Human Distinguishable Visual Key Fingerprints

Mozhgan Azimpourkivi
Bloomberg LP
mojganaz @ gmail.com

Abstract

Visual fingerprints are used in human verification of identities
to improve security against impersonation attacks. The verifi-
cation requires the user to confirm that the visual fingerprint
image derived from the trusted source is the same as the one
derived from the unknown source. We introduce CEAL, a
novel mechanism to build generators for visual fingerprint
representations of arbitrary public strings. CEAL stands out
from existing approaches in three significant aspects: (1) elim-
inates the need for hand curated image generation rules by
learning a generator model that imitates the style and domain
of fingerprint images from a large collection of sample im-
ages, hence enabling easy customizability, (2) operates within
limits of the visual discriminative ability of human percep-
tion, such that the learned fingerprint image generator avoids
mapping distinct keys to images which are not distinguish-
able by humans, and (3) the resulting model deterministically
generates realistic fingerprint images from an input vector,
where the vector components are designated to control visual
properties which are either readily perceptible to a human eye,
or imperceptible, yet necessary for accurately modeling the
target image domain.

Unlike existing visual fingerprint generators, CEAL factors
in the limits of human perception, and pushes the key pay-
load capacity of the images toward the limits of its generative
model: We have built a generative network for nature land-
scape images which can reliably encode 123 bits of entropy
in the fingerprint. We label 3,996 image pairs by 931 partic-
ipants. In experiments with 402 million attack image pairs,
we found that pre-image attacks performed by adversaries
equipped with the human perception discriminators that we
build, achieve a success rate against CEAL that is at most 2
x1074%. The CEAL generator model is small (67MB) and
efficient (2.3s to generate an image fingerprint on a laptop).

1 Introduction

Key Fingerprint Generators (KFGs) [2, 7, 19, 25, 34, 41] help
simplify the error-prone and cumbersome task of comparing

Umut Topkara
Bloomberg LP FIU
topkara@ gmail.com

Bogdan Carbunar

carbunar@ gmail.com

arbitrarily complex and long strings (e.g. cryptographic keys,
addresses, identifiers) received from a trusted and an untrusted
source, by converting it to the equivalent yet more natural task
of comparing images or shorter text (i.e. fingerprints). Appli-
cations include manual key verification in SSH, OpenPGP
and end-to-end encrypted applications [51], detection of Bit-
coin clipboard attacks that target millions of addresses [48],
device pairing, and the development of visual CAPTCHA:s.

While secure KFGs do not need to generate memorable
fingerprints, they need to be resilient to collision attacks, i.e.,
make it hard to find distinct input strings whose fingerprints
are perceived to be identical by humans, and simultaneously
minimize the time taken by a human to compare fingerprints
(see Figure 1 for example collision attacks on text-based
KFGs and CEAL). Tan et al. [50] have shown that Visual
KFGs (or VKFGs) [5, 17, 33, 36, 41, 52], that convert input
strings into images for humans to compare, outperform sev-
eral text-based KFGs (e.g. [2, 25]) in terms of both collision
attack detection rate and comparison time.

However, existing VKFGs do not factor in the limits of
human visual perception, and how it relates to the space of im-
ages that they generate. Instead, they convert the input string
(e.g., the hash of a key) to a structured image, e.g., by map-
ping an input byte to a specific color or shape. The inability to
determine if changes in the input string will generate human-
distinguishable fingerprint images, renders VKFGs vulnerable
to collision attacks. Case in point, in § 10.4 we report vulner-
abilities of Vash [1], a VKFG, identified as state-of-the-art in
terms of usability and attack detection ability [50].

In this paper, we address the insufficient capacity of exist-
ing VKFGs, i.e., the small number of human-distinguishable
images that they can generate. We develop CEAL, a novel
approach to build effective VKFGs, and demonstrate its use
by constructing a state of the art VFKG. CEAL maximizes
the VKFG input bit-length, where the VKFG converts each
possible input value into a fingerprint image that is human-
distinguishable from those of all other inputs.

Exploring the space of human-distinguishable images is
made challenging by the wide range of human visual sys-



653A3D423C463TEC
FC3F39865609147

33E0ABOOC1BD4ABC
SATEOTO514307B3

653A3D423C463TEC
FC3F39965609147

33E0ABOOC1BD4AEC
5ATEOTO0510307B3

Figure 1: Sample key hashes, shown in hex format broken
across two lines, that differ in a single bit (top and bottom)
and their corresponding CEAL generated images. Unlike the
textual keys, the images are easy to distinguish by humans.

tems and the number of images that need to be compared.
Using humans to verify the distinguishability of generated
images, has further scalability problems. This suggests the
need for an automatic solution (e.g. a classifier) to predict
human perception in terms of image distinguishability. While
deep learning seems ideally suited for this task, deep learn-
ing networks require large training datasets (e.g. 1.2 million
images for Inception.v1 [49]). Our limited ability to collect
ground truth labeled data will impact the accuracy of a human-
distinguishability predictor, hence our ability to generate dis-
tinguishable images.

Contributions. In this paper, we leverage Generative Adver-
sarial Networks (GANs) [18] to address the above challenges
and generate realistic, attack-resilient images that are easy to
compare by humans. Our choice of realistic images is mo-
tivated by previous research that has shown that the human
visual system is better at distinguishing changes in images
when their content is more natural [40]. We introduce CEAL,
a training approach to build a strong VKFG able to generate
human-distinguishable images, even when the input strings
differ in a single bit. Figure 1 shows such CEAL-generated
image fingerprints, for almost human-indistinguishable 123
bit key hash pairs (shown in hex format).

To address the human-distinguishability challenges, we
design and train the first Human Perception Discriminator
(HPD) network, a classifier that predicts whether two input
images would be perceived as distinct by human verifiers.
To address the high cost of human-annotated training data,
we leverage the observation that the HPD only needs high
precision in detecting human distinguishable images: low
recall will only make it more conservative.

To increase the capacity of VKFGs, we introduce and build
CL-GAN, a Deep Convolutional Generative Adversarial Net-
work (DCGAN) [42] that takes as input a latent vector, and
is adversarially trained using the HPD, to generate not only
realistic but also HPD-distinguishable images.

We seek to eliminate the aforementioned inability of con-
ventional VKFGs (e.g., Vash [1]) to generate distinguishable
images when input strings are modified in only a few bits. For
this, we leverage previous results on learning disentangled
representations [10, 11, 16, 28, 31] to conjecture that we can
decompose the latent vector into subsets of major and minor
components, where major components contribute to the im-
age distinguishability thus the capacity of the CEAL VKFG,
while minor components do not (see § 7.2). To validate this
conjecture, we overcome GAN instabilities and mode collapse
problems [27, 35, 44] to integrate the constraints of the major
and minor components into the CL-GAN training procedure,
decompose the latent vector into such components, and en-
hance the ability of the major components to encode human
distinguishability and of the minor components to enable the
image generator to produce realistic images.

We experimentally identify the minimum Hamming dis-
tance between major components provided to CL-GAN, that
when changed, consistently generated human-distinguishable
images (see § 9.2). We use error correction codes to encode
the CEAL input vectors (key hashes) into a representation
that ensures HPD-distinguishability of the generated images.

Further, we show that the likelihood of finding a collision

(i.e., human-perceived similar CEAL images, generated from
different inputs) decreases as the distance between input latent
vectors increases. Since GANS can be unstable, we also train
CEAL to generate diverse images (§ 7.2).
Results. We implemented and trained CEAL using Tensor-
flow [6], 557 image pairs labeled by 500 crowdsourced work-
ers, and 26,244 synthetically-generated image pairs. We show,
using 402 million preimage attack instances, that it is compu-
tationally hard even for adversaries controlling all but one of
the bits of the input string hash, and equipped with the HPD
classifiers that we have developed, to find a collision: only
between 1.86 x107% and 1.62 x 10~%% of attack samples
were identified as successful by the adversarial HPD and were
confirmed by humans.

