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Autonomous Vehicles

Autonomous Vehicles (AVs) include
aerial, sea, and ground vehicles

Levels of automation range from 0 to 5

AVs evaluate their environment with a
variety of sensors

[Gon17]
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Current Problem

[Mit19]

[Goo19]

[YC20]

[Wei17]
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AVs Are Vulnerable to Sensor Targeted Attacks

Main Problem

AVs rely on sensors to evaluate and interact with their environment

Sensors are susceptible to GPS spoofing and transduction attacks that manipulate
environmental physical signals

Previous Research Has Exposed Sensor Vulnerabilities

Camera [DWJ+16, PSFK15, YXL16]

LiDAR [PSFK15, SKKK17, CXC+19]

RADAR [YXL16]

Inertial Measurement Unit (IMU) [SSK+15, TWX+17, TLLH18]

GPS [NKS+19, HLP+08, TPRC11, ZLS+18]
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Transduction Attacks and GPS Attacks Cannot
be Addressed with Classical Security

Transduction Attacks

Digital outputAnalog to digital 
converter

Magnetic

Acoustic

Optical

Attacker can inject 
out-of-band signals

GPS Attacks

Spoofer Actual position Spoofed position
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Insights of Our Work

SAVIOR

We introduce our SAVIOR (Securing Autonomous Vehicles wIth rObust physical invaRiants)
framework contributing to the following:

1 We use well-known nonlinear dynamic models for aerial and ground AVs

2 We introduce a stronger stealthy attacker

3 We implement a Cumulative Sum (CUSUM) algorithm that improves detection
performance over previous defenses that keep track of anomalies using time windows

4 The implementation is done in real vehicles including including an Intel drone, and our
autonomous car
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Sensors and Movement Variables

Drones

3 axes: roll, pitch, yaw

Sensors: accelerometer, gyroscope,
magnetometer, and GPS (lat, lon, alt)

Ground AV

2 axes: pitch, yaw

Sensors: line data (angle, position) and
speed
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a) Aerial vehicle movement

b) Ground vehicle movement
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Nonlinear Models

Dynamics of a Quadcopter [CFCH14, Luu11]

φ̇ = ωφ
θ̇ = ωθ
ψ̇ = ωψ

ω̇φ =
Uφ
Ix

+ θ̇ψ̇(
Iy−Iz
Ix

)

ω̇θ = Uθ
Iy

+ φ̇ψ̇( Iz−Ix
Iy

)

ω̇ψ =
Uψ
Iz

+ φ̇θ̇(
Ix−Iy
Iz

)
ẋ = vx
ẏ = vy
ż = vz
v̇x = Ut

m (cosφ sin θ cosψ + sin θ sinψ)

v̇y = Ut
m (cosφ sin θ sinψ − sinφ cosψ)

v̇z = Ut
m cosφ cos θ − g

Dynamics of a Car [KPSB15]

β = tan−1( lr
lr+lf

tan(δ))
ẋ = v cos(ψ + β)
ẏ = v sin(ψ + β)
ψ̇ = v

lr
sin(β)

v̇ = a

v
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SAVIOR Design

Online sensor pre-processing to convert raw data into usable form

Offline pre-processing stage to learn physical invariants and a build model

Online stage to predict measurements and compare observe values

Anomaly detection will raise an alert if the anomaly is persistent

IMU

GPS

Pre-

processing
𝑢(𝑘)

Y  𝑘

Inputs:

Dataset

Output:

(𝑢, Y)

IDS
EKF

Anomaly

detection

(𝐼𝑥, 𝐼𝑦, 𝐼𝑧, 𝑚, 𝑙, 𝑑, 𝑏)
Y  (𝑘)

ො𝑥(𝑘)

Offline

Online

෤

෤
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Online Stage

An Extended Kalman Filter (EKF) [RG14] is used to predict AV’s physical behavior by
estimating unknown parameters from noisy sensor input

The algorithm is divided into two main routines: prediction and correction

The prediction will be compared against the observed data to be analyzed for sensor
tampering

Prediction
Predicted state estimate

Predicted covariance estimate

Correction
Kalman gain

State correction

Updated covariance estimate

!𝑥#$%& = 𝑓 !𝑥#, 𝑢#

𝑃#& = 𝐹#𝑃#&%𝐹#$%⊺ + 𝑄

𝐾# = 𝑃#&𝐻#⊺ [𝐻#𝑃#&𝐻# + 𝑉]&%

!𝑥#$% = !𝑥#$%& + 𝐾# 𝑦# − ℎ(!𝑥#&)

𝑃# = [𝐼 − 𝐾#𝐻#]𝑃#&

Initial 
estimates

For !𝑥;&, 𝑃;&
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Anomaly Detection

The residual associated with each sensor is calculated (1)

A Cumulative Sum (CUSUM) algorithm is then used to detect persistent attacks (2)

An alarm is raised if the residual difference is larger than a predefined threshold (3)

CUSUM Algorithm

1 ri (k) = Ỹi (k)− Ŷi (k)

2 Si (k + 1) = (Si (k) + |ri (k)| − bi )
+

3 Si (tk) > τi

EKF
CUSUM𝑟𝑘 = ෩𝑌𝑘 − ෡𝑌𝑘 Alert

Residual Generation෩𝑌𝑘
෡𝑌𝑘

𝑢𝑘

෩𝑌𝑘− 1
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Implementation

Controllers follow a publish-and-subscribe
architecture to provide inter-process
communication via topics

