Scaling Verifiable Computation Using Efficient Set Accumulators

USENIX Security, 2020

Alex Ozdemir*, Riad Wahby*, Barry Whitehat^, Dan Boneh*

*Stanford ^Unaffiliated

Verifiable Storage

- Represent a large storage (e.g. array) with a small digest
- Verifiably read and update the digest

 $d \leftarrow Digest(A)$

Prover(A, d)Verifier(d) $v \leftarrow A[i]$ i, v, π_r $Verif y_{read}(d, i, v, \pi_r)$ $A[i_w] \leftarrow v_w$ d', i_w, v_w, π_w $Verif y_{update}(d, i_w, v_w, d', \pi_w)$

Application: Verifiable Outsourcing (e.g. smart contracts)

Goal: Efficient Verification!

Outline

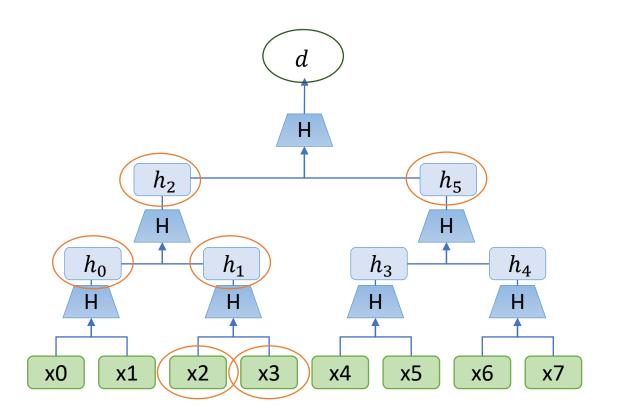
- Merkle Trees (existing approach)
- RSA Accumulators (proposed approach)
- Our Work:
 - Implementing RSA Accumulators
 - Demonstrating that they are cheaper in some situations

Computational Model

- Inherited from verifiable outsourcing
- The *arithmetic constraint* computational model ("constraints")
 - Data encoded in a large **finite field** (integers mod $p, p \approx 2^{256}$)
 - Constraints are expressed as equations of sums & products in the field
 - One multiplication per constraint!
 - Goal: minimize the number of constraints
 - The prover can provide *advice*
 - E.g. the inverse of a field element.
 - Computable using Fermat's little theorem (many constraints)
 - Checkable using 1 constraint.

Merkle Trees

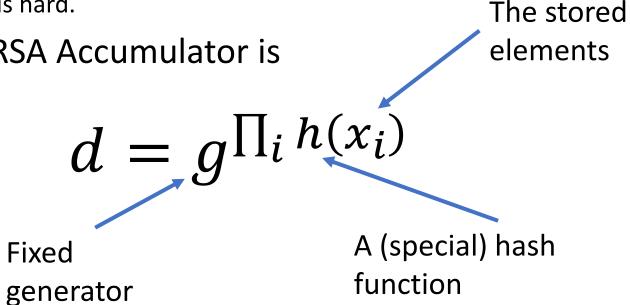
- Based on a hash function $H: F \times F \to F$
 - Collision-Resistant
- Reduce the array to a single value with a hash-tree
- Proofs based on paths in the tree



Verification cost: *k* log *m* hashes for *k* updates and a storage of capacity *m*.

RSA Accumulators

- Based on RSA groups
 - The integers modulo pq: the produce of two unknown primes.
 - Hard to compute roots.
 - x^n is easy, $\sqrt[n]{x}$ is hard.
- The digest of an RSA Accumulator is



RSA Accumulator Proofs

- Insertion proof:
 - Verifier checks an expontiaion
- Removal proof:
 - Insertion in reverse
- Membership proof:
 - A removal proof, but the new digest is forgotten
 - Sound because computing roots is hard!
- Batches require a single exponentiation [BBF 18]/[Wes 18]
 - Requires a hash function to prime numbers (for non-interactivity)

Verification cost: k hashes + 1 exponentiation for k updates and a storage of capacity m.