Participants in our studies took an average of 2.73s to com-
pare similar (attack) pairs of CEAL images, 10% shorter than
for Vash [1] attack images. In summary, we provide the fol-
lowing contributions:

e Strong vs. Weak VKFG. Formalize weak and strong
Visual Key Fingerprint Generator (VKFG) functions.
Decompose the problem of building a strong VKFG, into
building a weak VKFG function, and converting a weak
VKFG into a strong VKFG function [§ 3]. Show that
Vash [1], a state-of-the-art VKFG [50], is not a strong
VKEFG function [§ 10.4 and § 10.5].

e CEAL. Develop the first approach to train a neu-
ral network based, strong VKFG function with built-
in hash properties, that generates realistic, human-
distinguishable, and attack resistant images [§ 7].

e Human-Perception Classifier (HPD). Build the first
classifier to predict if two GAN-generated images will



be perceived as identical or different by humans [§ 7.1].

e CL-GAN. Conjecture the existence of, and enforce, ma-
jor and minor latent vector components, with different
impacts on the human-distinguishability of generated
images. Introduce and build CL-GAN, a DCGAN that
enforces a maximum number of major components with
human-distinguishability impact [§ 7.2 and § 7.3]. CL-
GAN is small (66.7MB) and efficient (average of 2.3s to
generate an image fingerprint on a MacBook laptop and
0.3s on a GPU-equipped desktop).

e Attack Resilience. Evaluate CEAL using a total of
402 million attack image pairs and labeled 3,226
CEAL-generated image pairs by 319 human workers
[§ 10.2]. While the HPD model achieves 84% preci-
sion [§ 9.1], CEAL produces unique images, that are
quickly determined by humans to be different, even when
adversarially-generated [§ 10.3].

2 Related Work

Text-based KFGs transform an input key (e.g., a hashed public
key) into a shorter, human readable format. The most com-
monly used textual KFG encodes the key into a hexadecimal
or Base32 representation. On a study with 1047 participants,
Dechand et al. [14] show that the hexadecimal representation
is more vulnerable to partial preimage attacks.

Visual KFG (VKFG) solutions synthetically generate im-
ages to act as visual key fingerprints. For instance, Random
art [41] and its implementation Vash [1] use the input key to
generate a structured image (see § 10.4 for a detailed descrip-
tion). Other solutions, e.g., [17, 33, 36] similarly generate
visual key fingerprints using a combination of colors, patterns
and shapes. Avatar representation techniques such as Uni-
corn [52], can also be used as visual key representations [50].
WP_MonsterID [5] generates the visual representation as a
collage of randomly selected parts from an existing dataset
of images. However, Hsiao et al. [24] argue that an increase
of the capacity of such visual solutions, requires an increase
in the number of colors, patterns and shapes used, which con-
sequently makes the images hard to distinguish. Thus, even
though such solutions use an additional source of entropy
(e.g., PRNG), they have not been designed to generate human-
distinguishable images.

The user studies of Tan et al. [50] that compare multiple
text and visual KFG solutions suggest that VKFGs can speed
up the verification of key fingerprints. In their experiments,
Vash [1] outperforms the unicorn solution [52] and several
text-based KFGs (e.g. hexadecimal and numeric representa-
tions) in terms of both attack detection rate and comparison
time. However, the attack success rate against Vash is fairly
high, at 12%. In § 10.4, we study Vash, and confirm that de-
spite its reliance on a PRNG, Vash is unable to satisfy the prop-
erties that we introduce in § 3. Particularly, we show that not
all the images generated by Vash are human-distinguishable,

Trusted =
Crypto Source
Bitcoi @ Keyl
itcoin T e
Address @ \ i @ g
]
. 0 ~ [+ =

Address Ladl / I Key Trusted
) m Fingerprint Reference
D -
evice H Content . —
ID ]

Hash & Human Verifier

Figure 2: Visual key fingerprint generator (VKFG) model and
scenario. Given an arbitrary input string, the VKFG gener-
ates an image fingerprint representation. A human verifier
compares this image against a securely acquired (e.g., from a
trusted site, or person-to-person) reference image fingerprint.

especially when the number of overlaid shapes and colors on
the canvas increases. This is expected, as the visual sensitiv-
ity of humans to changes, diminishes with increased spatial
frequency [53].

In contrast, CEAL is the first VKFG designed to ensure
that the human visual system can differentiate between im-
age fingerprints generated from different keys. This endows
CEAL with resilience to adversaries that exceeds the strength
assumed in state-of-the-art attacks (of Tan et al. [50] and Dec-
hand et al. [14]). In § 10.3, we show that even adversaries
who control all but one of the bits of the input string hash,
achieve only a 1.7% success rate. Further, in Section 10.5, we
confirm that when compared to Vash, CEAL is not only more
attack resilient, but also enables faster human verifications.

3 Problem Definition

Informally, we consider the scenario depicted in Figure 2:
the user is presented with two images, one acquired from a
trusted source, and one generated from data received from an
untrusted source (e.g., public key, shared key, Bitcoin address,
IP address, domain name). The images are not necessarily
available or presented on the same device. Instead, they could
be displayed on different screens (e.g., of a smartphone and a
laptop) or on a device and a physical medium, e.g., a printed
card. To authenticate the untrusted data, the user needs to
compare the two images for equality. We note that the user
does not need to memorize images, but only visually compare
the two images for equality.

More generally, we seek to construct a set of images, where
each image can be easily and quickly distinguished from
any other image in the set, by a human. Furthermore, we
desire to construct a hash-like mapping function, from an
input space of strings of the same size to this set of images.
In the following, for simplicity, we also refer to input strings
as keys. We represent a given key with an image, which will
not be confused for another key’s image representation. To
prevent brute-force attacks, we require the set of images to be



large, and infeasible to store and enumerate. Therefore, we
define our set through a generator, which takes an input key
and outputs the corresponding element in the set. In the rest
of this section, we provide a formal definition of the visual
fingerprint problem, and introduce mechanisms which we
have used to build our solution.

We define the set of RGB images I, and a function
HPD, i : I x I — [0,1] that captures the proportion of ex-
periments where humans would perceive the pair of images
to be distinguishable. Let P’ € {0,1}, denote the result
of the u'" human perception experiment on an image pair
I;,Ij € I, P;’ = 1if and only if the human perceives the im-
ages to be different, P’ = 0 otherwise. Then, if n is the num-
ber of human experiments conducted per each image pair,

n o piJ

HPD,aip (I, 1;) = E=L1

We seek to build a strong visual key fingerprint generation
function V5 : {0,1}Y — I, where, Is C I and v is the input
string length. V, and thereby I, has the following desired
property: For all binary input strings K;,K; € {0,1}", and
their corresponding mapped images [;,I; € Is, where V,(K;) =
Il'7VS(Kj) =1,

Ki #K; <= HPD,uio(I;,1;) =1 (D

In practice, it is very challenging to build a generator that

satisfies this strong requirement for all possible human vi-
sual systems. Instead, we propose to first build a weak visual
key fingerprint generation function V,, : {0, 1}\/ — Iy, where
Iy C I. Let dy denote the Hamming distance. The V,, is
not able to guarantee that key pairs will be distinguishable if
their dy is within d, i.e., E(HPDm,ia(Ii,Ij) | dH([(i,Kj) <
d) < 1 —&. However, for key pairs whose dy value is at
least d, V,, is able to guarantee human distinguishability, i.e.,
VK;,K; € {0,1}Y, and I; = Vi, (K;), and I; = Vi, (K;), we have
d[-](K,',Kj) >d <— HPDrati()(Ii»Ij) =1.
Weak-to-strong problem decomposition. We thus decom-
pose the problem of building a strong VKFG function into
two sub-problems. First, build a weak VKFG function, and
identify the minimum value d that satisfies the above require-
ments. Second, use the identified d to convert the weak VKFG
into a strong VKFG function.

In addition to the human-distinguishability of generated
fingerprints, developed solutions should also (1) have a suffi-
ciently large capacity to be resistant against preimage attacks,
i.e., the number of unique and human-distinguishable gener-
ated images should be large, and (2) ensure that humans are
able to quickly compare any pair of generated images.

