SEAL¹:Mitigating Attacks on Encrypted Databases via Adjustable Leakage

¹Searchable Encryption with Adjustable Leakage

Ioannis Demertzis

University of Maryland yannis@umd.edu

Dimitrios Papadopoulos

HKUST

dipapado@cse.ust.hk

Charalampos Papamanthou

University of Maryland

cpap@umd.edu

Saurabh Shintre

NortonLifeLock Research Group

saurabh.shintre@nortonlifelock.com

What is Searchable Encryption (SE)?

What is Searchable Encryption (SE)?

What is Searchable Encryption (SE)? **Setup leakage:** total leakage Client prior to query execution, e.g. **Search pattern:** size of the encrypted database whether a search query is repeated \$3,000 John Smith **CMU** search query: Bruce T_2 \$4,000 Alice **UCLA** Lu **Overlapping pattern**: the tuple overlaps between \$2,00 **Volume pattern:** previous queries result size **Untrusted** Cloud **Access pattern**: encrypted tuples

Security (informal): The adversary does not learn anything beyond the above leakages!

that satisfy the search query

Attacks on SE

Search/ Overlapping Pattern

+

Volume Pattern

Keyword/Email Search

Islam et al. NDSS 2012 Cash et al. CCS 2015

Assume that the adversary knows a fraction N^{γ} ($\gamma \in [0,1]$) of the plaintext input

Search/Overlapping

Keyword/Email Search

Zhang et al. USENIX 2016

Range Search

Dautrich et al. EDBT'13

Islam et al. CODAPSY'14

Kellaris et al. CCS 2016

Lacharite et al. S&P 2018

Grubbs et al. S&P 2019

kNN queries

Kornaropoulos et al. S&P 2019

Volume Pattern

Range Search

Kellaris et al. CCS 2016

Lacharité et al. S&P 2018

Grubbs et al. CCS 2018

Kornaropoulos et al. S&P 2020

Attacks on SE

Search/ Overlapping Pattern

Search/ Overlapping

Volume Pattern

Limitations of prior attacks:

- i) Do not attack state-of-the-art schemes (e.g., range attacks)
- ii) Assume that the attacker knows a great percentage of the input distribution
- iii) Assume that the query distribution is known to the attacker
- iv) Assume that the input database has a specific structure

Attacks on SE

?? Defenses ??

Search/ Overlapping Pattern

+

Volume Pattern

Keyword/Email Search

Islam et al. NDSS 2012 Cash et al. CCS 2015

Assume that the adversary knows a fraction N^{γ} ($\gamma \in [0,1]$) of the plaintext input

Search/Overlapping

Keyword/Email Search

Zhang et al. USENIX 2016

Range Search

Dautrich et al. EDBT'13
Islam et al. CODAPSY'14
Kellaris et al. CCS 2016
Lacharite et al. S&P 2018
Grubbs et al. S&P 2019

kNN queries

Kornaropoulos et al. S&P 2019

Volume Pattern

Range Search

Kellaris et al. CCS 2016 Lacharité et al. S&P 2018 Grubbs et al. CCS 2018

Kornaropoulos et al. S&P 2020

SEAL: Searchable Encryption with Adjustable Leakage

Contribution

- SEAL: Searchable Encryption with Adjustable Leakages
 - ADJable-ORAM- α (hides search and overlapping leakages)
 - ADJable-Padding-x (hides volume leakage)
- Attacks for point, range, join and group-by queries
 - First attack sketch for state-of-the-art range schemes
- New constructions for point, range, join, group-by queries
 - Using SEAL as black-box
- New customized Range Scheme, robust against attacks
- Experimental adjustment of search/overlapping/volume leakages

Focus of this talk

- SEAL: Searchable Encryption with Adjustable Leakages
 - ADJable-ORAM-α (hides search and overlapping leakages)
 - ADJable-Padding-x (hides volume leakage)
- Attacks for point, range, join and group-by queries
 - First attack sketch for state-of-the-art range schemes
- New constructions for point, range, join, group-by queries
 - Using SEAL as black-box
- New customized Range Scheme, robust against attacks
- Experimental adjustment of search/overlapping/volume leakages

Adjustable-ORAM- α (ADJ-ORAM- α)

ADJ-ORAM-\alpha: Leak α bits of the accessed memory locations!