$$d' = d^{h(x)}$$

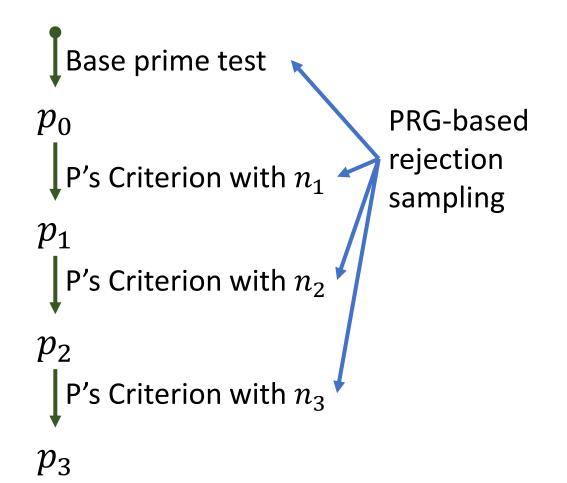
Traditional Hash-to-Prime

- Rejection sampling of primes
- Miller Rabin primality test
 - Probabilistic!
 - $2^{-\lambda}$ soundness uses $O(\lambda)$, $\tilde{O}(\lambda)$ bit exponentiations
 - Many constraints

procedure HashToPrime(x): $g \leftarrow PRG(seed = x)$ while g.output() is composite: g.advance() Return g.output()

Pocklington Prime Generation

- Pocklington's criterion:
 - If
 - *p* is prime
 - n < p
 - $\exists a. a^{np} \equiv_{np+1} 1 \land \gcd(a^n 1, np + 1) = 1$
 - Then np + 1 is prime
- Basis for a recursive primality certificate
 - Idea: Rejection sampling of prime certificates



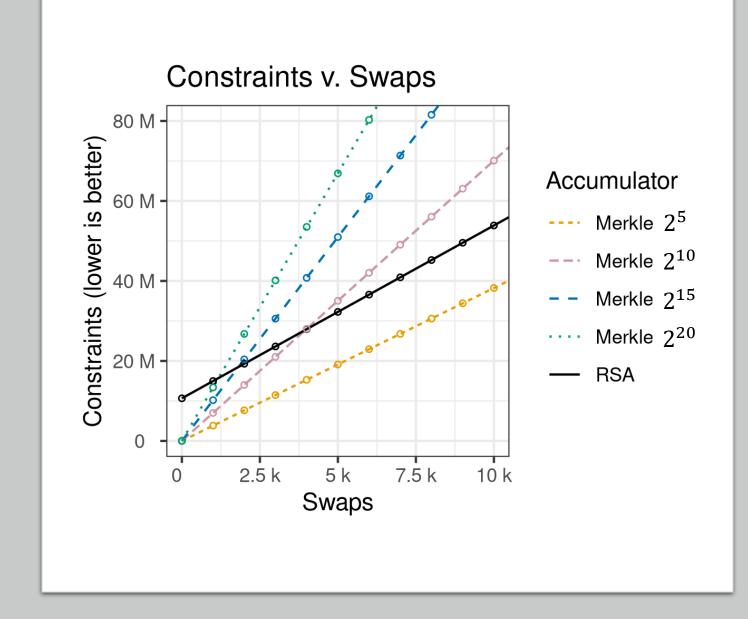
Many fewer constraints than Miller-Rabin, and provably prime

Other Techniques and Tricks

- Multiprecision arithmetic in constraints
 - Based on xjSnark [KPS 18]
- A new hash function, conjectured to be division-intractable
- Precise semantics for batching dependent accesses.

Evaluation

- Implementation in Bellman, using Groth16.
- Consider storage of varying size
- Perform varying numbers of *swaps* (remove x, add y)
- Measure constraints
- Crossover occurs at a few thousand operations



Summary

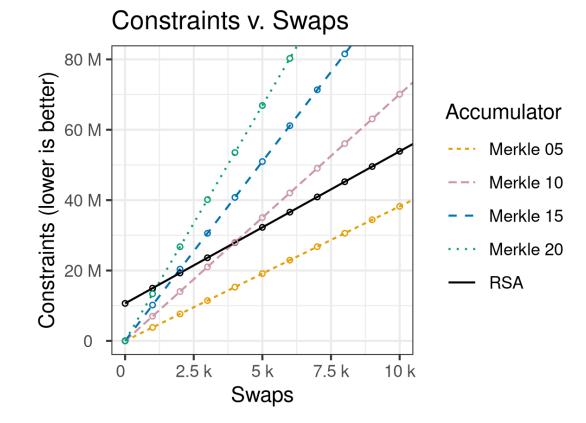
Research Question

Do RSA accumulators use fewer constraints than Merkle Trees?

Techniques

- Multiprecision arithmetic
- Division-intractable hashing
- Hashing to prime numbers
- Semantics of dependent accesses

Conclusions



Implementation: github.com/alex-ozdemir/bellman-bignat