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Neural Network Inference

User data is sensitive 
Server’s model is proprietary

Client

x

Server

M
M(x)

A growing number of applications use neural networks in user interactions  

• Home monitoring: detect and recognize visitors 
• Baby monitor: motion detection to alert parents
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Client-side 
inference

Client Server

Client sees server’s model!

This reveals model weights and leaks 
information about private training data 

M
x M(x)

Client Server

M
x

M(x)

Server-side 
inference

Server sees client data!

[SRS17], [CLEKS18], [MSCS18]  3

https://arxiv.org/pdf/1709.07886.pdf
https://arxiv.org/pdf/1802.08232.pdf
https://arxiv.org/pdf/1805.04049.pdf


Secure inference goals

Client (& server) should learn only prediction M(x)  

Server should not learn private client input x 
Client should not learn private model weights M

Client

x

Server

MM(x)
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Prior work on 
secure inference

Protocol type FHE based 2PC

based Desired

Examples CryptoNets, CHET, 
TAPAS

SecureML, Gazelle, 
MiniONN Delphi

Performance

Functionality/
Accuracy
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Delphi

Cryptographic system for secure inference 
on convolutional neural networks

• improves bandwidth (9x) and inference latency (22x) 
• can utilize GPU/TPU for linear layers 
• evaluated on realistic workloads (CIFAR-100, ResNet-32)

Efficiency:

supports arbitrary CNNsFunctionality:

Security: achieves semi-honest simulation-based security
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Machine LearningCryptography

Systems
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Linear Layers

Non-linear Layers

Recap: Convolutional 
Neural Networks
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Starting point: GAZELLE [JVC18]
Key insight: use crypto specialized for each layer.

Client Server
Enc(x)

c
1. Linear layer c ← Enc(Lx + s)

2. Activation

y ← Dec(c)

GCy s

Enc(ReLU(Lx))

y - s 
↓ 
Lx 
↓

ReLU

Linearly-homomorphic Encryption 

Enc(x) + Enc(y) = Enc(x + y)

Garbled circuits: 2PC protocol  
for bitwise operations like ReLU
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Expensive parts of Gazelle

Client ServerEnc(x)

c
1. Linear layer c ← Enc(Lx + s)

2. Activation

y ← Dec(c)

GCy s

Enc(ReLU(Lx))

y - s 
↓ 
Lx 
↓

ReLU

For ResNet-32, 

per inference:

~600MB 
communication, 
and ~82 sec 
latency.

no GPU!
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Systems

Machine LearningCryptography
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GPU compatible!

Delphi: Optimizing Linear layers

Client Server
Enc(r)

c c ← Enc(Lr + s)y ← Dec(c) 

x + r z := L(x + r) + s  
         = Lx + yGet input x

Sample r Sample s

Online phase

Preprocessing phase

GCy z
ReLU(Lx) + r2 

= x2 + r2
ReLU(z-y)

Per inference:

>600MB 
communication,              
~82 s  
latency


~350MB 

          ~13 sr2
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Delphi: Optimizing 
Non-linear Activations

Problem: ReLU is cheap for CPUs, but costly in 2PC.

Solution Idea: Replace ReLUs with quadratic activations, 

                         which are cheap in 2PC 

                         [CryptoNets, SecureML]

Problem: Training accurate quad. networks is difficult:

algorithms are optimized for all-ReLU networks
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Crypto

Systems

Machine Learning
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Delphi’s Machine Learning Planner

Delphi’s Planner
all-ReLU CNN

Accuracy 
threshold t hybrid CNN

Contains a mixture of ReLU 
and quadratic activations, 

and has accuracy > t

Better techniques for training 
hybrid networks

• Clipping gradients

• Blending in quadratic layers slowly

Specializing Neural Architecture 
Search to discover hybrid networks

• Adapt PBT algorithm

• Iterative exploration of search space
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Delphi’s end-to-end workflow
Client Server

Server 
Online

Client 
Online

Server 
Preprocessing

Client 
Preprocessing

Preprocessing for 
linear, ReLU, and 
quadratic layers

Online phase for 
linear, ReLU, and 
quadratic layers

Planner

Train all-ReLU 
CNN

Accuracy 
threshold t

Optimize accuracy 
and efficiency

Train initial all-
ReLU network

x

All-ReLU CNN

Hybrid CNN

M(x)



Crypto

Systems

Machine Learning
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Evaluation
1. Does Delphi’s planner preserve accuracy?

2. Does Delphi’s protocol reduce latency & bandwidth?

Benchmark: ResNet-32 network on CIFAR-100

github.com/mc2-project/delphi
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Implementation

Rust + C++ library with support for GPU acceleration
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> 10%
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Latency and communication

> 20x ~ 9x
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Comparison with Gazelle



Delphi

• Secure inference on convolutional neural networks 
• 9-22x more efficient than prior work  
• Combines techniques from systems, cryptography, and ML

ia.cr/2020/050

github.com/mc2-project/delphi
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https://ia.cr/2020/050