3.1 Adversary Model

We assume an adversary who attempts preimage attacks, i.e.,
to find input strings whose visual fingerprints will be per-
ceived by a human verifier to be similar to the fingerprint of a
specific victim. We assume that the adversary has blackbox
access to the weak V,, and strong V; functions.

We consider a (,d)-adversary [14], able to identify candi-
date strings that hash within Hamming distance d < 7y to the
victim’s key hash K (y-bit long). In Section 10.3, we evaluate
our solution against an adversary that controls up to 122 out
of 123 bits of the input key hash, which is stronger than the 80
out of 112 bits adversary of Dechand et al. [14]. The strength
of our adversary is thus more similar to that of the adversary
considered by Tan et al. [50], who can perform 2°° brute force
attempts.

4 Applications

Immediate applications of visual key fingerprints include tra-
ditional remote authentication solutions such as SSH and
OpenPGP/GnuPG [9], that encode the hash of a public key
into a human readable format, for manual comparison [22].
The more recent End-to-End Encrypted (E2EE) applications
(e.g., secure messaging apps [51] such as WhatsApp [4],
Viber [3], Facebook messenger [13]), further offer a partic-
ularly appealing use case for visual key fingerprints. To au-
thenticate a communication peer, the user needs to visually
compare the peer’s public key fingerprint against a reference
fingerprint that she has previously acquired through a secure
channel (e.g., in person, from a trusted site, etc).

Visual key fingerprints can also be used for device pairing
(e.g., Bluetooth Secure Simple Pairing using ECDH [39]),
by having the user visually compare visual key fingerprint
images of device keys, displayed on both paired devices.

The dependence of the HPD model performance on hu-
man annotations can be used to setup a mechanism which not
only provides a non-cognitive human user detection, but also
further improves the HPD. That is, the developed CEAL gen-
erator can be used to construct a matching based CAPTCHA
where users are asked to mark pairs of “unmatching” im-
ages. Pairs labeled by the large number of CAPTCHA an-
swers could then be used to build even more powerful HPD
classifiers and CEAL generators, thereby setting up a self-
improving mechanism. In § 11, we further discuss how ad-
versarial interest in breaking CEAL-generated CAPTCHAS
would further improve research on human visual perception.

S Background

We now describe the architecture and training process of Gen-
erative Adversarial Networks (GANs) and error correcting
codes, which we use to build CEAL.

GAN. Deep Generative Models (DGMs) are DNNs that are
usually trained, using unsupervised learning, to learn and
summarize key features of samples in the training data. The
trained model can be used to draw samples from the mod-
eled data distribution, i.e. generate previously unseen, but
realistic and plausible instances similar to the samples in the
training dataset. There are two major classes of generative



models: Variational AutoEncoder (VAE) [30] and Generative
Adversarial Networks (GAN) [18].

CEAL uses a GAN model and trains a generator that takes
as input a latent vector, i.e., a set of components randomly
selected from a uniform distribution over (—1, 1), to produce
realistic and human-distinguishable images. The conventional
GAN consists of two competing neural networks: (1) a gener-
ator network (G) that transforms the input latent vector into
an image, and (2) a discriminator network (D) that differen-
tiates synthetic images, generated by G, from real images in
a training dataset. G and D are trained alternately. The com-
petition drives G to generate images that look like images
from a training, real image dataset. For CEAL, we use a DC-
GAN [42]-like architecture to generate images that represent
a key fingerprint corresponding to an input key string.

Our approach is also related to, and inspired by work on
learning disentangled representations, i.e. interpretable factors
of data variation [10, 11, 28, 31], that seeks to learn a repre-
sentation that captures the underlying generative structure of
data. For instance, InfoGAN [11] learns to disentangle visual
characteristics (e.g. style, color, pose of objects, etc.) of GAN-
generated images. Further, SDGAN [16] uses a supervised
approach to train a GAN with latent vector components repre-
senting both identities (e.g. individual humans) and observa-
tions (e.g. specific photographs) of human faces. In addition,
Grathwohl and Wilson [20] disentangle spatial and temporal
features in videos, in an unsupervised fashion. We propose
instead a disentanglement of major from minor components:
decompose the latent vector into major and minor compo-
nents, and train major components to encode information
about human distinguishability, and the minor components to
encode image realism properties. This captures the observa-
tion that only a subset of latent vector components are able to
trigger human-distinguishable changes in generated images.
Error Correcting Codes. We use binary BCH [8, 23] codes
to map a key fingerprint into the input of CL-GAN (see § 7.3
and § 9.3). A t-error correcting BCH code can correct up
to t bits, and the generated code words are guaranteed to be
within Hamming distance at least d > 2¢ 4 1 of each other.
We represent a ¢-error correcting code with a message length
of n and code word length of & bits as BCH (n, k).

6 Approach

We introduce the CEAL (CrEdential Assurance Labeling)
approach to build a visual key fingerprint generator that will
generate realistic images and address the requirements of
§ 3. CEAL consists of two steps, each solving one of the
sub-problems of § 3, see Figure 3 .

In the first step, we train a generator network to be the weak
V,, function (§ 7.2). That is, the network takes as input a latent
vector, and produces a realistic image, human-distinguishable
from other images generated from latent vectors that are in

Training Process

Z O \,

- MWput (0 —| Generator |» ==
Input Mapper B .
String ¢ Elgag It
Latent Vector Image

Figure 3: The CEAL approach: Train a generator to convert
a latent vector to a realistic image, human-distinguishable
from other generator produced images. Then, train an input
mapper, that converts arbitrary input strings to latent vectors
suitable for the previously trained generator.

Hamming distance at least d (see § 6). We experimentally
identify d in § 9.3.

In the second step, we build an input mapper that converts
arbitrary input strings into latent vectors that are within Ham-
ming distance of at least d from other mapped inputs (§ 9.3).
We show that it is possible to build the input mapper, thus
convert the trained weak V,, into a strong V function, using an
error correcting code encoder, e.g., [8, 23], ECC: {0,1}Y —
{0, 1}7/, with minimum distance of d. Specifically, VK;,K; €
{0, l}Y,K,‘ 75 Kj — dH(ECC(Kl),ECC(K])) >d. Then, the
trained system first applies ECC to the input, then applies the
V., generator to the encoded string. This ensures that the input
to V,, will always result in a human-distinguishable output, by
the definition of the V,,. Therefore, V,, o ECC : {0,1}Y — Iy,
where Iy C Iy, and VI, I € Iy, HPD,gyio(I1, 1) = 1.

How to Train Your Generator. Having access to a HPD, 4,
function, would allow a generator training algorithm to tap
into golden annotations of which images are suitable to
generate. In practice, we are not able to run a large num-
ber of human perception experiments for any given pair
of images. However, given a sufficient number of annota-
tions, a regression predictor model HPDegie; : I X I —
[0,1] may be used to approximate the HPD,;, function,
E(|HPDpredicz (11,12) —HPDmn'o(Il 712)|) < €. We show that,
even with a small number of annotated data, a very limited
classification model HPD,gyq : I % I — {0, 1} which can de-
tect distinguishable image pairs with high precision at the cost
of low recall, P(HPD,4io > 0 | HPDguai (I1, 1) = 1) < &, is
sufficient for training a generator which satisfies the strong V;
requirement (see Equation 1 and § 3).

In the following, let K be the input key string (see Figure 3),
and let Y = |K|. The input module converts K into a latent
vector L, A = |L|, Y < A. The generator network converts L
into a fingerprint image. Table | summarizes the notations
that we use in this paper.



Description

Y Length of input string (e.g. hash of key)
A Length of input latent vector (M+m)
M Number of major components
m Number of minor components
d Hamming distance between two input strings

CL-GAN CEAL training network
G-CEAL Generator network in CL-GAN
D-CEAL Discriminator network in CL-GAN
HPD Human Perception Discriminator

Table 1: CEAL notations.

7 The CEAL System

We now describe the CEAL training process outlined in Fig-
ure 3. Unlike existing techniques that generate images using
handcrafted rules, CEAL uses GANs (see § 5) to generate
realistic, human-distinguishable images from input strings.
While a DCGAN [42] can model the distribution of the train-
ing data and generate previously unseen, but realistic samples
from the estimated distribution, in § 8 we show that human
workers recruited from Amazon Mechanical Turk (MTurk)
often cannot perceive differences between images that are
generated by a DCGAN, from similar inputs.

