Scaling Verifiable Computation
Using Efficient Set Accumulators

USENIX Security, 2020
Alex Ozdemir*, Riad Wahby*, Barry Whitehat”, Dan Boneh*
*Stanford AUnaffiliated



Verifiable Storage

* Represent a large storage (e.g. array) with a small digest
* Verifiably read and update the digest

d «(Digest(A)

Prover(A,d) Verifier(d)
v« Ali] LV, Ty ~ Verif Yreaa(d, i, v, ,)
Ali,, ] < v, d',i,, Uy, Ty

> Verifyupdate (d» iw» Vw» d’» T[W)

Application: Verifiable Outsourcing (e.g. smart contracts)

Goal: Efficient Verification!



Outline

* Merkle Trees (existing approach)
e RSA Accumulators (proposed approach)
e Our Work:

* Implementing RSA Accumulators
 Demonstrating that they are cheaper in some situations



Computational Model

* Inherited from verifiable outsourcing

* The arithmetic constraint computational model (“constraints”)

* Data encoded in a large finite field (integers mod p, p = 2256)

* Constraints are expressed as equations of sums & products in the field
* One multiplication per constraint!
* Goal: minimize the number of constraints

* The prover can provide advice

e E.g.the inverse of a field element.
* Computable using Fermat’s little theorem (many constraints)
* Checkable using 1 constraint.



Merkle Trees

e Based on a hash function
H:F XF > F

e Collision-Resistant

* Reduce the array to a single
value with a hash-tree

* Proofs based on paths in the
tree

Verification cost: k log m hashes

for k updates and a storage of capacity m.




RSA Accumulators

* Based on RSA groups
* The integers modulo pg: the produce of two unknown primes.
* Hard to compute roots.
« x™is easy, \/x is hard. The stored

* The digest of an RSA Accumulator is / elements
(x7)

Fixed A (special) hash
generator function



RSA Accumulator Proofs

* Insertion proof:
 Verifier checks an expontiaion d’ — dh(x)

* Removal proof:
* |Insertion in reverse

* Membership proof:
* A removal proof, but the new digest is forgotten
* Sound because computing roots is hard!

* Batches require a single exponentiation [BBF 18]/[Wes 18]

* Requires a hash function to prime numbers (for non-interactivity)

Verification cost: k hashes + 1 exponentiation
for k updates and a storage of capacity m.



Traditional Hash-to-Prime

* Rejection sampling of primes procedure HashToPrime(x):
* Miller Rabin primality test g « PRG(seed = x)
* Probabilistic! while g.output() is composite:

« 27 soundness uses 0(1), 0(1)-
bit exponentiations

* Many constraints Return g.output()

g.advance()




Pocklington Prime Generation

* Pocklington’s criterion:
o If
* pisprime
cn<p
* Ja.a™ =, 1 Aged(@" - 1Lnp+1) =1

* Thennp + 1is prime
* Basis for a recursive primality

certificate

* |dea: Rejection sampling of prime
certificates

IBase prime test

Do PRG-based
lP’s Criterion with n, reJectl.on
sampling

P1

lP’s Criterion with n,

)

lP's Criterion with n4

P3

Many fewer constraints than Miller-Rabin, and provably prime



Other Techniques and Tricks

* Multiprecision arithmetic in constraints
e Based on xjSnark [KPS 18]

* A new hash function, conjectured to be division-intractable

* Precise semantics for batching dependent accesses.



Evaluation

* Implementation in
Bellman, using Groth16.

* Consider storage of
varying size

* Perform varying
numbers of swaps
(remove x, add y)

* Measure constraints

* Crossover occurs at a
few thousand operations

Constraints (lower is better)

Constraints v. Swaps

80 M

60 M

~

o

<
1

20 M

Accumulator
Merkle 2°
Merkle 210

- = Merkle 215

- Merkle 220

— RSA




summary

Research Question

Do RSA accumulators use fewer
constraints than Merkle Trees?

Techniques
* Multiprecision arithmetic

* Division-intractable hashing
* Hashing to prime numbers

* Semantics of dependent
accesses

Implementation: github.com/alex-ozdemir/bellman-bignat

Conclusions

Constraints v. Swaps

80 M -+

o

o

<
1

Constraints (lower is better)
S S
= =

o
1

5 k
Swaps

Accumulator
Merkle 05
Merkle 10

- = Merkle 15

- Merkle 20

— RSA


https://github.com/alex-ozdemir/bellman-bignat/

