
P2IM: Scalable and Hardware-independent
Firmware Testing via Automatic Peripheral
Interface Modeling

Bo Feng, Alejandro Mera, and Long Lu
Northeastern University

USENIX Security 2020

Microcontrollers (MCU) are ubiquitous

Smart light bulb Pulse oximeter

DronePLC 3D printer

Fitness tracker

2

• MCU is a single-chip computer

• 28.1 billion MCUs are sold
worldwide in 2018*

*https://www.statista.com/statistics/935382/worldwide-microcontroller-unit-shipments/

MCU vulnerabilities

3

Arbitrary code execution• Consequences
• Digital damage (e.g., privacy leakage)
• Physical damage (e.g., human injury)

• Most vulnerabilities are from firmware

MCU firmware

4

Firmware

Application

Library

OS (opt.) Driver

• Whole software stack of the MCU

• Bugs appear in all components

Firmware testing

• Fuzzing can effectively find bugs on desktop programs

• As firmware has similar bugs to desktop programs, we test firmware with fuzzers

• Firmware can be tested either on a device or emulator

5

Because of limited resources on MCU, on-device fuzzing is not feasible

Emulator-based firmware testing

6

Processor

Peripheral 1

Peripheral 2

Peripheral n

Peripheral

Interface Register Interrupt

Processor

Peripheral 1

Peripheral 2

Peripheral n

Peripheral

Interface Register Interrupt

Emulator-based firmware testing

7

• Not emulated because
peripherals are diverse and
hard to emulate

• Firmware cannot boot

Existing solution (1)

8

Processor

Peripheral 1

Peripheral 2

Peripheral n

Peripheral

Interface Register Interrupt
Peripheral emulation:

Emulate peripheral hardware by software
components in the emulator

Incomplete support for peripherals, significant
manual efforts

Existing solution (2)

9

Processor

Peripheral 1

Peripheral 2

Peripheral n

Peripheral

Interface Register Interrupt Hardware-in-the-loop emulation:

Use real peripheral hardware to handle
peripheral access in the emulator

Rely on real hardware, slow, unscalable

Existing solution (3)

10

Processor

Peripheral 1

Peripheral 2

Peripheral n

Peripheral

Interface Register Interrupt
Partial emulation:

Replace peripheral-dependent firmware
code with software stubs that have the same
functionalities

Unable to test peripheral-dependent code,
significant manual efforts

Design goals

11

Automatic

• A great number of
MCU devices need
to be tested

• Limited time and
money budget for
testing

• Human efforts can
be minimized

Hardware-
independent

• Firmware is tested
in the emulator

• Faster and easier to
automate

Peripheral-
agnostic

• Peripherals are
diverse

• Handle peripherals
using a uniform
approach

• Given a new
peripheral, no extra
effort is needed

Scalable

• Multiple fuzzer
instances can run in
parallel

• Improve code
coverage

Observation

• Peripherals are diverse in terms of type and functionality, but interface is not

12

Peripheral Interface
Type Many 2
Functionality Many 3
Diversity High Low

Key idea

13

• Treat peripherals as black box

• Abstract a model to handle register
access and interrupt firing for a wide
range of peripherals

Processor

Peripherals

Register Interrupt

CR SR

DR C&SR
INT

Interface

Comparison with state-of-the-art

14

Approaches Automatic Hardware-
independent

Peripheral-
agnostic Scalable Existing work

Peripheral emulation ! ✓ ! ✓ GNU MCU Eclipse
QEMU (2015),
PartEmu (Usenix ’20)

Hardware-in-the-loop
emulation ! ! ✓ !

Avatar (NDSS ’14),
Prospect (Asia CCS ’14),
Surrogates (WOOT ’15),
Charm (Usenix ’18)

Partial emulation ! ✓ ✓ ✓ Firmadyne (NDSS ’16),
HALucinator (Usenix ’20),
PartEmu (Usenix ’20)

P2IM (our work) ✓ ✓ ✓ ✓

Crashing
Test Cases

Processor Emulator Firmware Binary

Processor-peripheral
Interface Model

P IM2

Fuzzer

Workflow

15

Interface modeling

16

How to model an interface?

Peripherals determine register value and interrupt-
firing timing, but peripherals are considered as black
box

Registers are categorized by their functionalities
and handled accordingly

Interrupts can be fired at any time. We use a fixed
frequency

Manual

Register categories

17

Control register
(CR)

Status register
(SR)

Data register
(DR)

Control-status register
(C&SR)

Interface modeling (2)

18

Given a firmware, how to identify the
interface needs to be modeled?

Registers are identified and categorized by
monitoring access to the memory-mapped
peripheral region

Interrupts are detected by monitoring the
interrupt controller

Automated

Crashing
Test Cases

Processor Emulator Firmware Binary

Processor-peripheral
Interface Model

P IM2

Fuzzer

Workflow

19

Existing fuzzers can be used without modification

Evaluation

• 70 sample firmware for essential peripheral operations
• E.g., data transmission through USART peripheral

20

ADC

GPIO

I2C

PWD

DAC

SPI

USART

Timer

Peripheral

STM32 F103

NXP MK64F

Atmel SAM3X

MCU OS

Results

• The majority of firmware boot and perform essential peripheral operations
normally
• 79% test cases pass

• The accuracy of register categorization is between 76% and 92%

21

Accuracy is comparable
on different peripherals

Fuzzing

• Fuzz-test 10 real-world firmware
• Drone, Robot, Gateway, PLC, etc.

22

Fuzzing performance

• The accuracy of register categorization is between 69.6% and 100%
• Speed and basic block coverage:

23

Firmware Speed (# tests/s) Basic block coverage Coverage improvement

Drone 17.2 58% 7x

CNC 18.0 70% 26x

Steering C. 32.3 20% 30x

…

Fuzzing result

• Detect 7 unique bugs, all of which are
• Previously unknown
• Remotely exploitable
• Reproducible on real device

24

Firmware Unique bugs Bug nature

PLC

3 Incorrect Type Cast

1 Integer overflow

1 Incorrect Conversion between Numeric Types

Gateway 1 Buffer overflow

Heat Press 1 Buffer overflow

Summary

• Propose P2IM, the first scalable and hardware-independent firmware testing
framework
• Design and implement a novel interface modeling mechanism
• Fuzz-test 10 real-world firmware
• Find 7 previously-unknown vulnerabilities

25

Code and Tested Firmware at:

https://github.com/RiS3-Lab/p2im

https://github.com/RiS3-Lab/p2im

Thank You

Questions?

feng.bo@northeastern.edu

26