To address this problem, we introduce CL-GAN, a
DCGAN:-based deep generative model that we train to gen-
erate images that are not only realistic, but also human-
distinguishable. We train CL-GAN’s generator network G-
CEAL, using two classifiers (see Figure 4): (1) the CL-GAN
discriminator (D-CEAL) that is trained to differentiate syn-
thetically generated images by G-CEAL from a dataset of
real images, and (2) the HPD classifier, trained to estimate the
likelihood that a human will label a pair of images as either
identical or different.

In the following, we first describe the HPD employed by
CL-GAN, then detail the training process of CL-GAN. Finally,
we describe CEAL’s input mapper module, see Figure 3.

7.1 Human Perception Discriminator (HPD)

The Human Perception Discriminator (HPD) module takes
two images as input, and computes the probability that the
images are perceived as being different images by humans.
We build HPD using a deep neural network (DNN). The high
level architecture of the HPD classifier network (see Figure 5),
is similar to a Siamese network [12]. Specifically, the HPD
consists of two identical, twin networks (with shared weights).
Each network accepts as input one of the two input images
and passes it through the layers of a trained network.

To train a DNN with millions of parameters, we need a
large training dataset of labeled samples. However, collecting
labeled data is a time consuming and expensive process. To

—> Same vs.

Human Different
ol

Perception
v

Generator
Network

o® Discriminator
Latent Vector pairs
(Slightly Different)

Realism Real vs. Fake
Discriminato&

' Feedback

Figure 4: CL-GAN architecture and training. We use the

combination of Discriminator loss and HPD loss to train the
generator to generate distinguishable and realistic images.

address this problem, we leverage previous studies that have
shown that the features that are learned by a DNN are trans-
ferable and can be used to perform similar tasks [46, 54]. This
is because the representation learned by deep neural network
is distributed across different layers, where shallow layers
capture low level features (e.g. Gabor-like filters in the image
domain), and deeper layers capture more abstract and compli-
cated features (e.g. the face of a cat). It is common practice
to use one or a combination of the representations learned by
different layers of an existing network, as features for a new,
related task. Experimentally investigating which representa-
tion performs best for the problem of image matching in HPD
is hence a typical feature selection task in machine learning.

Specifically, we employ a transfer learning approach using
the Inception.vl model [49], trained for image classification
tasks on the ImageNet dataset[15] (1.2 million images from
1,000 categories). We extract 50,176 features for each image,
from the Inception.vl network, i.e., the activations of the
“Mixed_5c” layer of Inception.vl. In § 9.1, we experimentally
justify the choice of this layer.

Following the Inception.vl network, HPD consists of 3
additional fully connected layers, see Figure 5. In Section 9.1,
we describe our hyper-parameter search process to find the
number of layers and the number of nodes in each layer. We
use these layers in order to train the HPD. This is because we
cannot update the weights of the Inception.v1 layers. Instead,
we optimize the weights of the 3 fully-connected layers, using
weighted contrastive loss [12] with L2 regularization. The
loss will enable the network to differentiate between the two
images; regularization will prevent overfitting. Equation 2
shows how the weights are updated based on the weighted
contrastive loss for two input samples /; and I:

L(8,Y.I,b) = L(1—r)(1 = Y)(D\?) + 1rY (max(0,u—D,))*  (2)

0 denotes the model parameters (weights and biases), and
Y is the actual class label of the image pair, i.e. 1 for differ-
ent and O for identical images. D,, is the Euclidean distance
between the outputs of the twin networks (O and O; in
Figure 5) for the input image pairs. r € [0,1] is the weight
(importance) assigned to the positive (different) class and



!

Inception.vl
up to Mixed_5c

Contrastive loss
Slgmoid cross
entropy loss
Same
\\

- Different
50
0,

!

Inception.vl
up to Mixed_5c¢

50

77

\ 1024 1024

W
layer

(%
o
=
~
(o))
Input Vector 77/

Fully connected [_]

Euclidean Distance

Figure 5: Human Perception Discriminator (HPD) archi-
tecture. HPD passes input images /; and I, through the Incep-
tion.v1 network, applies 3 fully connected layers to generate
image feature vectors O and O;, computes the squared Eu-
clidean distance between O and O; and passes it through a
fully connected layer. HPD classifies /; and I, as different or
identical, based on this distance.

u€R, u>1isamargin.

After training the 3 additional layers in the twin Siamese
network using contrastive loss, the network has learned to dif-
ferentiate between the input image pairs, i.e. generate distant
representations (O and O,) for dissimilar images and simi-
lar representations for similar images. We freeze the network
weights and feed their derived output, i.e., the component-wise
squared differences between the activations of the last layers
in the twins networks, to an additional fully connected layer
consisting of 1 neuron, i.e., the HPD output, with sigmoid
activation function, see Figure 5. We optimize this layer’s
weights using a weighted cross-entropy loss and L2 regular-
ization. The purpose of this last layer is to classify the image
pairs into either the “identical” or “different” class.

7.2 Training CL-GAN

As described in § 7, we train CL-GAN’s generator, G-CEAL,
to generate images that are both realistic, and visually dis-
tinguishable by humans. We seek to thwart even adversaries
who can generate input values K’ that are at small Hamming
distance from a victim K value (see § 3.1). For this, we de-
sign G-CEAL to generate fingerprint images that are visually
different even when the input keys are similar. We define
then the following image pair generation (IPG) process, that
takes as input a seed latent vector v of length A, and an index
i€{l1,2,3,...,A}, and outputs two vectors v; and v,, also of
length A, that differ from v only in their i-th component:

Definition 1 (Image Pair Generation: /PG(v, i)). Generate
vectors vi and vy, such that vi[i] = I and w[i] = -1, and

vl =wvaljl =vjl, Vje€{1,2,3,.., A}, j # i

1 and -1 are extreme values of each component, which we
use to maximize the component effect in generated images.

2. Deployment

. 1. Training O
G-CEAL Maler @ ~O
Training

Minor 4—-/8

Latent Vector CEAL Latent Vector

Input K

Figure 6: Major and minor components. The G-CEAL gen-
erator trains M components to be major components and the
rest A— M to be minor components. Major components im-
pact the human-distinguishability of generated images; minor
components are used to generate realistic images. Input Map-
per converts the input key into a latent vector.

Major and Minor Components. Preliminary experiments
with DCGAN revealed that not all input bits have an equal
impact on the human-distinguishability of generated images:
when changed, some bits produce images that are not hu-
man distinguishable. To address this problem, we lever-
age recent successes in learning disentangled representa-
tions [10, 11, 16, 28, 31], to conjecture that we can decom-
pose the latent vector into (1) a subset of major components,
that when changed individually, produce human-perceptible
changes in the generated images, and (2) the remaining, minor
components, that encode relatively imperceptible characteris-
tics of the images, see Figure 6.

We build a CL-GAN that verifies this conjecture, by train-
ing M (system parameter) latent vector components to become
major components, and the rest, i.e., m = A — M, to become
minor components, see Figure 6. Consistent with the above
IPG, we select extreme values for the M major components,
i.e., from the set {—1, 1}, to maximize the effect of each com-
ponent on the visual characteristics of the generated images.
However, we select the values for each of the m minor com-
ponents, uniformly random from (—1,1).

Train for Human Distinguishability. We leverage the in-
put latent vector to control the visual characteristics of the
images generated by G-CEAL. While major components con-
tribute to the image distinguishability thus the capacity of
the CEAL VKFG, we leverage minor components to help
G-CEAL generate realistic images and maintain other visual
aspects of the image. To achieve this, in each adversarial train-
ing epoch, we train G-CEAL using 3 steps, to generate (1)
visually distinguishable images when the values of individual
major components in the latent vectors are changed (flipped
between 1 and -1) and (2) visually indistinguishable images
when the values for minor components are flipped (see § 7.2).

