
DELPHI: Cryptographic Inference for Neural Networks

Ryan Lehmkuhl Akshayaram Srinivasan Wenting Zheng Raluca Ada PopaPratyush Mishra

UC Berkeley

Neural Network Inference

User data is sensitive
Server’s model is proprietary

Client

x

Server

M
M(x)

A growing number of applications use neural networks in user interactions  

• Home monitoring: detect and recognize visitors
• Baby monitor: motion detection to alert parents

 2

Client-side
inference

Client Server

Client sees server’s model!

This reveals model weights and leaks
information about private training data

M
x M(x)

Client Server

M
x

M(x)

Server-side
inference

Server sees client data!

[SRS17], [CLEKS18], [MSCS18] 3

https://arxiv.org/pdf/1709.07886.pdf
https://arxiv.org/pdf/1802.08232.pdf
https://arxiv.org/pdf/1805.04049.pdf

Secure inference goals

Client (& server) should learn only prediction M(x)  

Server should not learn private client input x
Client should not learn private model weights M

Client

x

Server

MM(x)

 4

Prior work on
secure inference

Protocol type FHE based 2PC

based Desired

Examples CryptoNets, CHET,
TAPAS

SecureML, Gazelle,
MiniONN Delphi

Performance

Functionality/
Accuracy

 5

Delphi

Cryptographic system for secure inference
on convolutional neural networks

• improves bandwidth (9x) and inference latency (22x)
• can utilize GPU/TPU for linear layers
• evaluated on realistic workloads (CIFAR-100, ResNet-32)

Efficiency:

supports arbitrary CNNsFunctionality:

Security: achieves semi-honest simulation-based security

 6

Machine LearningCryptography

Systems

 7

Linear Layers

Non-linear Layers

Recap: Convolutional
Neural Networks

C
on

vo
lu

tio
n

Ac
tiv

at
io

n
(R

eL
U

)

C
on

vo
lu

tio
n

Ac
tiv

at
io

n
(R

eL
U

)

Fu
lly

-c
on

ne
ct

ed

Input Prediction

 8

Starting point: GAZELLE [JVC18]
Key insight: use crypto specialized for each layer.

Client Server
Enc(x)

c
1. Linear layer c ← Enc(Lx + s)

2. Activation

y ← Dec(c)

GCy s

Enc(ReLU(Lx))

y - s
↓
Lx
↓

ReLU

Linearly-homomorphic Encryption

Enc(x) + Enc(y) = Enc(x + y)

Garbled circuits: 2PC protocol  
for bitwise operations like ReLU

 9

Expensive parts of Gazelle

Client ServerEnc(x)

c
1. Linear layer c ← Enc(Lx + s)

2. Activation

y ← Dec(c)

GCy s

Enc(ReLU(Lx))

y - s
↓
Lx
↓

ReLU

For ResNet-32,

per inference:

~600MB
communication,
and ~82 sec
latency.

no GPU!

 10

Systems

Machine LearningCryptography

 11

GPU compatible!

Delphi: Optimizing Linear layers

Client Server
Enc(r)

c c ← Enc(Lr + s)y ← Dec(c)

x + r z := L(x + r) + s
 = Lx + yGet input x

Sample r Sample s

Online phase

Preprocessing phase

GCy z
ReLU(Lx) + r2

= x2 + r2
ReLU(z-y)

Per inference:

>600MB
communication,
~82 s
latency

~350MB 

 ~13 sr2

 12

Delphi: Optimizing
Non-linear Activations

Problem: ReLU is cheap for CPUs, but costly in 2PC.

Solution Idea: Replace ReLUs with quadratic activations,

 which are cheap in 2PC

 [CryptoNets, SecureML]

Problem: Training accurate quad. networks is difficult:

algorithms are optimized for all-ReLU networks

 13

Crypto

Systems

Machine Learning

 14

Delphi’s Machine Learning Planner

Delphi’s Planner
all-ReLU CNN

Accuracy
threshold t hybrid CNN

Contains a mixture of ReLU
and quadratic activations,

and has accuracy > t

Better techniques for training
hybrid networks

• Clipping gradients

• Blending in quadratic layers slowly

Specializing Neural Architecture
Search to discover hybrid networks

• Adapt PBT algorithm

• Iterative exploration of search space

 15

 16

Delphi’s end-to-end workflow
Client Server

Server
Online

Client 
Online

Server
Preprocessing

Client
Preprocessing

Preprocessing for
linear, ReLU, and
quadratic layers

Online phase for
linear, ReLU, and
quadratic layers

Planner

Train all-ReLU
CNN

Accuracy 
threshold t

Optimize accuracy
and efficiency

Train initial all-
ReLU network

x

All-ReLU CNN

Hybrid CNN

M(x)

Crypto

Systems

Machine Learning

 17

Evaluation
1. Does Delphi’s planner preserve accuracy?

2. Does Delphi’s protocol reduce latency & bandwidth?

Benchmark: ResNet-32 network on CIFAR-100

github.com/mc2-project/delphi

 18

Implementation

Rust + C++ library with support for GPU acceleration

0 5 10 15 20 25

1umbeU RI QRQ-5eL8 layeUs

56

58

60

62

64

66

68

Ac
cu

Ua
cy

 (%
)

all-5eL8 baselLQe
5eL8 + IdeQtLty
5eL8 + 4uadUatLc

Planner accuracy

ReLUs are not
redundant:

accuracy loss
> 10%

 19

0 5 10 15 20 25

1umbeU RI QRQ-5eL8 layeUs

56

58

60

62

64

66

68

Ac
cu

Ua
cy

 (%
)

all-5eL8 baselLQe
5eL8 + IdeQtLty
5eL8 + 4uadUatLc

Planner accuracy

Most efficient
planned network
achieves loss of

< 2%

 20

0 5 10 15 20 25
1umbeU RI nRn-5eL8 lDyeUs

0

20

40

60

80

In
Ie

Ue
nc

e
tLm

e
(s

)

DelphL
GDzelle

0 5 10 15 20 25
1umbeU Rf nRn-5eLU lDyeUs

0.2

0.4

0.6

D
Dt

D
tU

Dn
sf

eU
Ue

G
(G

B)

DelphL
GDzelle

Latency and communication

> 20x ~ 9x

 21

Comparison with Gazelle

Delphi

• Secure inference on convolutional neural networks
• 9-22x more efficient than prior work
• Combines techniques from systems, cryptography, and ML

ia.cr/2020/050

github.com/mc2-project/delphi

 22

https://ia.cr/2020/050

