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Autonomous Vehicle (AV) Perception
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Autonomous Vehicle (AV) Perception

• Machine learning, especially deep learning, is heavily adopted in state-
of-the-art AV perception pipelines.
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Related Work: Security of AV Perception

• Security of camera-based perception is well studied
– Found to be vulnerable to adversarial machine learning (AML) attacks in the 

physical world.
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1. Eykholt, Kevin, et al. "Physical adversarial examples for object detectors." arXiv preprint arXiv:1807.07769 (2018).
2. Zhao, Yue, et al. "Seeing isn't Believing: Towards More Robust Adversarial Attack Against Real World Object Detectors." Proceedings of the 2019 
ACM SIGSAC Conference on Computer and Communications Security. 2019.



Related Work: Security of LiDAR-based AV 
Perception

• Adv-LiDAR [1] demonstrated LiDAR-based perception is vulnerable to 
sensor attack with the help of AML.

– Formulation of the sensor attack capability.
– Strategically injecting points.
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[1] Cao, Yulong, et al. "Adversarial sensor attack on lidar-based perception in autonomous driving." Proceedings of the 2019 
ACM SIGSAC Conference on Computer and Communications Security. 2019.



Related Work: Security of LiDAR-based AV 
Perception

• Adv-LiDAR [1] demonstrated LiDAR-based perception is vulnerable to 
sensor attack with the help of adversarial machine learning.
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Motivation: Limitations of Existing Work

• White-box attack limitation
– Adv-LiDAR assumes that attackers have full knowledge of LiDAR-based perception model 

along with its pre- and post-processing modules. 
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Motivation: Limitations of Existing Work

• White-box attack limitation
• Attack generality limitation

– Adv-LiDAR only targets Apollo 2.5 model. The designed differentiable approximation 
function cannot generalize to other models.

– Optimized adversarial examples generated by Adv-LiDAR cannot attack other models.
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Motivation: Limitations of Existing Work

• White-box attack limitation
• Attack generality limitation
• No practical defense solution

– There is no countermeasure proposed, making AVs still open to LiDAR spoofing attacks.
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Contributions

• Explore a general vulnerability of current LiDAR-based perception 
architectures. 

– Construct the first black-box attacks and achieve ~80% mean attack success rates on all 
target models .
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Contributions

• Explore a general vulnerability of current LiDAR-based perception 
architectures and construct the first black-box spoofing attack.

• Perform the first defense study, proposing CARLO as an anomaly 
detection module that can be stacked on LiDAR-based perception models.

– Reduce the mean attack success rate to ~5.5% without sacrificing the detection accuracy.
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Contributions

• Explore a general vulnerability of current LiDAR-based perception 
architectures and construct the first black-box spoofing attack.

• Perform the first defense study, proposing CARLO as an anomaly 
detection module that can be stacked on LiDAR-based perception models.

• Design the first end-to-end general architecture for robust LiDAR-based 
perception.

– Reduce the mean attack success rate to ~2.3% with similar detection accuracy to the 
original model.
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Threat Model

• Physical sensor attack capability[1]

– Number of points. Attackers can spoof at most 200 points into the 
LiDAR point clouds.

– Location of points. Attackers can modify the distance, altitude, and 
azimuth of a spoofed point. Azimuth is within 10°.
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[1] Cao, Yulong, et al. "Adversarial sensor attack on lidar-based perception in autonomous driving." Proceedings of the 2019 
ACM SIGSAC Conference on Computer and Communications Security. 2019.



Threat Model

• Physical sensor attack capability[1]

– Number of points: 200 points.
– Location of points: distance, altitude, and azimuth (10°).

• Attack model 
– Goal: spoofing fake vehicles right in front of the victim AV [1] .
– Attackers can control the spoofed points within the described sensor 

attack capability.
– Attackers are not required to have access to the perception systems.
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[1] Cao, Yulong, et al. "Adversarial sensor attack on lidar-based perception in autonomous driving." Proceedings of the 2019 
ACM SIGSAC Conference on Computer and Communications Security. 2019.



Threat Model

• Physical sensor attack capability[1]

– Number of points: 200 points.
– Location of points: distance, altitude, and azimuth (10°).

• Attack model 
– Goal: spoofing fake vehicles right in front of the victim AV [1] .
– Within the described sensor attack capability.
– Black-box access assumption.

• Defense model
– We consider defending LiDAR spoofing attacks under both white-

and black-box settings.
– We focus on software-level countermeasures due to cost concerns.
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ACM SIGSAC Conference on Computer and Communications Security. 2019.



State-of-the-art LiDAR-based Perception 
Models
• Bird’s-eye view (BEV)-based Model

– Baidu Apollo 5.0[1] (latest version)
– Baidu Apollo 2.5 (model attacked in [2])

• Voxel-based Model
– PointPillars[3] (CVPR’19, used by AutoWare [4])
– VoxelNet[5] (CVPR’18)

• Point-wise Model
– PointRCNN[6] (CVPR’19)
– Fast PointRCNN[7] (ICCV’19)
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[1] Baidu Apollo. https://apollo.auto,  2020.
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A General Vulnerability &
Black-box Adversarial Sensor Attack



Behind the Scenes of Adv-LiDAR

• A valid front-near vehicle (located 5-8 meters 
right in front of the AV) should contain ~2000
reflected points and occupy 15° in azimuth[1] .
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• However, Adv-LiDAR  was able to spoof a fake 
front-near vehicle by injecting much fewer 
amount of points (80 points).

A valid front-near vehicle

An attack trace generated by 
Adv-LiDAR

[1] Statistical study on KITTI dataset (64-beam LiDAR) KITTI Vision Benchmark: 3D Object Detection. 
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d, 2020.



