A Formal Analysis of IEEE **802.11**'s **WPA2**

COUNTERING THE KRACKS

CAUSED BY

CRACKING THE COUNTERS

Niklas Medinger, Benjamin Kiesl, and Cas Cremers

What is **WPA2**?

- Purpose: Enable secret communication over wireless networks
- How: Establish secret keys for encryption
 - Pairwise transient keys (PTK) for protecting WiFi traffic (different for each client)
 - Group transient keys (GTK) for protecting broadcast messages (same for each client)

The Four-Way Handshake

What can go wrong?

- WPA2 had been considered secure (apart from offline attacks)
- Big shock in 2017: Vanhoef and Piessens break WPA2 by exploiting subtle behavior of the protocol => KRACK attacks
 - Message retransmissions are exploited to achieve key reinstallations
 - Key reinstallations lead to nonce reuse in WPA2's authenticated encryption schemes
 - Nonce reuse leaks the key used for encryption

Breaking... and Fixing?

- Vanhoef and Piessens proposed intuitive countermeasures
- However, in 2018 Vanhoef and Piessens found new attack variants...
 - ...that circumvent **their own** countermeasures.
- They then proposed new improved countermeasures

Formal Model using Tamarin

- We created a formal model of WPA2 with the Tamarin prover
- Modeled 7 state machines for the major mechanisms specified in the standard
- Created a more accurate model of the authenticated encryption schemes where nonce reuse leads to key leakage
- This took around **12 person-months** of work
- A lot of time spent on understanding the WPA2 standard

Analysis Results

- We proved...
 - ...security of the pairwise transient keys and of the group keys
 - ...authentication of 4-way-handshake ("injective agreement")
- Verification was **not** fully automatic
- Tamarin required many intermediate statements

Analysis Results

- Previous analysis did not cover mechanisms such as
 - Key leakage through nonce reuse
 - WNM sleep mode and sleep bit
- Our analysis covers a large class of attacks including these mechanisms
- No attacks on the pairwise keys in the twice patched WPA2 protocol.

Conclusion

- We provide the first formal security argument for WPA2 that covers the major mechanisms.
- Highly complex protocols can now be verified formally.
- Read our paper! Check out our Website¹! Build on our model!

cremers@cispa.saarland
benjamin.kiesl@cispa.saarland
s8nimedi@stud.uni-saarland.de