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Autonomous Vehicle (AV) Perception
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Autonomous Vehicle (AV) Perception

* Machine learning, especially deep learning, is heavily adopted in state-
of-the-art AV perception pipelines.
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Related Work: Security of AV Perception

» Security of camera-based perception is well studied

— Found to be vulnerable to adversarial machine learning (AML) attacks in the
physical world.
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1. Eykholt, Kevin, et al. "Physical adversarial examples for object detectors." arXiv preprint arXiv:1807.07769 (2018).
2. Zhao, Yue, et al. "Seeing isn't Believing: Towards More Robust Adversarial Attack Against Real World Object Detectors." Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security. 2019.



Related Work: Security of LiDAR-based AV
Perception

« Adv-LiDAR [l demonstrated LiDAR-based perception is vulnerable to
sensor attack with the help of AML.

— Formulation of the sensor attack capability.

— Strategically injecting points.
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[1] Cao, Yulong, et al. "Adversarial sensor attack on lidar-based perception in autonomous driving." Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security. 2019.



Related Work: Security of LiDAR-based AV
Perception

« Adv-LiDAR [l demonstrated LiDAR-based perception is vulnerable to
sensor attack with the help of adversarial machine learning.
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[1] Cao, Yulong, et al. "Adversarial sensor attack on lidar-based perception in autonomous driving." Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security. 2019.



Motivation: Limitations of Existing Work

«  White-box attack limitation

— Adv-LiDAR assumes that attackers have full knowledge of LiDAR-based perception model
along with its pre- and post-processing modules.
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Motivation: Limitations of Existing Work

e  White-box attack limitation

« Attack generality limitation

— Adv-LiDAR only targets Apollo 2.5 model. The designed differentiable approximation
function cannot generalize to other models.

— Optimized adversarial examples generated by Adv-LiDAR cannot attack other models.
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Motivation: Limitations of Existing Work

* White-box attack limitation
« Attack generality limitation
* No practical defense solution

— There is no countermeasure proposed, making AVs still open to LiDAR spoofing attacks.
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Contributions

« Explore a general vulnerability of current LIDAR-based perception
architectures.

— Construct the first black-box attacks and achieve ~80% mean attack success rates on all
target models .




Contributions

« Explore a general vulnerability of current LIDAR-based perception
architectures and construct the _first black-box spoofing attack.

» Perform the first defense study, proposing CARLO as an anomaly
detection module that can be stacked on LiDAR-based perception models.

— Reduce the mean attack success rate to ~5.5% without sacrificing the detection accuracy.




Contributions

« Explore a general vulnerability of current LIDAR-based perception
architectures and construct the _first black-box spoofing attack.

» Perform the first defense study, proposing CARLO as an anomaly
detection module that can be stacked on LiDAR-based perception models.

» Design the first end-to-end general architecture for robust LiDAR-based
perception.

— Reduce the mean attack success rate to ~2.3% with similar detection accuracy to the
original model.




Threat Model

- Physical sensor attack capability!

—  Number of points. Attackers can spoof at most 200 points into the
LiDAR point clouds.

— Location of points. Attackers can modify the distance, altitude, and
azimuth of a spoofed point. Azimuth is within 10°.
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[1] Cao, Yulong, et al. "Adversarial sensor attack on lidar-based perception in autonomous driving." Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security. 2019.



Threat Model

 Physical sensor attack capability!!!

—  Number of points: 200 points.
— Location of points: distance, altitude, and azimuth (10°).

- Attack model
— Goal: spoofing fake vehicles right in front of the victim AV 1

— Attackers can control the spoofed points within the described sensor
attack capability.

— Attackers are not required to have access to the perception systems.

[1] Cao, Yulong, et al. "Adversarial sensor attack on lidar-based perception in autonomous driving." Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security. 2019.



Threat Model

* Physical sensor attack capabilityl!!
—  Number of points: 200 points.

— Location of points: distance, altitude, and azimuth (10°).

* Attack model

— Goal: spoofing fake vehicles right in front of the victim AV 1
—  Within the described sensor attack capability.

— Black-box access assumption.

e Defense model

— We consider defending LiDAR spoofing attacks under both white-
and black-box settings.

— We focus on software-level countermeasures due to cost concerns.

[1] Cao, Yulong, et al. "Adversarial sensor attack on lidar-based perception in autonomous driving." Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security. 2019.



State-of-the-art LiDAR-based Perception
Models

» Bird’s-eye view (BEV)-based Model

— Baidu Apollo 5.0 (latest version) ﬁ@ @ ﬁ
— Baidu Apollo 2.5 (model attacked in [2]) Modue X p( Motk )=
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Communications Security. 2019.

[3] Lang, Alex H., et al. "Pointpillars: Fast encoders for object detection from point clouds." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
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[5] Zhou, Yin, and Oncel Tuzel. "Voxelnet: End-to-end learning for point cloud based 3d object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018.

[6] Shi, Shaoshuai, Xiaogang Wang, and Hongsheng Li. "Pointrcnn: 3d object proposal generation and detection from point cloud." Proceedings of the IEEE Conference on Computer
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A General Vulnerability &
Black-box Adversarial Sensor Attack




Behind the Scenes of Adv-LiDAR

« Avalid front-near vehicle (located 5-8 meters
right in front of the AV) should contain ~2000
reflected points and occupy 15° in azimuth!l,
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An attack trace generated by
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[1] Statistical study on KITTI dataset (64-beam LiDAR) KITTI Vision Benchmark: 3D Object Detection.

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d, 2020.