Behind the Scenes of Adv-LiDAR

• Two situations that a valid vehicle contains much fewer points in a LiDAR 
point cloud: 

– An occluded vehicle
– A distant vehicle
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False Positives

• Based on these observations, we find and validate two false positive 
(FP) conditions for the models：

1. FP1: If an occluded vehicle can be detected in the pristine point cloud 
by the model, its point set will be still detected as a vehicle when 
directly moved to a front-near location. 

2. FP2: If a distant vehicle can be detected in the pristine point cloud by 
the model, its point set will be still detected as a vehicle when directly 
moved to a front-near location.
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Vulnerability Identification

Attackers can directly exploit such two FP conditions to fool the LiDAR-based 
perception models and spoof a fake vehicle with much fewer points.
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Vulnerability Identification

Attackers can directly exploit such two FP conditions to fool the LiDAR-based 
perception models and spoof a fake vehicle with much fewer points.
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• FP1         State-of-the-art models perform 
detection in the 3D space where the occluder
and occludee stands apart with each other.
However, DNN models prefer local features.

• FP2        Object detection models are designed to 
be insensitive to the locations of objects.



Attack Evaluation

• Evaluation setup
– Environments: KITTI[1] point clouds.
– Combination of digital spoofing and physical spoofing.

• Black-box attacks universally achieve ~80% mean attack success rate
(ASR) on all target models.

23[1] KITTI Vision Benchmark: 3D Object Detection http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d, 2020.
Please refer to our paper for more detailed robustness analysis.



CARLO: oCclusion-Aware hieRarchy
anomaLy detectiOn



Free Space Detection

• Free space: the frustum (the straight-line path) from the LiDAR 
sensor and any point in the point cloud. 
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Free Space Detection

• Free space: the frustum (the straight-line path) from the LiDAR 
sensor and any point in the point cloud. 
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Due to the limited 
sensor attack 

capability, there is a 
large portion of free 
space inside a fake

vehicle’s bounding box.

Lasers can penetrate the
spoofed vehicle so that
points are located behind
the bounding box.



CARLO

• CARLO serves as a post-processing module leveraging free space as a
physical invariant to detect spoofed vehicles.

• CARLO can be efficiently stacked onto existing LiDAR-based perception
architectures.

– No need for model re-training.
– Consists of another GPU-friendly submodule to achieve around 8.5ms per-vehicle

processing time.
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Please refer to our paper for more details of CARLO.



CARLO Evaluation

• CARLO overall reduces the 
mean attack success rate from 
~80% to 5.5%.

• The accuracy of CARLO 
achieves at least 99.5%.

– The 0.5% detection errors comes 
from some faraway vehicles.

– No immediate impacts on AV’s 
current driving decisions.

• CARLO can also defend the 
white-box attack, Adv-LiDAR, 
and its adaptive attack.

28Please refer to our paper for more details of CARLO.



SVF: Sequential View Fusion
A Robust LiDAR-based Perception Architecture



Existing Architectures Revisit
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Existing Architectures Revisit
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Front View (FV) Should Help!

• The occluder and occludee neighbor
with each other in the FV, making it
possible for DNN models to learn the
local correlations. FP1  

• A valid vehicle’s points are clustered in 
the FV. However, due to the limited 
sensor attack capability, attack traces will 
scatter in the FV. FP2            
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Front View (FV) Should Help!
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1. Vehicles share 
similar size.

2. Points from 
different vehicles 
stand apart.



Sequential View Fusion (SVF)

• Attach a semantic segmentation 
network to the FV representation.

– Output the probability score of  each 
point that it belongs to a vehicle.

– An easier task as it does not need to 
estimate object-level output.

– Achieve much more satisfactory
results than the 3D object detection 
task over FV[1,2].
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[1] Biasutti, Pierre, et al. "LU-Net: An Efficient Network for 3D LiDAR Point Cloud Semantic Segmentation Based on End-to-End-Learned 3D Features and U-Net." Proceedings of the IEEE International 
Conference on Computer Vision Workshops. 2019.
[2] B. Wu, et al. Squeezeseg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud. In International Conference on Robotics and 
Automation, 



Sequential View Fusion (SVF)

• Attach a semantic segmentation 
network to the FV representation.
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• The original point cloud is 
augmented with the scores from 
the FV.

• The final 3D object detection 
module takes the augmented 
point cloud as input.

– Reserve the advantages of 
detection on 3D representations
with useful information from FV.



SVF Evaluation

• SVF models are shown to be robust against LiDAR spoofing attacks, where 
the mean success rates are merely ~2.3%.

– Similar detection accuracy with the original models.

• SVF models are also resilient to the state-of-the-art white-box attack, Adv-
LiDAR, and its adaptive attack.

36Please refer to our paper for white-box robustness evaluation of SVF.



Limitations

• Attack Practicality
– Large-scale evaluations are based on digital LiDAR spoofing.
– Physical LiDAR spoofing is performed in in-lab environments.
– No real road test due to cost concerns.

• Vulnerability Completeness
– The identified vulnerability only partially explains the success of LiDAR spoofing attacks.

• Defenses Guarantees
– Both defense solutions cannot provide strong guarantees.
– Defenses may fail when the sensor attack capability improves dramatically (e.g., injecting

1500 points).
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Conclusion

• Explore a general vulnerability of current LiDAR-based perception 
architectures and construct the first black-box spoofing attack.

• Perform the first defense study, proposing CARLO as an anomaly 
detection module that can be stacked on LiDAR-based perception models.

• Design the first end-to-end general architecture for robust LiDAR-based 
perception.

Thank you !
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