PHMon: A Programmable Hardware Monitor

and Its Security Use Cases

Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou,
Schuyler Eldridge, Ajay Joshi, and Manuel Egele

delshad®@bu.edu

Boston University

August 12, 2020

BOSTON
UNIVERSITY

Introduction

P Motivation

Motivation

@ Growing demand to enforce
security policies in hardware

Boston University August 12, 2020 2/10

Introduction
PHMon

Conclusion

Motivation

@ Growing demand to enforce
security policies in hardware

Intel MPX
ARM
TrustZone

Intel TXT

AMD SVM
Intel SGX

Intel CET

Boston University

-]

Motivation

MPX
SaFeC Sof'tbound Available
2008 | 2013 } 2018-2019
1994 2009 | 2015 [
Hardbound MPX MPX
Announced Disabled

[AUSTIN, PLDI'04] [DEVIETTI, ASPLOS'08] [NAGARAKATTE, PLDI'09]

August 12, 2020

2/10

Introduction

P Motivation

Motivation

@ Growing demand to enforce
security policies in hardware

What if

we could have a flexible hardware
implementation that could enhance
and enforce a variety of security
policies as security threats evolve?!

Boston University August 12, 2020 2/10

Introduction
E n

Conclusion

Overview

Our Proposal - PHMo

@ A hardware monitor and the full

Hardware

software stack around it

@ A programmable hardware monitor
interfaced with a RISC-V Rocket
processor on an FPGA

@ OS support

@ Software API

@ Security use cases

How Does It Work? PHMon

e
@ A user/admin configures the hardware execution
= =~
monitor -

)All SW Stack

User/Admin
Event/Action
Specification L

Using PHMon API //Monitor Events

2 NS Take Actions
S

/" (Ls process Is PHMon \\‘
\ Termlnated Disabled? I

L _/) N

@ The hardware monitor collects the

runtime execution information

@ Checks for the specified events, e.g., detects
branch instructions PHMon

@ Performs follow-up actions, e.g., an ALU Stop

Boston University August 12, 2020 3/10

Hardware

Introduction
PHMon
Conclusion

Hardware Overview

RISC=V Rocket | /RoCC Interface
Microprocessor ' '
Pipelined : . .
IC t L
Processor Core Ot SOk ‘
z c U !Command '
gl,:.,j g g % n;: i Response; PHMon
Q u Q| i= i Interr‘uptj
H '
1 | Memory Reguest;
Data Cache ‘ 1Memor‘y Responsé
@ Collect the instruction Commit Log Seeeieioans =
trace - inst PHMon : :
T pc_src E Action Unit (AU)
@ Find matches with - pc_dst Match Unit-0 (MU-0)
- addr . Predicate: E Config Unit-0 (CFU-0!
programmed events data g ~inst = xg067 ACtion Config Table
. g S g5 Type | 11 | 1nz | Fn | out | oata
@ Take follow-up actions & Jodar - EE w5 o [n] e
& - data = * =E O
&
= of
Cmd/Res; Counter Threshold 2 conf_ptr | [confctr
Cpd/Respl e ;
Interrup I
METor ‘

August 12, 2020 4/10

Introduction Software
PHMon

Conclusion

Software Overview

Software Interface OS Supp

@ A list of functions that use RISC-V’s @ Per process OS support
standard ISA extension @ Maintain PHMon

@ Configure PHMon information during
@ Communicate with PHMon context switches

@ Interrupt handling OS

Reset MU-0 and configure the match pattern

support
phmon_reset_val(0); . @ Delegate interrupt to
phmon_pattern(@, &mask_inst@) oS
Compare pc_dst and pc_src, and trigger an interrupt ° TFrrn{nate the
action_mu@.op_type = e_OP_ALU; //ALU operation V|o|at|ng [PIROE=E y
action_mu@.inl = e_IN_DATA_RESP; //MU_resp
action_mu@.in2 = e_IN_LOC3; //Local3
action_mu@.fn = e_ALU_SEQ; //Set Equal
action_mu@.out = e_OUT_INTR; //Interrupt reg
phmon_action_config(@, &action_mu@);

Boston University August 12, 2020 5/10

Introduction
PHMon

Conclusion

Implementation

Implementation and Evaluation Framework

Implementation

@ PHMon as a RoCC, written in Chisel HDL
@ Interfaced with the in-order RISC-V Rocket core
@ Linux kernel v4.15

@ RISC-V gnu toolchain for cross-compilation

v
Evaluation

@ Prototyped on Xilinx Zynq Zedboard
@ Rocket core + PHMon
@ Open-sourced at https://github.com/bu-icsg/PHMon

Boston University August 12, 2020 6/10

Introduction
PHMon

nclusion

Use Cases

Use Cases

Preventing Information
Leakage

ﬁ avackar 7t

Shadow Stack

THE #1 PROGRAITER EXCUSE DEBUGGING
FOR LEGITINATELY smo<ws OF:

