HE, GC, OROM
« Dramatically improved concrete efficiency

« Can find 10-NN on 10M 96-dimensional vectors with accuracy 0.9
in under 6 seconds
« Up to 31x faster than (optimally implemented) prior work

Thank youl

Contact: Hao Chen (haoche@microsoft.com)