ADJ-ORAM-α

ADJ-ORAM-α

Adjustable-Padding-x

Observation 1: In a dataset of size N a query result can have up to N different sizes

 Observation 2: We can perform worst-case padding to eliminate the volume pattern leakage (1 unique size)

- Adjustable Padding: Pad all the query results to the closest power of x.
 - The server can observe up to log_xN + 1 different sizes
 - Volume Pattern leakage loglog_xN + 1 bits

At the end, we pad the dataset to have x*N entries to avoid leaking extra information

$SEAL(\alpha,x)$

• Uses ADJ-ORAM- α , ADJ-Padding-x and an oblivious dictionary as black-boxes

- Parameter α is defined in the range [0,log N]
 - \bullet α =0 all the search/overlapping pattern bits are protected
 - α=logN all the search/overlapping pattern bits are leaked
- For larger x values less volume pattern bits are leaked
 - x=N no volume pattern bits are leaked
- SEAL(α,x) can be used as a building block for point/range/join/group-by queries providing a security/efficiency trade-off

Outline

- SEAL: Searchable Encryption with Adjustable Leakages
 - ADJable-ORAM- α (hides search and overlapping pattern leakages)
 - ADJable-Padding-x (hides volume pattern leakage)
- Attacks for point, range, join and group-by queries
 - First attack-sketch for the state-of-the-art range schemes
- New constructions for point, range, join, group-by queries
 - Using SEAL as black-box
- New more efficient customized Range Scheme robust against attacks
- Experimentally adjusting these leakages

Threat Model and Attacks

Client

Attacker's Goals:

- (i) Decrypt the client's encrypted queries (Query Recovery attack)
- (ii) Decrypt the encrypted database (Database Recovery attack)

Untrusted

Cloud

Attacker's Power:

- → Has access to the server observing all the possible encrypted queries
- → Has plaintext access to the input dataset

Query Recovery-Success Rate (QR_{SR})= Correctly Decrypted Queries /|Q| Database Recovery-Success Rate (DR_{SR})=
Correctly Decrypted Tuples / N

Attack Configuration

- Modified Frequency Analysis Attack proposed by Naveed et al. [CCS2016]
- 1 real dataset with 6,123,276 records of reported crime incidents
 - 22 attributes with different distributions:
 - ID, Case Number, Date, Block, ICR, Primary Type, Description, Location Description, Arrest, Domestic, Beat, District, Ward,
 - Community Area, FBI Code, X Coordinate, Y Coordinate, Year,
 - Updated On, Latitude, Longitude, Location.
- TPC-H Benchmark
 - 8 tables (61 different attributes)
 - PART, SUPPLIER, PARTSUPP, CUSTOMER, NATION, LINEITEM, REGION, ORDERS

Database Recovery Attack for Point Queries (Crime Dataset)

Parameter α controls the search/overlapping pattern leakage ($\alpha = [0...logN]$)

Parameter **x** controls **the volume pattern** leakage (**x**=[No padding, 2, ... N])

Database Recovery Attack for Join Queries

Parameter α controls the search/overlapping pattern leakage ($\alpha = [0...logN]$)

Parameter **x** controls **the volume pattern** leakage (**x**=[No padding, 2, ... N])

(a) SUPPLIER ⋈NATION

(b) CUSTOMER ⋈NATION

Adjusting Parameters "α" and "x" in Practice

Finding appropriate parameter values is **data-dependent**:

- Size of the database
- Number of distinct values
- Distribution of the searchable attribute

Approach: Before outsourcing the database, for a given attribute, use existing/our all-powerful attacks and try different values of "a" and "x"

General Guidelines:

- Point/Join/Group-by queries: $\alpha = \log N 3$ and x = 4 ($\sim 32x$ overhead)
- Range Queries: X=8 (~12x overhead)

Thank you!! Questions?

