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Our Proposal - PHMon

PHMon

A hardware monitor and the full

software stack around it

A programmable hardware monitor
interfaced with a RISC-V Rocket
processor on an FPGA
OS support
Software API
Security use cases

How Does It Work?

A user/admin configures the hardware
monitor

The hardware monitor collects the

runtime execution information
Checks for the specified events, e.g., detects
branch instructions
Performs follow-up actions, e.g., an ALU
operation

Hardware
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Full SW Stack
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Event/Action 
Specification
Using PHMon API

Program
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Monitor the
execution

Is process
Terminated?
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Disabled?
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Monitor Events
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Hardware Overview

HW Functionality

Collect the instruction
trace

Find matches with
programmed events

Take follow-up actions
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Software Overview

Software Interface

A list of functions that use RISC-V’s

standard ISA extension

Configure PHMon
Communicate with PHMon

Reset MU-0 and configure the match pattern

phmon_reset_val(0);
phmon_pattern(0, &mask_inst0)

Compare pc_dst and pc_src, and trigger an interrupt

action_mu0.op_type = e_OP_ALU; //ALU operation
action_mu0.in1 = e_IN_DATA_RESP; //MU_resp
action_mu0.in2 = e_IN_LOC3; //Local3
action_mu0.fn = e_ALU_SEQ; //Set Equal
action_mu0.out = e_OUT_INTR; //Interrupt reg
phmon_action_config(0, &action_mu0);

OS Support

Per process OS support

Maintain PHMon
information during
context switches

Interrupt handling OS

support

Delegate interrupt to
OS
Terminate the
violating process
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Implementation and Evaluation Framework

Implementation

PHMon as a RoCC, written in Chisel HDL

Interfaced with the in-order RISC-V Rocket core

Linux kernel v4.15

RISC-V gnu toolchain for cross-compilation

Evaluation

Prototyped on Xilinx Zynq Zedboard

Rocket core + PHMon

Open-sourced at https://github.com/bu-icsg/PHMon
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Use Cases

Shadow Stack

Preventing Information
Leakage

Shadow Stack

Hardware Accelerated
Fuzzing

Watchpoints and
Accelerated Debugger

https://security.googleblog.com/2019/10/protecting-against-code-reuse-in-linux30.html,
https://www.darkreading.com/attacks-breaches/heartbleed-attack-targeted-enterprise-vpn-/d/d-id/1204592,
https://medium.com/@dieswaytoofast/fuzzing-and-deep-learning-5aae84c20303,
https://hackernoon.com/professional-debugging-in-rails-1yr2bnz

 

Shadow Stack
Hardware Accelerated

Fuzzing

https://security.googleblog.com/2019/10/protecting-against-code-reuse-in-linux30.html,
https://medium.com/@dieswaytoofast/fuzzing-and-deep-learning-5aae84c20303,
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Use Cases: Shadow Stack

PHMon-based Shadow Stack

Simple and flexible

Two MUs

Shared memory space

Allocated by OS as a
user-space memory

Secure

Efficient

For SPECint2000,
SPECint2006, and MiBench
benchmarks, on average,
0.9% performance overhead

 

Return Address

Argument
Registers
Saved

Registers
Local

Variables

...

Main Stack

Return Address

...

Shadow Stack

Return Address

Return Address

 

bzip2

libquantum
gobmk

hmmer
astar

h264ref

xalancbmk gcc
GeoMean

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d 

(%
)

0.3
0.5

1.1 1.1 1.2

2.6 2.7

3.4

1.2

SPECint2006

Boston University August 12, 2020 8/10



Introduction
PHMon

Conclusion

Hardware
Software
Implementation
Use Cases

Use Cases: Hardware Accelerated Fuzzing

American Fuzzy Lop (AFL)
[Zalewski, 2013]

A state-of-the-art fuzzer

Two main units

The fuzzing logic

The instrumentation suite
Compiler-based
QEMU-based

https://rabbitbreeders.us/american-fuzzy-lop-rabbits/

Parent Process (AFL)

Program Execution
On RISC-V Processor

Fork+Execv
(1)

Process
terminates

(4)

Monitoring (2)/
Updating the

branch coverage (3)

Reading the
branch coverage (5)
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Memory

QE
MU Child Process
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Memory
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Ref: https://www.linux-apps.com/p/1082429/ 

A hardware monitor with full software stack

Shadow Stack

Preventing Information
Leakage

Shadow Stack

Hardware Accelerated
Fuzzing

Watchpoints and
Accelerated Debugger

Versatile and easily adopted

FPGA prototype

ARTIFACT
EVALUATED

PASSED

https://www.usenix.org/system/files/
sec20spring_delshadtehrani_prepub.pdf

https://github.com/bu-icsg/PHMon

? Thanks! You can reach me at
delshad@bu.edu for follow-up questions.

More information
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