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Security Classifiers
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Malicious

Benign

High Accuracy, Low False Positive Rate
But very easy to evade



Evading Gmail’s PDF Malware Classifier
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Evading Gmail’s PDF Malware Classifier
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Inserted /Root/Pages from to Benign

The PDF is still malicious
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PDF is still malicious



Example Robustness Property
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The classifier should keep malicious prediction
if non-functional objects are deleted



Why are Robustness Properties Useful?
oUnbounded attackers can always 

evade the classifier
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Why are Robustness Properties Useful?
oUnbounded attackers can always 

evade the classifier

oRobust against reasonably bounded 
attackers
o Robustness Properties
o Robust Accuracy

oGeneralize to robustness against 
unbounded attackers
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Robust Accuracy

• The percentage of test samples that are correctly classified against any 
attacker within a specified bound.
• e.g., !" ≤ 0.1 bounded attacker against an image classifier

• Estimated Robust Accuracy (ERA) measures robustness using attacks.
• Restricted attackers within the bound
• Unrestricted attackers as the bound increases

• Verified Robust Accuracy (VRA) measures robustness using sound over-
approximation methods.
• Overapproximates attacks
• Lower bound of the percentage of robust and accurate samples
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Sound Over-Approximation

Symbolic Linear Relaxation
Wang et al. USENIX Security 2018, NIPS 2018.

Symbolic Linear Relaxation
o Propagate Symbolic Intervals
o Over-approximates attacks
o Measures VRA
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https://github.com/tcwangshiqi-columbia/symbolic_interval



Regular Training
min(errors)

Robust Training

Verifiable Training Increases VRA
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min( max( errors by successful evasions ) )



Regular Training
min(errors)

Robust Training
min( max( errors by successful evasions ) )

Adversarial Verifiable

Verifiable Training Increases VRA

Sound Over-approximation
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Robustness against Unknown Attacks



Challenges

• How to train a single model to be robust against different attackers?

• How to maintain low false positive rate?

• Does verifiable robustness generalize to unrestricted attackers?
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Robust Against Different Attackers

• Obtain VRA for multiple robustness properties and regular accuracy
• The underlying optimization problem is harder

• Mixed Training
• Combined training objective
• Mix the batches
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Accuracy

Property 1 VRA Property 2 VRA

Property 3 VRA



New Distance Metric

• To bound attackers that reasonably mimic real attackers
• Does not affect false positive rate

• Adversarial malware examples
• x -> x’, s.t. f(x’) = benign and O(x’) is malicious, imperceptible by machine
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Searching for Evasive PDF Malware

• Attacks can be decomposed to building block operations
• Feature insertion-only attacks. Grosse et. al., Hu et al.
• Mimicry, merging with benign features. Šrndić et al.
• Mutation operations (insert, replace, delete). Xu et al., Dang et al.

• Optimization
• Greedy (Gradient Descent)
• Genetic Evolution
• Hill Climbing
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Benign



Subtree Distance

• A PDF malware variant needs correct syntax and correct semantic.
• PDF file is parsed into a tree structure
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Subtree Distance

• A PDF malware variant needs correct syntax and correct semantic.
• PDF file is parsed into a tree structure
• # of different subtrees under the root between variants

21

/Catalog

1

/Pages
/Page

Exploit /Javascript

/FlateDecode 1573

/Root
/Type

/OpenAction

/JS /S

/Pages

/Kids

/Type

/Count

/Type

/Filter /Length

/Catalog

1

/Pages
/Page

Exploit /Javascript

/FlateDecode

/Root
/Type

/OpenAction

/JS /S

/Pages

/Kids

/Type

/Count

/Type

/Filter

Subtree Distance One: arbitrary changes in 1 out of N subtrees under root



Building Block Robustness Properties

• Small subtree distance maintains low FPR
• Subtree insertion property (subtree distance one)
• Subtree deletion property (subtree distance one)
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Subtree Insertion (Distance One)
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Robust against insertion in any 1 out of N 
subtrees



Subtree Deletion (Distance One)

24

Robust against arbitrary deletion in one of the existing subtrees
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Building Block Robustness Properties

• Small subtree distance maintains low FPR
• Subtree insertion property (subtree distance one)
• Subtree deletion property (subtree distance one)
• Binary path features (Hidost Šrndić et al. NDSS 13)
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Monotonic Classifier Verifiably Robust Model

Accuracy 99.04% 99.74%

False positive Rate 1.78% 0.56%

Subtree Insertion VRA 99.04% 91.86%

Subtree Deletion VRA 7.67% 99.68%

• Monotonic classifier f: if x ≤ x’, f(x) ≤ f(x’)



ERA against Adaptive Attackers

Adapt the genetic evolutionary attack (Xu et al., NDSS 2016.)
• Monotonic: move exploit, i.e. deletion but keep the exploit.
• Verifiably robust model: insert and delete under different subtrees.
• Our verifiably robust model requires 3.7 times more mutations and 10 

times larger L0 distance to be evaded by adaptive attackers.
26

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Mutation Trace Length

ER
A

Verifiably Robust Model
Monotonic 100

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
L0

ER
A



More Evaluations in the Paper

• 12 baseline models
• Regular trained neural networks, adversarial training, ensemble classifiers, 

monotonic classifiers

• Generate evasive variants
• 7 different attackers
• 2 Unrestricted Whitebox Attacks (Gradient, MILP)
• 3 Unrestricted Blackbox Attacks (Reverse Mimicry, Evolutionary, Adaptive)

• We raise the bar against unbounded attackers
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Thank You

• https://github.com/surrealyz/pdfclassifier

• We have released our source code and models.
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https://github.com/surrealyz/pdfclassifier

