
PHMon: A Programmable Hardware Monitor
and Its Security Use Cases

Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou,
Schuyler Eldridge, Ajay Joshi, and Manuel Egele

delshad@bu.edu

Boston University

August 12, 2020

Introduction
PHMon

Conclusion

Motivation
Overview

Motivation

Current Trend

Growing demand to enforce
security policies in hardware

Intel SGX

Intel TXT

Intel MPX
ARM

TrustZone

AMD SVM

Intel CET

ARM PA

...

1994

SafeC

2008

Hardbound
2009

Softbound

2013

MPX
Announced

2015

MPX
Available

2018-2019

MPX
Disabled

[AUSTIN, PLDI’94] [DEVIETTI, ASPLOS’08] [NAGARAKATTE, PLDI’09]

What if
we could have a flexible hardware
implementation that could enhance
and enforce a variety of security
policies as security threats evolve?!

Boston University August 12, 2020 2/10

Introduction
PHMon

Conclusion

Motivation
Overview

Motivation

Current Trend

Growing demand to enforce
security policies in hardware

Intel SGX

Intel TXT

Intel MPX
ARM

TrustZone

AMD SVM

Intel CET

ARM PA

...

1994

SafeC

2008

Hardbound
2009

Softbound

2013

MPX
Announced

2015

MPX
Available

2018-2019

MPX
Disabled

[AUSTIN, PLDI’94] [DEVIETTI, ASPLOS’08] [NAGARAKATTE, PLDI’09]

What if
we could have a flexible hardware
implementation that could enhance
and enforce a variety of security
policies as security threats evolve?!

Boston University August 12, 2020 2/10

Introduction
PHMon

Conclusion

Motivation
Overview

Motivation

Current Trend

Growing demand to enforce
security policies in hardware

Intel SGX

Intel TXT

Intel MPX
ARM

TrustZone

AMD SVM

Intel CET

ARM PA

...

1994

SafeC

2008

Hardbound
2009

Softbound

2013

MPX
Announced

2015

MPX
Available

2018-2019

MPX
Disabled

[AUSTIN, PLDI’94] [DEVIETTI, ASPLOS’08] [NAGARAKATTE, PLDI’09]

What if
we could have a flexible hardware
implementation that could enhance
and enforce a variety of security
policies as security threats evolve?!

Boston University August 12, 2020 2/10

Introduction
PHMon

Conclusion

Motivation
Overview

Our Proposal - PHMon

PHMon

A hardware monitor and the full

software stack around it

A programmable hardware monitor
interfaced with a RISC-V Rocket
processor on an FPGA
OS support
Software API
Security use cases

How Does It Work?

A user/admin configures the hardware
monitor

The hardware monitor collects the

runtime execution information
Checks for the specified events, e.g., detects
branch instructions
Performs follow-up actions, e.g., an ALU
operation

Hardware

API
Application

Full SW Stack

OS

N

User/Admin
Event/Action
Specification
Using PHMon API

Program
PHMon

PHMon
Monitor the
execution

Is process
Terminated?

Is PHMon
Disabled?

PHMon
Stop

Monitoring

Take Actions

Monitor Events

Y Y
N

Boston University August 12, 2020 3/10

Introduction
PHMon

Conclusion

Hardware
Software
Implementation
Use Cases

Hardware Overview

HW Functionality

Collect the instruction
trace

Find matches with
programmed events

Take follow-up actions

 RISC-V Rocket
Microprocessor

Pipelined
Processor Core

L1
Data Cache

P
C
_
G
E
N

/
F
e
t
c
h

D
e
c

E
x
e

M
e
m

W
B

TU

PHMon

PHMon

ALU
Local

Register
File

Control Unit
(CU)

Ma
tc

h
Qu

eu
e

MU
_d

at
a

MU
_a

dd
r

MU
_i

d
..
.

Match Packet

conf_ptr

Config Unit-0 (CFU-0)

...
Type
2b

In1
3b

In2
3b

Fn
4b

Out
3b

Data
64b

Action Config Table

conf_ctr

Action Unit (AU)

Commit Log
- inst
- pc_src
- pc_dst
- addr
- data

Cmd/Resp

Interrupt
Memory

Match Unit-0 (MU-0)

Predicate:
- inst = *8067
- pc_src = *
- pc_dst = *
- addr = *
- data = *

Counter Threshold

=?

