
Scaling Verifiable Computation
Using Efficient Set Accumulators

USENIX Security, 2020

Alex Ozdemir*, Riad Wahby*, Barry Whitehat^, Dan Boneh*

*Stanford ^Unaffiliated

Verifiable Storage

• Represent a large storage (e.g. array) with a small digest

• Verifiably read and update the digest

𝑉𝑒𝑟𝑖𝑓𝑦𝑟𝑒𝑎𝑑(𝑑, 𝑖, 𝑣, 𝜋𝑟)

𝑉𝑒𝑟𝑖𝑓𝑦𝑢𝑝𝑑𝑎𝑡𝑒(𝑑, 𝑖𝑤 , 𝑣𝑤, 𝑑
′, 𝜋𝑤)

Prover(𝐴, 𝑑) Verifier(𝑑)

𝑖, 𝑣, 𝜋𝑟

𝑑′, 𝑖𝑤 , 𝑣𝑤 , 𝜋𝑤

𝑣 ← 𝐴[𝑖]

𝐴 𝑖𝑤 ← 𝑣𝑤

𝑑 ← 𝐷𝑖𝑔𝑒𝑠𝑡(𝐴)

Goal: Efficient Verification!

Application: Verifiable Outsourcing (e.g. smart contracts)

Outline

• Merkle Trees (existing approach)

• RSA Accumulators (proposed approach)

• Our Work:
• Implementing RSA Accumulators

• Demonstrating that they are cheaper in some situations

Computational Model

• Inherited from verifiable outsourcing

• The arithmetic constraint computational model (“constraints”)
• Data encoded in a large finite field (integers mod 𝑝, 𝑝 ≈ 2256)

• Constraints are expressed as equations of sums & products in the field
• One multiplication per constraint!

• Goal: minimize the number of constraints

• The prover can provide advice
• E.g. the inverse of a field element.

• Computable using Fermat’s little theorem (many constraints)

• Checkable using 1 constraint.

Merkle Trees

• Based on a hash function
𝐻:𝐹 × 𝐹 → 𝐹
• Collision-Resistant

• Reduce the array to a single
value with a hash-tree

• Proofs based on paths in the
tree

x0 x1 x2 x3 x4 x5 x6 x7

H

H H H H

H

H

𝑑

ℎ0 ℎ1

ℎ2

ℎ3 ℎ4

ℎ5

Verification cost: 𝒌 𝐥𝐨𝐠𝒎 hashes
for 𝑘 updates and a storage of capacity 𝑚.

RSA Accumulators

• Based on RSA groups
• The integers modulo 𝑝𝑞: the produce of two unknown primes.

• Hard to compute roots.
• 𝑥𝑛 is easy, 𝑛 𝑥 is hard.

• The digest of an RSA Accumulator is

𝑑 = 𝑔ς𝑖 ℎ 𝑥𝑖

Fixed
generator

A (special) hash
function

The stored
elements

RSA Accumulator Proofs

• Insertion proof:
• Verifier checks an expontiaion

• Removal proof:
• Insertion in reverse

• Membership proof:
• A removal proof, but the new digest is forgotten

• Sound because computing roots is hard!

• Batches require a single exponentiation [BBF 18]/[Wes 18]
• Requires a hash function to prime numbers (for non-interactivity)

𝑑′ = 𝑑ℎ 𝑥

Verification cost: 𝒌 𝐡𝐚𝐬𝐡𝐞𝐬 + 𝟏 𝐞𝐱𝐩𝐨𝐧𝐞𝐧𝐭𝐢𝐚𝐭𝐢𝐨𝐧
for 𝑘 updates and a storage of capacity 𝑚.

Traditional Hash-to-Prime

• Rejection sampling of primes

• Miller Rabin primality test
• Probabilistic!

• 2−𝜆 soundness uses 𝑂(𝜆), ෨𝑂 𝜆 -
bit exponentiations

• Many constraints

procedure HashToPrime(x):

g ← 𝑃𝑅𝐺(𝑠𝑒𝑒𝑑 = 𝑥)

while 𝑔.output() is composite:

𝑔.advance()

Return 𝑔.output()

Pocklington Prime Generation

• Pocklington’s criterion:
• If

• 𝑝 is prime

• 𝑛 < 𝑝
• ∃𝑎. 𝑎𝑛𝑝 ≡𝑛𝑝+1 1 ⋀gcd 𝑎𝑛 − 1, 𝑛𝑝 + 1 = 1

• Then 𝑛𝑝 + 1 is prime

• Basis for a recursive primality
certificate
• Idea: Rejection sampling of prime

certificates

𝑝0

𝑝1

𝑝2

𝑝3

P’s Criterion with 𝑛1

P’s Criterion with 𝑛2

P’s Criterion with 𝑛3

Base prime test

PRG-based
rejection
sampling

Many fewer constraints than Miller-Rabin, and provably prime

Other Techniques and Tricks

• Multiprecision arithmetic in constraints
• Based on xjSnark [KPS 18]

• A new hash function, conjectured to be division-intractable

• Precise semantics for batching dependent accesses.

Evaluation

• Implementation in
Bellman, using Groth16.

• Consider storage of
varying size

• Perform varying
numbers of swaps
(remove x, add y)

• Measure constraints

• Crossover occurs at a
few thousand operations

25

210

215

220

Summary

Techniques

• Multiprecision arithmetic

• Division-intractable hashing

• Hashing to prime numbers

• Semantics of dependent
accesses

ConclusionsResearch Question

Do RSA accumulators use fewer
constraints than Merkle Trees?

Implementation: github.com/alex-ozdemir/bellman-bignat

https://github.com/alex-ozdemir/bellman-bignat/