Although in each of the 3 steps we use a different set of
latent vector pairs as input to G-CEAL, the objective functions
for all the steps has the general form shown in Equation 3.

L(GGCEAL) = 0 X HPDj455 + Gioss 3)

In each step, we implicitly use this equation as the loss
function to train G-CEAL. In this equation, HPD,g; is the
HPD loss that we define exclusively for the step. This loss



is an indicator of how different the generated images are, as
perceived by a human. o € IR is a weight that determines
the contribution of HPDj, to the overall loss value for the
step. Gioss 18 the generator loss in the conventional GAN (i.e.,
Gioss = —10g(Dcear(GeEar(z))), where z is a sample latent
vector). This loss is an indicator of how realistic and visually
similar the generated images are, compared to the images in
the real image dataset used for training D-CEAL.

We now describe the 3 training steps M and m = A — M
are the number of major and minor components in the latent
vector input to G-CEAL.

e Step 1: Train major components. This step encour-
ages specific (i.e., the first M) latent vector components to
have a visual effect on the generated images. For this, gen-
erate M random seed latent vectors. Then, for each index
i€{l1,2,3,...,M}, use the IPG(i) of Definition 1, along with
the corresponding generated seed latent vector, to generate
two random latent vectors vy and v,. Use G-CEAL to generate
images /; and I from v; and v, respectively. Use the HPD
classifier to compute HPD ,eqic: (11, 12). To force the i com-
ponent of the latent vector to be a major component, i.e., max-
imize the effect of the i component on the visual character-
istics of the generated images, we want the HPD classifier to
classify all these image pairs (I, I») as different (class 1). To
achieve this, define the HPD),,; for the pair of latent vectors to
be HPD,y5(v1,v2) = cross_entropy(1,HPD preqic (I, 12)).

e Step 2: Train minor components. This training step
encourages minor components to have minimal impact on
image distinguishability. For this, generate m random seed
latent vectors. Then, for each minor positioni € {M+ 1,M +
2,...,A}, form sample latent vector pairs v; and v, as in
Definition 1. Use G-CEAL on v; and v, to generate im-
ages M and M,. To force the i’ component of the latent
vector to be a minor component, we want the HPD clas-
sifier to classify (M, M3) as identical (class 0). For this,
define the HPD,, for this pair to be: HPDj,s(vi,v2) =
cross_entropy(0, HPD pyeqic; (M1, M2)).

e Step 3: Train for variety. During preliminary experi-
ments we observed that using only steps 1 and 2, can lead
to training a G-CEAL that generates similar images from
randomly picked latent vectors (see Figure 7). Step 3 ad-
dresses this problem, by encouraging any 2 major compo-
nents to impose different effects on the visual characteristics
of generated images. For this, generate several batches of
random seed latent vectors. Then, for each seed latent vector,
pick two random major components i, j €g {1,2,3,..., M}
and i # j. Copy seed latent vector v into two other latent
vectors v; and v, then set v[i] = 1 and v;[j] = 1. Let N
and N, be the images that are generated by G-CEAL from
v1 and vy respectively. Define the loss of the generator as:
HPD o = cross_entropy(1,HPD ,y.gic; (N1,N2)).

Train for Realism. As described in § 7, we train G-CEAL
to also generate realistic images. We do this because the hu-
man visual system was shown to be better at distinguishing

changes in images when their content is more natural [40].
To achieve this, we train G-CEAL also using the output (i.e.,
real vs. fake) issued by the D-CEAL discriminator for the
G-CEAL-generated images of the previous epoch. Then, in
each epoch, D-CEAL is also trained, similar to a conventional
DCGAN, to discriminate the synthetic images generated by
G-CEAL in the above 3 training steps from real images of a
training dataset. Subsequently, we train G-CEAL using the
classification signal provided by D-CEAL, i.e., Gy, in Equa-
tion 3. This process encourages G-CEAL to generate (previ-
ously unseen) images, that look like the images in the training
dataset of real images, and deceive D-CEAL to classify them
as real images.

7.3 Input Mapper

The CEAL approach trains the above G-CEAL generator to be
a weak V,, function (§ 3). In § 9.3, we detail our experimental
process to find the G-CEAL’s d value (defined in § 6). We
now describe the input mapper module, that solves the second
sub-problem of Section 3: convert input keys into codes that
are at Hamming distance at least d from each other.
Specifically, as also illustrated in Figure 6, the input mapper
takes as input a key (e.g., public key, shared key, Bitcoin
address, IP address, domain name) and outputs a latent vector
L of length A, i.e., a code word at Hamming distance at least
d from the code word of any other input key. For this, the
input mapper first computes a cryptographic hash of the input
to produce K, its binary key fingerprint, of length 7. It then
uses K to generate both the major and minor components of
an output latent vector L as follows.
Generate the major components. To generate the major
components of the latent vector L, we use an error correcting
encoder ECC (see § 5 and § 0). First, we compute ECC(K),
then perform a one-to-one mapping between its bits and the
major components of L: L[i] = -1 if ECC(K)[i] =0 and L[i] =
Lif ECC(K)[i]=1,i={1,...M}.If |[ECC(K)| < M, we set
L[i] = -1 for the remaining M — |ECC(K)| major components.
Generate the minor components. We use a PRNG to ran-
domly generate the m = A — M minor components of L:
Li)eRand L(i) eU(—1,1),i e {M+1,...,A}.

8 Data

To train HPD and CEAL, we use several datasets of real and
synthetically generated images, described in the following.

Real Outdoor Image Dataset. We used a subset of 150,113
outdoor landscape images (mountains, ocean, forest) of 64
by 64 pixels, from the MIT Places205 dataset [38, 55] to
train discriminator networks (vanilla DCGAN and CL-GAN
models) to differentiate between real and synthetic images.

Ground Truth Human Perception Dataset. We used the
following process to collect human-assigned labels to im-
age pairs, which we use to train the HPD network. First, we



same

ra

M x i

‘q
l‘- -
i
[ | E

Figure 7: (top) Example real images that when shown as du-
plicates, were identified as different by 10% of participants
in labeling study 1. (middle & bottom) Example different
image pairs, generated with an early CEAL, that were identi-
fied as being identical by more than 15% of participants. This
motivates the training step 3 of CEAL (§ 7.2).

Dhfferent 2

[ifferent 1

trained a DCGAN network with a random uniform input la-
tent vector of length A = 100, using the above real outdoor
image dataset. We stopped training the network when we
started to observe realistic images similar to the ones in the
training dataset (i.e., after 10 epochs). We refer to this trained
network as the vanilla DCGAN. We then used the vanilla
DCGAN to generate two datasets of synthetic image pairs
(see below) and collected their labels using Amazon Mechan-
ical Turk (MTurk) workers. GANs tend to generate similar
images for close input vectors. Thus, since our objective is to
collect labeled data to be used for identifying the boundaries
of human visual distinguishability, we generate image pairs
from key fingerprints that are only different in 1 component.

We followed an IRB-approved protocol to recruit 500 adult
workers located in the US, to label 558 unique image pairs.
We asked each worker to label each image pair as being of
either “identical” or “different” images and paid them 1 cent
per image comparison. We performed two image labeling
studies. In the first study, we asked participants to label 35
image pairs, and in the second study 50 image pairs (see
below). In each study, we randomized the order of the image
pairs shown. We showed 1 image pair per screen. Both images
had the same size (64x64) and resolution; we showed one
image on the top left of the screen, the other on the bottom
right. Across the two studies, 318 image pairs were labeled
as different and 240 pairs were labeled as identical. In the
following, we detail the two labeling studies that generated
this dataset.

o Labeling Study 1. We used the vanilla DCGAN network
to generate 100 synthetic different image pairs using 100
random seed latent vectors (v) and the IPG of Definition |
for i € {1,2,3,...,100}. Further, we generated a set of 40
identical image pairs consisting of duplicates of landscape

images that we collected using Google’s image search. We
used proportional sampling to divide the total of 140 image
pairs (100 different, 40 identical) into 4 groups of size 35 (25
assumed different, 10 assumed identical). We then recruited
400 MTurk workers and asked each to label one of the 4
groups, such that each image pair was labeled by 100 workers.