Behind the Scenes of Adv-LiDAR

« Two situations that a valid vehicle contains much fewer points in a LIDAR
point cloud:

— An occluded vehicle
— A distant vehicle
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False Positives

» Based on these observations, we find and validate two false positive
(FP) conditions for the models:

1. FPi1: If an occluded vehicle can be detected in the pristine point cloud
by the model, its point set will be still detected as a vehicle when
directly moved to a front-near location.

2. FP2: If a distant vehicle can be detected in the pristine point cloud by
the model, its point set will be still detected as a vehicle when directly

moved to a front-near location.




Vulnerability Identification

Attackers can directly exploit such two FP conditions to fool the LiDAR-based
perception models and spoof a fake vehicle with much fewer points.

The spoofed points
Z, are detected as a
| valid vehicle.

( 38 points
4.92° 1n azimuth




Vulnerability Identification

Attackers can directly exploit sucl?) FP conditions to fool the LiDAR-based
perception models and spoof a fa% vehicle with much fewer points.

4 N
« FP1 = State-of-the-art models perform
detection in the 3D space where the occluder ‘

and occludee stands apart with each other.
However, DNN models prefer local features.

« FP2 = Object detection models are designed to

be insensitive to the locations of objects.
\ y,




Attack Evaluation

» Evaluation setup
—  Environments: KITTI point clouds.

— Combination of digital spoofing and physical spoofing.

» Black-box attacks universally achieve ~80% mean attack success rate
(ASR) on all target models.
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[1] KITTT Vision Benchmark: 3D Object Detection http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d, 2020.

Please refer to our paper for more detailed robustness analysis. 23



CARLO: oCclusion-Aware hieRarchy
anomalLy detectiOn




Free Space Detection

* Free space: the frustum (the straight-line path) from the LiDAR
sensor and any point in the point cloud.
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Due to intra-occlusion
and inter-occlusion,
there is limited free
space inside a valid

vehicle’s bounding box.
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Free Space Detection

* Free space: the frustum (the straight-line path) from the LiDAR

sensor and any point in the point cloud.

Lasers can penetrate the
spoofed vehicle so that
7, Doints are located behind
’ 1 the bounding box.

\_

Due to the limited
sensor attack
capability, there is a
large portion of free
space inside a fake

vehicle’s bounding box.

J
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CARLO

 CARLO serves as a post-processing module leveraging free space as a
physical invariant to detect spoofed vehicles.

* CARLO can be efficiently stacked onto existing LiDAR-based perception
architectures.

— No need for model re-training.

— Consists of another GPU-friendly submodule to achieve around 8.5ms per-vehicle
processing time.

------------------------------------------------- 1 4
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Please refer to our paper for more details of CARLO. M
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CARLO Evaluation

CARLO overall reduces the
mean attack success rate from
~80% to 5.5%.

The accuracy of CARLO
achieves at least 99.5%.

— The 0.5% detection errors comes
from some faraway vehicles.

— No immediate impacts on AV’s
current driving decisions.

CARLO can also defend the
white-box attack, Adv-LiDAR,
and its adaptive attack.

Please refer to our paper for more details of CARLO.
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(c) CARLO-guarded PointRCNN.
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SVF: Sequential View Fusion
A Robust LiDAR-based Perception Architecture




Existing Architectures Revisit

(a) Apollo 5.0
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Existing Architectures Revisit

(a) Apollo 5.0

3D representation
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Front View (FV) Should Help!

* The occluder and occludee neighbor h

with each other in the FV, making it iy - l
possible for DNN models to learn the
local correlations. = FP1
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Front View (FV) Should Help!
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Sequential View Fusion (SVF)

« Attach a semantic segmentation
network to the FV representation. .,

—  Output the probability score of each y Sloe X FV Semantic Sequent,al iy oL - ;w: S
. . . . ° S tati i ol . 2
point that it belongs to a vehicle. g cgmenen Fusion “ip” : =3
P \ : : Q
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estimate object-level output. A~ frugment : S

. . ! hard coded FV FV segmentation; *~ ----7 ----- ’

— Achieve much more satisfactory L feature maps scores_J 3D Object Detection

results than the 3D object detection
task over FVit2l,

[1] Biasutti, Pierre, et al. "LU-Net: An Efficient Network for 3D LiDAR Point Cloud Semantic Segmentation Based on End-to-End-Learned 3D Features and U-Net." Proceedings of the IEEE International
Conference on Computer Vision Workshops. 2019. 3 4 M

[2] B. W, et al. Squeezeseg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud. In International Conference on Robotics and
Automation



Sequential View Fusion (SVF)

« Attach a semantic segmentation

network to the FV representation.
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« The final 3D object detection
module takes the augmented
point cloud as input.

— | Reserve the advantages of
detection on 3D representations
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SVF Evaluation

« SVF models are shown to be robust against LiDAR spoofing attacks, where
the mean success rates are merely ~2.3%.

— Similar detection accuracy with the original models.

« SVF models are also resilient to the state-of-the-art white-box attack, Adv-
LiDAR, and its adaptive attack.
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Please refer to our paper for white-box robustness evaluation of SVF.




Limitations

» Attack Practicality

— Large-scale evaluations are based on digital LiDAR spoofing.
— Physical LiDAR spoofing is performed in in-lab environments.
— Noreal road test due to cost concerns.
* Vulnerability Completeness
— The identified vulnerability only partially explains the success of LIDAR spoofing attacks.

« Defenses Guarantees

— Both defense solutions cannot provide strong guarantees.

— Defenses may fail when the sensor attack capability improves dramatically (e.g., injecting
1500 points).




Conclusion

« Explore a general vulnerability of current LIDAR-based perception
architectures and construct the _first black-box spoofing attack.

» Perform the first defense study, proposing CARLO as an anomaly
detection module that can be stacked on LiDAR-based perception models.

» Design the first end-to-end general architecture for robust LiDAR-based
perception.

Thank you !