We are interested in the following topics for aerial
AVs: sensors combined, vehicle magnetometer,
and vehicle gps position

Anomaly detector is situated right before the
control signals are being sent to the actuators

The code runs in its own module in parallel with
the controller

Actuator
module

EKF

Pre-processing

ModulesModulesPX4 modulesPX4 modules vehicle_gps_position

sensors_combined

Reference monitor

IMU
Middleware

Flight stack

GPS

vehicle_magnetometer

actuator_outputs
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Evaluation

Aerial AV: Intel Ready-To-Fly drone using
PX4 flight controller (v1.9.2)

Ground AV: Custom build on top of a
Traxxas Ford Fiesta ST Rally chassis
using ROS Kinetic Kame controller

Ground AV 
Top View

Aerial AV 
Top View
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Ground AV Camera Attack and Detection Video

Videos available: https://www.youtube.com/watch?v=Ljrbtfo0gvM&list=PLmicm3IoL28eLU5v1FH3ZOFSn5NlOuQLG
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Aerial AV GPS Attack and Detection
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Comparison of SAVIOR with Baseline

SAVIOR uses a nonlinear model for predicting the observations, and a CUSUM
algorithm for anomaly detection (NLC)

We will use Choi et al.’s [CLA+18] algorithm as a baseline since their anomaly detector
was the current state-of-the-art

Choi et al.’s [CLA+18] algorithm uses linear models for predicting observations and a
Time-Window algorithm for anomaly detection (LTW)

Our results show that our algorithms outperform state-of-the-art detection tools for AVs
by detecting more attacks, detecting attacks faster, and having less false alarms
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Linear (LTW) vs Nonlinear (NLC) Prediction Comparison
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Window (LTW) vs CUSUM (NLC) Detection Time
and ROC Curves

Drone

NLC detects attacks faster

NLC has a better ROC curve than LTW
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Ground AV

Detection is better for both,
drones and ground vehicles
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Stealthy Attacks

We want to maximize the value of sensor tampering without raising any alarms

The goal is to maximize deviation without increasing the added discrepancies

This stealthy attack allows us to consider the worst case scenario of our PBAD system,
where an attacker is not detected while it persistently injects the maximum amount of
false information in the system
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Purely Stealthy Attacks Against NLC
Have Less Impact Than LTW

NLC (blue) is able to follow the signal
closer while the attacker performed an
stealthy attack on the gyroscope and GPS

LTW (orange) allows more tampering
which ends up deviating the final
destination more than NLC (blue)
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Performance Overhead

Drone

On average, SAVIOR consumes
5.4332% of CPU resources on Intel
Aero

Module Armed Hovering RC

Idle 30.1444% 29.4379% 30.6056%
mavlink if1 16.0183% 15.6195% 15.8956%

EKF2 14.3242% 14.3779% 14.3006%
logger 6.8647% 7.1288% 6.8752%

mc att control 5.4349% 5.4007% 5.3425%
reference monitor 5.3572% 5.4332% 5.5093%

tap esc 4.4742% 4.4357% 4.4285%
sensors 4.2744% 4.4792% 4.5200%
hpwork 2.5077% 2.4462% 2.4750%

mavlink if0 2.3323% 2.1384% 2.2667%
mc pos control 1.4911% 2.4727% 1.4693%

commander 1.4824% 1.4478% 1.4448%
gps 0.3662% 0.3323% 0.3077%

Ground AV

On average, SAVIOR consumes
2.2501% of CPU resources on Traxxas
Ford Fiesta ST Rally

Module Line Following CA

lidar collision avoidance 12.6886% 13.0694%
elp cam bridge 11.0179% 15.6009%

process line 10.3861% 11.7353%
image processing 6.0726% 7.8523%
reference monitor 2.5192% 1.9809%

arduino node 2.4150% 2.5133%
line follower 1.0097% 1.0488%

low level controller 0.7948% 0.4503%
perot demo 0.6990% 0.6589%
roslaunch 0.4541% 0.2678%

rplidarNode 0.3074% 0.3020%
rosmaster 0.2973% 0.1569%

rosout 0.0658% 0.0250%
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Conclusion

The Key Elements of Our Proposal

1 Use of well-known physical invariants

2 The use of offline system identification

3 The use of CUSUM algorithms

4 Evaluating the effectiveness of the anomaly detection tool with stealthy attacks that
attempt to maximize the damage to the system

SAVIOR Source Code

https://github.com/

Cyphysecurity/SAVIOR.git

Videos

https://www.youtube.com/watch?v=Ljrbtfo0gvM&

list=PLmicm3IoL28eLU5v1FH3ZOFSn5NlOuQLG
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Thank You

Contact

Raul Quinonez rxq100020@utdallas.edu
Jairo Giraldo jairo.giraldo@utah.edu
Luiz Salazar luedsala@ucsc.edu
Erick Bauman exb131030@utdallas.edu
Alvaro Cardenas alacarde@ucsc.edu
Zhiqiang Lin zlin@cse.ohio-state.edu

Top view Front view

Side view
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