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Microcontrollers (MCU) are ubiquitous

Smart light bulb Pulse oximeter

DronePLC 3D printer

Fitness tracker
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• MCU is a single-chip computer

• 28.1 billion MCUs are sold 
worldwide in 2018*

*https://www.statista.com/statistics/935382/worldwide-microcontroller-unit-shipments/



MCU vulnerabilities
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Arbitrary code execution• Consequences
• Digital damage (e.g., privacy leakage)
• Physical damage (e.g., human injury)

• Most vulnerabilities are from firmware



MCU firmware
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Firmware

Application

Library

OS (opt.) Driver

• Whole software stack of the MCU

• Bugs appear in all components



Firmware testing

• Fuzzing can effectively find bugs on desktop programs

• As firmware has similar bugs to desktop programs, we test firmware with fuzzers

• Firmware can be tested either on a device or emulator
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Because of limited resources on MCU, on-device fuzzing is not feasible



Emulator-based firmware testing
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Emulator-based firmware testing
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• Not emulated because 
peripherals are diverse and 
hard to emulate

• Firmware cannot boot



Existing solution (1)
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Peripheral emulation:

Emulate peripheral hardware by software 
components in the emulator

Incomplete support for peripherals, significant 
manual efforts



Existing solution (2)
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Processor

Peripheral 1

Peripheral 2

Peripheral n

Peripheral

Interface Register Interrupt Hardware-in-the-loop emulation:

Use real peripheral hardware to handle 
peripheral access in the emulator

Rely on real hardware, slow, unscalable



Existing solution (3)
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Partial emulation:

Replace peripheral-dependent firmware 
code with software stubs that have the same 
functionalities

Unable to test peripheral-dependent code, 
significant manual efforts



Design goals
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Automatic

• A great number of 
MCU devices need 
to be tested

• Limited time and 
money budget for 
testing

• Human efforts can 
be minimized

Hardware-
independent

• Firmware is tested 
in the emulator

• Faster and easier to 
automate

Peripheral-
agnostic

• Peripherals are 
diverse

• Handle peripherals 
using a uniform 
approach

• Given a new 
peripheral, no extra 
effort is needed

Scalable

• Multiple fuzzer
instances can run in 
parallel

• Improve code 
coverage



Observation

• Peripherals are diverse in terms of type and functionality, but interface is not
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Peripheral Interface
Type Many 2
Functionality Many 3
Diversity High Low



Key idea
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• Treat peripherals as black box

• Abstract a model to handle register 
access and interrupt firing for a wide 
range of peripherals

Processor

Peripherals

Register Interrupt

CR SR

DR C&SR
INT

Interface



Comparison with state-of-the-art
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Approaches Automatic Hardware-
independent

Peripheral-
agnostic Scalable Existing work

Peripheral emulation ! ✓ ! ✓ GNU MCU Eclipse 
QEMU (2015), 
PartEmu (Usenix ’20)

Hardware-in-the-loop 
emulation ! ! ✓ !

Avatar (NDSS ’14), 
Prospect (Asia CCS ’14),  
Surrogates (WOOT ’15), 
Charm (Usenix ’18)

Partial emulation ! ✓ ✓ ✓ Firmadyne (NDSS ’16), 
HALucinator (Usenix ’20), 
PartEmu (Usenix ’20)

P2IM (our work) ✓ ✓ ✓ ✓



Crashing
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Interface modeling
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How to model an interface?

Peripherals determine register value and interrupt-
firing timing, but peripherals are considered as black 
box

Registers are categorized by their functionalities 
and handled accordingly 

Interrupts can be fired at any time. We use a fixed 
frequency

Manual



Register categories
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Control register 
(CR)

Status register 
(SR)

Data register 
(DR)

Control-status register 
(C&SR)



Interface modeling (2)
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Given a firmware, how to identify the 
interface needs to be modeled?

Registers are identified and categorized by 
monitoring access to the memory-mapped 
peripheral region

Interrupts are detected by monitoring the 
interrupt controller

Automated



Crashing
Test Cases

Processor Emulator Firmware Binary
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Workflow
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Existing fuzzers can be used without modification



Evaluation

• 70 sample firmware for essential peripheral operations
• E.g., data transmission through USART peripheral
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ADC

GPIO

I2C

PWD

DAC

SPI

USART

Timer

Peripheral

STM32 F103

NXP MK64F

Atmel SAM3X

MCU OS



Results

• The majority of firmware boot and perform essential peripheral operations 
normally
• 79% test cases pass

• The accuracy of register categorization is between 76% and 92%
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Accuracy is comparable 
on different peripherals



Fuzzing

• Fuzz-test 10 real-world firmware 
• Drone, Robot, Gateway, PLC, etc.
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Fuzzing performance

• The accuracy of register categorization is between 69.6% and 100%
• Speed and basic block coverage:

23

Firmware Speed (# tests/s) Basic block coverage Coverage improvement

Drone 17.2 58% 7x

CNC 18.0 70% 26x

Steering C. 32.3 20% 30x

…



Fuzzing result

• Detect 7 unique bugs, all of which are
• Previously unknown
• Remotely exploitable
• Reproducible on real device
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Firmware Unique bugs Bug nature

PLC

3 Incorrect Type Cast

1 Integer overflow

1 Incorrect Conversion between Numeric Types

Gateway 1 Buffer overflow

Heat Press 1 Buffer overflow



Summary

• Propose P2IM, the first scalable and hardware-independent firmware testing 
framework
• Design and implement a novel interface modeling mechanism
• Fuzz-test 10 real-world firmware 
• Find 7 previously-unknown vulnerabilities
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Code and Tested Firmware at:

https://github.com/RiS3-Lab/p2im

https://github.com/RiS3-Lab/p2im


Thank You

Questions?

feng.bo@northeastern.edu
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