To weed out inattentive workers, we included an attention
test (a.k.a. golden task [32]) at the beginning of the study. We
did not collect the labels from workers who failed to answer
the attention test correctly. In addition, we removed responses
of “speeders” [21], i.e., workers who completed the study
in less than one minute. We also removed the answers from
workers who made more than 10 errors with respect to the
assumed labels for the image pairs they processed. In total, we
have removed the responses of 34 of the 400 workers, leaving
us with labels from at least 94 workers for each image pair.

We then assigned to an image pair, an “identical” or “dif-
ferent” label, only if more that 90% of the worker responses
concurred. 75 image pairs were labeled as different, and 65
were labeled as identical. Figure 7 (top) shows samples of
identical image pairs that were labeled as different by about
10% of workers. Figure 7 (middle and bottom) shows samples
of different image pairs that were labeled as identical by more
than 15% of workers.

We studied the quality of responses collected from workers.
35 workers used a mobile device (smartphone or tablet) to
work on our image comparison tasks. A Kruskal-Wallis test,
did not show a significant difference between the number of
errors made (w.r.t. the hypothetical labels) by participants
in our studies using either of devices, i.e., desktop, laptop,
mobile phone, or tablet, to complete the study (P-value =
0.93). We did not observe significant difference between the
overall time it took for the participants using different devices
to complete the studies (P-value = 0.06).

e Labeling Study 2. At the completion of the above study,
we identified the index of components in the input latent
vector whose corresponding generated images were labeled
with the highest error rates by workers. We then performed
a second labeling study to determine if the high error rate
we observed was due to the fact that an observed “faulty”
component always produces indistinguishable image pairs
when its value is flipped, or this is due to other factors, e.g.
the contribution of other components on the generated image.

First, for each of 3 image pairs with the highest error rate
in labeling study 1, we generated 99 variant image pairs as
follows: Let j be the index of the component that we flipped to
generate this particular image pair in study 1 (which resulted
in a high error rate). Also, let v be the seed latent vector
(see Definition 1) corresponding to this image pair. For all
i€{1,2,3,...,100} index values, where i # j, we used the
IPG of Definition | to obtain two copies of v that only differ
in the i-th component, then used the vanilla DCGAN to obtain
an assumed “different” image pair. In total, we generated 297
(99 x 3) image pairs that are hypothetically different.



Dataset Name #pairs  Similarity
Ground Truth Human Perception 557 Mixed
Unrealistic DCGAN Image Pairs 11,072 Same
Minor Change in Latent Vector 7,040 Same
Blob Image Pair Dataset 2,108 Different
10%-different Image Pair Dataset 1,024 Different
Enhanced Synthetic Image Pair Dataset 5000 Different

Table 2: Size of 6 generated image pair datasets, of either
“identical”, “different” or “mixed” image pairs, used to train
the HPD classifier.

Second, for an additional set of randomly selected 7 compo-
nents, plus the 3 “faulty” components above we generated 10
image pairs using a new seed latent vector randomly. We cre-
ated two copies of the new seed latent vector and set the values
of the j** components to 1 and -1 in the first and second copy
respectively. Thus, in total, we generated 100 image pairs.
Further, we used another set of 49 hypothetically identical
pairs, which we used to enrich our training dataset.

We have then collected labels for these 446 image pairs
(99 x 3 + 100 + 49) using 100 workers who labeled 50 image
pairs each. As before, we eliminated the answers provided
by speeders, those who failed the attention check, or made
more than 10 errors with respect to the hypothetical labels of
image pairs. In total, we removed responses from 13 work-
ers. Then, for each image pair, we assigned it the assumed
“different” or “identical” label, only if more than 80% of the
workers agreed with it. Otherwise, we assigned the opposite
of the hypothetical label as the true label of the image pair.
243 images were labeled as different; 203 image pairs were
labeled as identical.

The Spearman correlation test did not reveal any significant
monotonic correlation between the error rate for components
in study 1, and image pairs corresponding to these compo-
nents, in both experiments. This suggests that the components
generating high error rates in study 1 alone, are not at fault.
Therefore, we conjecture that the visual characteristics of a
generated image are determined by a combination of effects
of each component in the latent vector.

8.1 HPD C(lassifier Dataset

In order to train the HPD, we have generated 6 different
datasets of synthetic image pairs, containing a total of 26,802
image pairs. Table 2 lists these datasets and their correspond-
ing number of image pairs. One of these datasets is the above
ground truth human perception dataset. In the following, we
describe each of the other 5 datasets.

Unrealistic DCGAN Image Pairs. In order to train the HPD
to correctly classify visually similar, but random noise images,
as “identical”, we generated an unrealistic image dataset of
11,072 image pairs using a poorly trained vanilla DCGAN:

(1) 10,048 image pairs using a vanilla DCGAN trained for
only 1400 iterations, i.e., less than an epoch, and (2) 1,024
image pairs using the same vanilla DCGAN trained for 3600
iterations (slightly more than an epoch).

We generated each of these image pairs as follows: ran-
domly generate a latent vector, then select a random compo-
nent and set its value to 1 once and -1 the other time. Convert
the latent vectors to images using the poorly trained vanilla
DCGAN, then label each pair as “identical”. That is, we wish
to train the HPD classifier to classify these image pairs as
being identical, as this is how a human verifier will see them
(gray images with random noise).

Minor Change in Latent Vector. We also generated syn-
thetic “identical” image pairs, as follows. First, choose a ran-
dom seed latent vector and use it to generate one image of
the pair. Second, choose a random component of the seed
latent vector uniformly, multiply its value by a small factor
c € 10, 1], then generate the other image in the pair. We gen-
erated 1024 image pairs with ¢ = 0.5, 3008 pairs with ¢ =
0.6 and 3008 pairs with ¢ = 0.7, for a total of 7,040 image
pairs. We randomly sampled 100 image pairs and 2 authors
manually verified that they look identical.

Blob Image Pair Dataset. First, we generated 20 different
blobs of random shapes and colors. Then, we generated 1,000
realistic images using the fully trained vanilla DCGAN model,
using random input latent vectors. We formed image pairs
that consist of (1) one synthetic image and (2) the same image,
overlayed with one randomly chosen blob. We only accept the
composite image (2) if its dominant color is dissimilar in the
blob overlap position, to the color of the blob. To measure the
similarity between colors we used the Delta E CIE 2000 [47]
score, representing colors that are perceived to be different
by humans [45]. We used the composite image if the score
exceeded 50. In total, we generated 2,108 “blob” image pairs.
10%-different Image Pair Dataset. We generated 1,024 dif-
ferent image pairs, each as follows: generate a random seed
latent vector, copy it to v and vy, select 10 random latent
components (out of 100) uniformly and set the values of these
components to 1 in v; and -1 in v,. We then used the trained
vanilla DCGAN to generate the corresponding image pair.
Thus, these 1,024 image pairs are generated from latent vec-
tors that are different in 10% of the components. We set this
percentage experimentally: we generated 500 image pairs us-
ing input vector pairs that differ in x € [2,20] percent of their
components, then manually compared them for visual equal-
ity. We found 10% to be the smallest percentage of difference
that resulted in always distinguishable image pairs.
Enhanced Synthetic Image Pair Dataset. We generated
5,000 different image pairs as follows. For each of 1,000
random, vanilla DCGAN-generated images, we generated 5
images, by applying 5 enhancements, to change (1) image
brightness, (2) contrast, (3) color, (4) add noise to the image,
and (5) apply a blur filter to the image. We experimented
with multiple parameters for each enhancement function and



Network Hyper-parameters labeled synthetic 'Unrealis‘tic I?CGAN 'Unrealis‘tic I?CGAN All‘other
dataset image pairs (itr 1400) | image pairs (itr 3600) synthetic datasets
m w r | F1 FPR FNR Precsion | FI FPR FNR | F1 FPR FNR | F1 FPR FNR
Siamese_model  1.64 049 0.02 | 0.72 020 035 082 | 0.06 | - 032 | 077 0.01 0.35
HPD_model_1 157 024 | 082 024 021 084 | 0.15 | - 0.47 | 0.83 0.02 0.29
HPD_attacker 297 043 | 072 020 0.37 084 | 0.05 | - 03t | 077 0.0008 036

Table 3: Performance of the best HPD classifier that we trained and used to train CEAL (HPD_model_1) and the HPD model
used by the attacker (HPD_attacker) and their underlying Siamese-like network, over different HPD classifier datasets.

selected them so that the generated image pairs (the original
image and its enhanced version) are visually distinguishable.

