DELPHI: Cryptographic Inference for Neural Networks

Pratyush Mishra Ryan Lehmkuhl Akshayaram Srinivasan Wenting Zheng Raluca Ada Popa

UC Berkeley

Neural Network Inference

A growing number of applications use neural networks in user interactions

® Home monitoring: detect and recognize visitors
® Baby monitor: motion detection to alert parents

Client Server

M(x)

User data Is sensitive
Server’'s model Is proprietary

Client-side

Inference
Client Server
M
7\
X M(x)

Client sees server’s model!

This reveals model weights and leaks
information about private training data

[SRS17], [CLEKS18], [MSCS18]

Server-side

Inference
Client Server

Server sees client datal

https://arxiv.org/pdf/1709.07886.pdf
https://arxiv.org/pdf/1802.08232.pdf
https://arxiv.org/pdf/1805.04049.pdf

Secure inference goals

Client Server

Client (& server) should learn only prediction M(x)

Server should not learn private client input x
Client should not learn private model weights M

Prior work on
secure inference

2PC .
Protocol type FHE based Desired
based
CryptoNets, CHET, | SecureML, Gazelle, i
Examples ARG MiniONN Delphi

Performance

Functionality/
Accuracy

Delphi

Cryptographic system for secure inference
on convolutional neural networks

Security: achieves semi-honest simulation-based security

Functionality: supports arbitrary CNNs

e improves bandwidth (9x) and inference latency (22x)
o can utilize GPU/TPU for linear layers
o evaluated on realistic workloads (CIFAR-100, ResNet-32)

Efficiency:

Cryptography Machine Learning

Systems

Recap: Convolutional
Neural Networks

Non-linear Layers

Activation (RelLU)
Convolution
Activation (Rel.U)
Fully-connected

Prediction

Garbled circuits: 2PC protocol
for bitwise operations like RelLU

2. Activation

Enc(RelLU(Lx))

Expensive parts of Gazelle

Client Eno() Server

1. Linear layer
y « Dec(c) C

For ResNet-32,
per inference;
~600MB
communication,
and ~82 sec
latency.

2. Activation

Enc(RelLU(Lx))

10

Cryptography

Systems

Machine Learning

11

Client

Delphi: Optimizing Linear layers

Preprocessing phase

Server
Enc(r)

Sample s

c «— Enc(Lr + s)

Online phase GPU compatible!

zi=Lx+7r) +s Per inference:
>600MB ~350MB
communication,
RelLU(Lx) + r: ~82s ~13 s

= X2+ 12 latency

=Lx +y

12

Delphi: Optimizing
Non-linear Activations

Problem: RelLU is cheap for CPUs, but costly in 2PC.

Solution ldea: Replace RelLUs with quadratic activations,
which are cheap in 2PC
|[CryptoNets, SecureML]

Training accurate quad. networks is difficult:

Problem: algorithms are optimized for all-ReLLU networks

13

Crypto

Systems

Machine Learning

14

Delphi’s Machine Learning Planner

Contains a mixture of RelLU
and quadratic activations,
and has accuracy > ¢

Accuracy
threshold 7 Delphi’s Planner hybrid CNN
all-RelLU CNN
Better techniques for training Specializing Neural Architecture
hybrid networks Search to discover hybrid networks
e (Clipping gradients e Adapt PBT algorithm

» Blending in quadratic layers slowly e |[terative exploration of search space

Delphi’s end-to-end workflow

Train initial all-
Rel .U network

Optimize accuracy
and efficiency

Preprocessing for
inear, RelLLU, and
quadratic layers

Online phase for
inear, ReLU, and
guadratic layers

X

Client

Client
Online

Client
Preprocessing

Server

Train all-RelLU
CNN

All-ReLU CNN

Accurac
threshold ¢

Hybrid

Planner

CNN

Server
Preprocessing

Server
Online

M(x)

16

Crypto

Systems

Machine Learning

17

Implementation

Rust + C++ library with support for GPU acceleration

github.com/mca-project/delphi

Evaluation

1. Does Delphi’s planner preserve accuracy?

2. Does Delphi’s protocol reduce latency & bandwidth?

Benchmark: ResNet-32 network on CIFAR-100

18

Accuracy (%)
Ul @) @) @) @)
00 - N) D @)

U
o)

Planner accuracy

 — all-ReLU baseline

—¥— RelU + Identity

0 5 10 15 20 25
Number of non-RelLU layers

RelLUs are not
redundant:

accuracy loss
>10%

19

Accuracy (%)

Planner accuracy

& Ny
60 = —-— 3ll-RelLU baseline ¥ \ -
.o ¥ RelU+ldentty \
—8— RelLU + Quadratic
0 5 10 15 20 25

Number of non-ReLU layers

Most efficient
planned network

achieves loss of
< 2°/o

20

o0
-

(@)
o

Inference time (s)
N AN
))

-

Latency and communication

Comparison with Gazelle

—o— Delphi

—— Gazelle

I o WP, 4

0 5 10 15 20 25
Number of non-RelLU layers

o o
~ (@)

Data transferred (GB)
)
N

0 5 10 15 20 25
Number of non-RelLU layers

21

Delphi

® Secure inference on convolutional neural networks
® O-22x more efficient than prior work
® Combines techniques from systems, cryptography, and ML

ia.cr/2020/050

github.com/mc&-project/delphi

22

https://ia.cr/2020/050