C
o
m
p
a
r
a
t
o
r

Commit Log

Memory Request

Command

Response

Interrupt

Memory Response

RoCC Interface

Boston University August 12, 2020 4/10

Introduction
PHMon

Conclusion

Hardware
Software
Implementation
Use Cases

Software Overview

Software Interface

A list of functions that use RISC-V’s

standard ISA extension

Configure PHMon
Communicate with PHMon

Reset MU-0 and configure the match pattern

phmon_reset_val(0);
phmon_pattern(0, &mask_inst0)

Compare pc_dst and pc_src, and trigger an interrupt

action_mu0.op_type = e_OP_ALU; //ALU operation
action_mu0.in1 = e_IN_DATA_RESP; //MU_resp
action_mu0.in2 = e_IN_LOC3; //Local3
action_mu0.fn = e_ALU_SEQ; //Set Equal
action_mu0.out = e_OUT_INTR; //Interrupt reg
phmon_action_config(0, &action_mu0);

OS Support

Per process OS support

Maintain PHMon
information during
context switches

Interrupt handling OS

support

Delegate interrupt to
OS
Terminate the
violating process

Boston University August 12, 2020 5/10

Introduction
PHMon

Conclusion

Hardware
Software
Implementation
Use Cases

Implementation and Evaluation Framework

Implementation

PHMon as a RoCC, written in Chisel HDL

Interfaced with the in-order RISC-V Rocket core

Linux kernel v4.15

RISC-V gnu toolchain for cross-compilation

Evaluation

Prototyped on Xilinx Zynq Zedboard

Rocket core + PHMon

Open-sourced at https://github.com/bu-icsg/PHMon

Boston University August 12, 2020 6/10

Introduction
PHMon

Conclusion

Hardware
Software
Implementation
Use Cases

Use Cases

Shadow Stack

Preventing Information
Leakage

Shadow Stack

Hardware Accelerated
Fuzzing

Watchpoints and
Accelerated Debugger

https://security.googleblog.com/2019/10/protecting-against-code-reuse-in-linux30.html,
https://www.darkreading.com/attacks-breaches/heartbleed-attack-targeted-enterprise-vpn-/d/d-id/1204592,
https://medium.com/@dieswaytoofast/fuzzing-and-deep-learning-5aae84c20303,
https://hackernoon.com/professional-debugging-in-rails-1yr2bnz

Shadow Stack
Hardware Accelerated

Fuzzing

https://security.googleblog.com/2019/10/protecting-against-code-reuse-in-linux30.html,
https://medium.com/@dieswaytoofast/fuzzing-and-deep-learning-5aae84c20303,

Boston University August 12, 2020 7/10

Introduction
PHMon

Conclusion

Hardware
Software
Implementation
Use Cases

Use Cases

Shadow Stack

Preventing Information
Leakage

Shadow Stack

Hardware Accelerated
Fuzzing

Watchpoints and
Accelerated Debugger

https://security.googleblog.com/2019/10/protecting-against-code-reuse-in-linux30.html,
https://www.darkreading.com/attacks-breaches/heartbleed-attack-targeted-enterprise-vpn-/d/d-id/1204592,
https://medium.com/@dieswaytoofast/fuzzing-and-deep-learning-5aae84c20303,
https://hackernoon.com/professional-debugging-in-rails-1yr2bnz

Shadow Stack
Hardware Accelerated

Fuzzing

https://security.googleblog.com/2019/10/protecting-against-code-reuse-in-linux30.html,
https://medium.com/@dieswaytoofast/fuzzing-and-deep-learning-5aae84c20303,

Boston University August 12, 2020 7/10

Introduction
PHMon

Conclusion

Hardware
Software
Implementation
Use Cases

Use Cases: Shadow Stack

PHMon-based Shadow Stack

Simple and flexible

Two MUs

Shared memory space

Allocated by OS as a
user-space memory

Secure

Efficient

For SPECint2000,
SPECint2006, and MiBench
benchmarks, on average,
0.9% performance overhead

Return Address

Argument
Registers
Saved

Registers
Local

Variables

...

Main Stack

Return Address

...