9 Implementation

We have built CEAL in Python using Tensorflow 1.3.0 [6]. In
this section, we describe the process we used to identify the
parameters for which CEAL performs best.

9.1 HPD Training and Parameter Choice

Inception.vl Layer Choice. We experimented with using
activations of different layers of the Inception.v1, for HPD’s
image feature extraction effort (see 7.1). We performed 3
experiments, where we used activations from either the (1)
“Mixed_5c¢”, (2) “MaxPool_5a_2x2" or (3) “MaxPool_4a_-
3x3” layers of the Inception.vl. In each run, we used an
identical architecture and initial weights of the fully connected
layers weights in HPD. We trained the 3 networks for 1000
epochs. We repeated this process 200 times.

We compared the performance of these classifiers, using
a paired t-test. We found a significant difference between
the performance (over holdout datasets) of HPD classifiers
trained using the “Mixed_5c” layer features, compared to the
other two layers (P-Value = 0.000 when compared to “Max-
Pool_4a_3x3” layer, and P-Value = 0.000, when compared
to “MaxPool_5a_2x2” features). In the following, we implic-
itly use the features extracted based on the activations of the
“Mixed_5c” layer. The length of the activations vector for this
layer is 50,176.
Training the HPD. We used the 6 datasets of § 8.1 to train
and evaluate HPD. Specifically, we randomly split each syn-
thetic dataset (except the ground truth human perception set),
into training ( 80% of samples) and holdout ( 20%) sets: we
used the training sets to train the HPD classifier, then tested
its performance over the holdout sets. For the ground truth
human perception dataset, we made sure that the number of
image pairs that are labeled as identical and different, were
distributed to training and test sets proportionally to their size.

We hyper-tuned the architecture and parameters of the HPD
classifier to find a classifier which accurately identifies sam-
ples from the “different” class (has high precision). Such
a classifier is necessary when training the CEAL to ensure
G-CEAL stays away from generating images that are not

human-distinguishable. Among the classifiers that we have
trained with high precision, we chose the one with the highest
F1. Figure 5 shows the best performing architecture for the
HPD network. We refer to this network as HPD_model_1.
Table 3 shows the performance of the Siamese network and
the HPD networks that we trained and used in this paper.

In addition, we also trained an HPD model that has the
same weights as HPD_model_1 in the Siamese layers, but
different weights in the fully connected layer on top of the
twin networks in the HPD architecture. This network, referred
to as HPD_attacker, has a higher recall (lower FPR) when
identifying the samples from the “identical” (negative) class
on the holdout datasets. Therefore, this classifier would be
preferred by an attacker, to identify potentially successful
attack samples for a target CEAL image.

We note that the high FNR of our HPD models is mostly a
problem for the adversary. This is because the FNR measures
the ratio of the image pairs that HPD mistakenly detects to be
identical. A high FNR means that the HPD is conservative:
it will incorrectly identify attack image pairs, that are in fact
perceived to be different by a real user. Thus, an HPD with a
high FNR imposes either a lower success rate for an adversary,
or more overhead on the adversary, who will have to manually
verify attack images returned by the HPD.

9.2 CL-GAN Training and Parameter Choice

We trained CL-GAN using the above HPD models. Further,
we also experimented using CL-GAN variants with different
architectures (e.g., different number of neurons in the first
layer of G-CEAL, 8,192 and 16,384) and values for hyper
parameters, including A and the number of major and minor
components.

We also performed a grid search in the parameters of the
CL-GAN including (1) the input size (A € 64, 128, 256, 512),
(2) the number of major and minor components (%, and (3)
the o € [25,75] with step size 5, in the loss functions of the
CL-GAN generator (see Equation 3). For best performing
parameters, we also tested with different weight initialization
for the networks weights.

We trained the CL-GAN using the process described in
§ 7.2, for 5 epochs, with batch size 64, and the Adam opti-
mizer [29] to minimize Equation 3 for each step. We com-
pleted an epoch when all the images in the outdoor image



dataset were shown to the discriminator. To make the training
process more stable, we trained the generator 3 times for every
time we train the discriminator, but using the same inputs.

We observed that, when « is increased, the HPD), de-
creases faster (see Equation 3). However, the quality of the
images is reduced for large values of o.. We also observed that
it is harder to train networks with larger values of As: the qual-
ity of images generated by CEAL and their distinguishability
decreases as we increase A. We also observed that when the
size of the nodes in the first layer of G-CEAL is increased, it
generates smoother or lower quality (blurred) images.

We also experimented with the number of times that the
generator network is trained using the three steps described in
§ 7.2, in each training epoch of G-CEAL. We observed that
when the minor components are trained using Step 2 twice,
there is a better balance between Gj,s; and HPD,,;, of the
trained network. Therefore in the following, we implicitly
train G-CEAL twice using Step 2.

We have manually evaluated the quality of the images gen-
erated by the networks we trained. We built two CL-GAN
model. The parameters for the best performing network using
HPD_model_1 (i.e. alpha-CL-GAN) are oo = 35, A =512, and
M = m = 256. We also built and evaluated an earlier CEAL
model (i.e. alpha-CL-GAN) using o = 40, that has A = 256
and M = m = 128. In the following, we describe the process
to identify the input mapper parameters for both models.

9.3 Choice of Input Mapper Parameters

To determine the value of d, i.e., the minimum number of
major components that need to be modified to achieve consis-
tent human distinguishability (see § 6), we used the following
procedure. For each possible value of d € {1,..M = 256},
we generated 1 million random target keys. For each target
key, we generated an attack key by randomly flipping (i.e.,
1 vs. -1) the values of d major components, then generated
the CEAL images corresponding to the (target, attack) pairs.
We used HPD_model_1 and HPD_attacker to find pairs likely
perceived as identical by humans.

We manually checked the distinguishability of the image
pairs flagged by the HPD models and observed that when
d > 30, the image pairs are consistently distinguishable. To
validate our observation, we showed the images identified
as identical by HPD models for d=39 and d=43 to human
subjects. We selected these values to be conservative and also
to ensure the availability of BCH codes with corresponding
minimum Hamming distances. When d = 39, HPD_model_1
identified 17 image pairs as identical, and the HPD_attacker
identified 194. When d = 43, HPD_model_1 identified 7 iden-
tical image pairs, while the HPD_attacker identified 124 im-
age pairs. All the pairs identified by HPD_model_1 were also
identified by the HPD_attacker.

We used the procedure of § 10.2 to label these pairs using
34 human workers. None of the image pairs were confirmed

as being identical by human workers. Therefore, we conclude
that despite training limitations and the presence of local op-
tima, when enough number of major components (i.e., > 39)
are flipped, the generated images are human-distinguishable.
Thus, in the remaining experiments we set d to 39.

To ensure that major components of input vector to G-
CEAL are at least in d Hamming distance of each other, we
use a BCH (n=255, k=123, t=19) encoder to transform a key
of length y = 123 into the values for major components. This
ECC has a minimum Hamming distance of 39 bits that trans-
forms a message of length 123 into a code word of length 255.
Thus, the major components in the latent vector of any CEAL
images are at least 39 Hamming distance apart.

Based on the above setting, CEAL accepts binary key fin-
gerprints of length y = 123 bits. Therefore, the maximum ca-
pacity of CEAL is 2'%3, i.e., it can generate up to 2'3 unique,
distinguishable images to represent binary key fingerprints.