“MY CODE'S ()

IDON'T KNOW WHERE YOU ARE. | DONSKNOW
HOW YOU WORK, BUT IWILL FIND YOUAND

| WILL FIX YOU

Hardware Accelerated Watchpoints and
Fuzzing Accelerated Debugger

https://security.googleblog. com/2019/10/protecting-against-code-reuse-in-1inux30. html,

https: //www.darkreading. con/attacks-breaches/hear tbleed-attack- targeted enterprxse vpn-/d/d-1d/1204592,
https://medium. ast/fi g p-learning:

https:/ ~con/p ional gging: ails-lyr2bnz

University August 12, 2020 7/10

Introduction
PHMon

Conclusion

Use Cases

Shadow Stack

Use Cases

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S () G"

FEY GETp Y|
W) FUZZING!

D,
|

Hardware Accelerated
Fuzzing

https://security.googleblog.com/2019/10/protecting-against-code-reuse-in-linux30.html,

https://medium.

P 303,

Boston University August 12, 2020

7/10

Introdu

iction

PHMon

Conclusion

Use Cases

Use Cases: Shadow Stack

PHMon-based Shadow Stac

@ Simple and flexible
e Two MUs
@ Shared memory space

@ Allocated by OS as a
user-space memory

@ Secure

@ Efficient
@ For SPECint2000,

SPECint2006, and MiBench
benchmarks, on average,
0.9% performance overhead

Main Stack Shadow Stack

Return Address|------- >Return Address

Argument
Registers
Saved
Registers
Local
Variables

A|Return Address

Return Address |’

225
¢
320
815
2
5
£1.0
Eo 5
5 0.
& ,—‘
0.0

niversity

< \Y 53 NS
01\9 o ch“\ «\«\a 2 6&“” o‘“ o«
o
A\

SPECint2006

August 12, 2020

8/10

Introduction
PHMon

Conclusion
Use Cases

Use Cases: Hardware Accelerated Fuzzing

American Fuzzy Lop (AFL)
[Zalewski, 2013]

@ A state-of-the-art fuzzer

@ Two main units
@ The fuzzing logic

@ The instrumentation suite

@ Compiler-based
@ QEMU-based

https://rabbitbreeders.us/american-fuzzy-lop-rabb

Boston University August 12, 2020 9/10

Introduction
PHMon

Conclusion

Use Cases

Use Cases: Hardware Accelerated Fuzzing

American Fuzzy Lop (AFL)
[Zalewski, 2013]

@ A state-of-the-art fuzzer

@ Two main units
@ The fuzzing logic

@ The instrumentation suite

@ Compiler-based
@ QEMU-based

 Program Execution
On RISC-V Processor | wonitoring (2)/
| Updating the
branch coverage (3)

Process
terminates

|
1
1
|
1
1
)
the

Reading
branch coverage (5)

Memor:

[Shared Memory Region]

hitps://

ders.us/american-fuzzy-lop.

Boston University

August 12, 2020

QEMU-based AFL

Monitoring
Child Process

\
1
1
1
(The Fuzzed Program))
I
1
1
I
)

he

Updating the
ge (5)

Reading t
branch covera branch coverage (3)

[Shared Memory Region]

PHMon-based AFL

Introduction
PHMon

Conclusion

Use Cases

Use Cases: Hardware Accelerated Fuzzing

On RISC-V Processor ! wonitoring (2)/

I
25 branch coerage (3)
2 [Baseline AFL [Fork Server 20.6 1
9 =20 = PHMon { Process |
=R=] 16.4 16.1 ! erk('lExm terminates |
o
g215 i \
50 §)
£310 R soing the
o) ’54 6.3 5.4 branch coverage (5)
A 5 . Memor
= 1 1. [e e] |
0
O
g N g = © & Os QEMU-based AFL
H 8
@
Benchmarks

Program Execution
On RISC-V Processor

Child Process
(The Fuzzed Program)|

@ PHMon improves AFL's performance
by 16x over the baseline

Process
terminates |
)

@ Power overhead: 5% S T
@ Area overhead: 13.5% ‘"W

Updating the

branch coverage (5) branch coverage (3)

[shared hemory region | |

PHMon-based AFL

August 12, 2020

Introduction
PHMon
Conclusion

Conclusion

A hardware monitor with full software stack

ARTFACT

EVALUATED | https: //www.usenix.org/system/files/

sec20spring_delshadtehrani_prepub.pdf

https://github.com/bu-icsg/PHMon

100w
o

IWILL FIX YOU Thanks! You can reach me at
delshad@bu.edu for follow-up questions.
Accelerated Debugger

Versatile and easily adopted J More information)

Fuzzing

Boston University August 12, 2020 10/10

	Introduction
	Motivation
	Overview

	PHMon
	Hardware
	Software
	Implementation
	Use Cases

	Conclusion