Shadow Stack

Return Address

Return Address

bzip2

libquantum
gobmk

hmmer
astar

h264ref

xalancbmk gcc
GeoMean

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

(%
)

0.3
0.5

1.1 1.1 1.2

2.6 2.7

3.4

1.2

SPECint2006

Boston University August 12, 2020 8/10

Introduction
PHMon

Conclusion

Hardware
Software
Implementation
Use Cases

Use Cases: Hardware Accelerated Fuzzing

American Fuzzy Lop (AFL)
[Zalewski, 2013]

A state-of-the-art fuzzer

Two main units

The fuzzing logic

The instrumentation suite
Compiler-based
QEMU-based

https://rabbitbreeders.us/american-fuzzy-lop-rabbits/

Parent Process (AFL)

Program Execution
On RISC-V Processor

Fork+Execv
(1)

Process
terminates

(4)

Monitoring (2)/
Updating the

branch coverage (3)

Reading the
branch coverage (5)

Shared Memory Region

Memory

QE
MU Child Process

(The Fuzzed Program)

QEMU-based AFL

Shared Memory Region

Memory

PHMon-based AFL

Boston University August 12, 2020 9/10

Introduction
PHMon

Conclusion

Hardware
Software
Implementation
Use Cases

Use Cases: Hardware Accelerated Fuzzing

American Fuzzy Lop (AFL)
[Zalewski, 2013]

A state-of-the-art fuzzer

Two main units

The fuzzing logic

The instrumentation suite
Compiler-based
QEMU-based

https://rabbitbreeders.us/american-fuzzy-lop-rabbits/

Parent Process (AFL)

Program Execution
On RISC-V Processor

Fork+Execv
(1)

Process
terminates

(4)

Monitoring (2)/
Updating the

branch coverage (3)

Reading the
branch coverage (5)

Shared Memory Region

Memory

QE
MU Child Process

(The Fuzzed Program)

QEMU-based AFL

Shared Memory Region

Memory

PHMon-based AFL

Boston University August 12, 2020 9/10

Introduction
PHMon

Conclusion

Hardware
Software
Implementation
Use Cases

Use Cases: Hardware Accelerated Fuzzing

American Fuzzy Lop (AFL)
[Zalewski, 2013]

A state-of-the-art fuzzer

Two main units

The fuzzing logic

The instrumentation suite
Compiler-based
QEMU-based

https://rabbitbreeders.us/american-fuzzy-lop-rabbits/

sl
eu

th
ki

t

zs
td

un
ac

e

in
de

nt

na
sm

pc
re

G
eo

M
ea

n

Benchmarks

0

5

10

15

20

25

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t (

X)

11.3
13.7

16.4
17.8 18.9

20.6

16.1

3.7

7.6

4.2
6.1 5.2 6.3 5.4

1.0 1.0 1.0 1.0 1.0 1.0 1.0

Baseline AFL
PHMon

Fork Server

PHMon improves AFL’s performance
by 16× over the baseline

Power overhead: 5%

Area overhead: 13.5%

Parent Process (AFL)

Program Execution
On RISC-V Processor

Fork+Execv
(1)

Process
terminates

(4)

Monitoring (2)/
Updating the

branch coverage (3)

Reading the
branch coverage (5)

Shared Memory Region

Memory

QE
MU Child Process

(The Fuzzed Program)

QEMU-based AFL

Shared Memory Region

Memory

PHMon-based AFL

Boston University August 12, 2020 9/10

Introduction
PHMon

Conclusion

Conclusion

Ref: https://www.linux-apps.com/p/1082429/

A hardware monitor with full software stack

Shadow Stack

Preventing Information
Leakage

Shadow Stack

Hardware Accelerated
Fuzzing

Watchpoints and
Accelerated Debugger

Versatile and easily adopted

FPGA prototype

ARTIFACT
EVALUATED

PASSED

https://www.usenix.org/system/files/
sec20spring_delshadtehrani_prepub.pdf

https://github.com/bu-icsg/PHMon

? Thanks! You can reach me at
delshad@bu.edu for follow-up questions.

More information

Boston University August 12, 2020 10/10

	Introduction
	Motivation
	Overview

	PHMon
	Hardware
	Software
	Implementation
	Use Cases

	Conclusion