9.4 alpha-CEAL

In addition to the above CEAL model that uses a CL-GAN
with A =512, we have built and evaluated a preliminary model,
named alpha-CEAL, that uses its own CL-GAN network,
named alpha-CL-GAN, with parameters A =256, and M = m
=128 (vs. 256 in CL-GAN). We followed a similar process to
the one described above, using o = 40 to determine the best
parameters for alpha_CL-GAN.

alpha-CL-GAN Input Mapper Parameters. To identify the
minimum number of major components that need to be modi-
fied to achieve consistent human distinguishability for alpha-
CL-GAN, we generated 1,000 image pairs by flipping (i.e., 1
vs. -1) 5, 10, 15, 20 and 30 randomly chosen major compo-
nents in each of 200 latent vectors respectively. We then used
a procedure of § 10.2, to label these images using 69 MTurk
worker.

In these experiments, the smallest number of different ma-
jor components for which participants labeled as different, all
the generated alpha-CL-GAN samples, was d = 15. There-
fore, for the Input Mapper module, we used a BCH(n=127,
k=78, t=7), i.e., an ECC with minimum Hamming distance
of 15 bits that transforms a message of length 78 into a code
word of length 127. Thus, alpha-CEAL accepts binary key
fingerprints of length y = 78 bits.

10 Empirical Evaluation

In this section, we evaluate the CEAL system with parameters
identified in § 9.2 and § 9.3. First, we present the memory
and computation overhead of the CEAL model (§ 10.1). We
then describe the procedure we employed to run the user
studies that we used for evaluation (§ 10.2). We evaluate the
resilience of CEAL against the adversary described in § 3.1
(§ 10.3). We investigate Vash [1], identified as a state-of-the-
art VKFG in terms of usability and attack detection [50], and



report vulnerabilities that we identified (§ 10.4). We then
compare CEAL against Vash, in terms of their capacity and
human verification speed (§ 10.5).

10.1 CEAL Overhead

The size of the CEAL generator model is 66.7MB. To deter-
mine the overhead of CEAL in generating image fingerprints,
we performed experiments using a MacBook laptop with a
2.2 GHz Intel Core i7 CPU and 16GB memory, and a desk-
top equipped with a GeForce GTX TITAN X GPU. Over 1
million images, the average time to generate a CEAL image
on the laptop was 2.3s (SD = 0.1s), while on the desktop it
was 0.3s (SD=0.005s). This reveals that even without a GPU,
CEAL can efficiently generate image fingerprints.

10.2 User Study Procedure

We followed an IRB-approved protocol to recruit MTurk
workers to evaluate the performance of CEAL and Vash [1].
Specifically, we have recruited a total of 374 adult , US-based
participants, 132 female and 242 male, with an age range of
18 to 64 (M=35.01, SD=9.23). 90.23% of our participants
had college education or higher. 50%, 49% and 1% partici-
pants used a desktop, laptop and mobile device in our studies,
respectively.

We asked the participants to compare a total of 3,496 image
pairs: 1,918 CL-GAN-generated image pairs (219 workers),
1,308 alpha-CL-GAN-generated image pairs (100 workers)
and 270 Vash-generated image pairs (55 workers).

We informed each participant on the purpose of the image
comparison tasks, explaining their relationship to a security
check that requires their full attention. We showed 1 image
pair per screen, both with the same size (64x64) and resolution.
One image was shown on the top left of the screen, the other
on the bottom right.

We conducted several studies, each needing labels for a
different number of image pairs (e.g., the CEAL resilience to
attacks, or the study comparing CEAL and Vash, see below).
For flexibility reasons, we asked participants in these studies
to compare between 35 to 50 pairs of images. However, in
each study, all participants labeled the same number of image
pairs. We paid participants 10 cent per image pair comparison.

To avoid collecting low quality labels from inattentive
workers, we have included an attention test at the beginning
of the surveys and did not collect the labels from workers
who failed to answer this question correctly. Further, we have
included 5 attention check questions in each study: 3 obvi-
ously different pairs of images, and 2 pairs of identical (du-
plicated) images. In order to keep the type of images shown
to the user consistent throughout these studies, we selected
attention check questions using the same visual fingerprint
generator that were used to generate the other images in the

Attack Attack dataset  # attacks found Verified

Dataset size by HPD_attacker attacks
(123, 1)-adversary 123M 121 2 (1.7%)
(123,d)-adversary 123M 1,473 23 (1.6%)

Table 4: Attack image datasets generated to break CEAL.
We show the dataset size, the portion of the (target, attack)
samples that were identified by HPD_attacker and the number
of attack images validated by human workers.

study: For CL-GAN, we generated obviously different at-
tention check image pairs from a random seed latent vector
where we flipped (1 vs. -1) a random set of 200 major compo-
nents (out of 256). For Vash, we generated obviously different
attention check image pairs randomly. We manually verified
that all these image pairs look indeed different. We randomly
selected the image pairs and the order in which they were
shown, for each participant, however, we did not mix Vash an
CEAL images in any experiment. We removed the answers
from 12 participants who had incorrectly answered 3 or more
(out of 5) attention check questions in the study.

Overall, for each image pair, we collected annotations from
at least 3 workers. In the Vash studies of § 10.4, we collected
at least 10 labels for each image pair. We used majority vot-
ing [32] to aggregate the labels assigned by the workers to
each image pair, and produce the final human-assigned label.

10.3 Resilience of CEAL to Preimage Attacks

We evaluate CEAL under preimage attacks perpetrated by the
adversary defined in § 3.1.

Resilience to (y,1)-Attack. We first consider a powerful,
(v, 1)-adversary, who can find input keys that are within 1-
Hamming distance of the victim’s, and uses them to generate
attack CEAL images. Specifically, for y=123, we generated 1
million target inputs randomly. Then, for each such input, we
considered all y “attack” strings that are within 1-Hamming
distance of target, and used CEAL to generate images corre-
sponding to the target and attack strings. Thus, in total we
generated 123 million CEAL image pairs.

To avoid the high cost and delay of using humans to com-
pare these image pairs, we used the HPD_model_1 and HPD_-
attacker to determine if they would be perceived as being
identical by a human verifier. Out of 1 million target CEAL
images, 121 of them were broken (only) once according to the
HPD_attacker (see Table 4 top). Only 1 of these images was
also identified by HPD_model_1. We then presented the 121
candidates to human verifiers (see § 10.2). Only 2 (1.65%) of
these images were labeled as being identical by the recruited
workers. The success rate of this (Y, 1) attack can thus be ei-
ther interpreted as 2 x 10™*% (2 target inputs broken out of
the 1,000,000 attempted), or 1.62 X 107% (2 successes out
of 123 million trials).

Resilience to (y,d)-Attack. Second, we consider the more
general, (y,d)-adversary (§ 3.1), where 1 < d <1, y=123.



e N )
o n o
IS o]

[
=]
[N] w

Break ratio HPD
5
Break ratio HPD_attacker
-

=)
wn

0.0- 0-
1 21 41 61 81 101 121 1 21 41 61 81 101 121

Hamming distance between Hamming distance between
key fingerprints (d) key fingerprints (d)

Figure 8: (y = 123,d)-adversary: The break ratio of 1 mil-
lion target CEAL images for each value of d, the Hamming
distance between the attack and the target binary fingerprints,
according to (left) HPD_model_1 and (right) HPD_attacker.

The goal is to see if such an adversary can find successful
attack images generated from attack keys more different than
the target. Specifically, for each value of d € {1,2,3,...,7},
we have built an attack dataset as follows: We generated 1
million random “target” inputs, and, for each target input, we
randomly selected an “attack” string that is within Hamming
distance d from the target. We then generated the CEAL
images corresponding to each target and attack strings pair.
Thus, in total we generated 123 million CEAL image pairs,
organized into 123 datasets, each containing 1 million (target,
attack) image pairs.

We have used both the HPD_attacker and the HPD_model_-
1 to compare the 123 million (target, attack) image pairs that
we generated. The HPD_attacker predicted 1,473 of the image
pairs to be indistinguishable. HPD_model_1 only identified
a subset of these samples (48 samples) as similar. When we
presented the 1,473 candidate image pairs to human workers
(§ 10.2), 23 (1.6%) of them were confirmed to be identical,
one of which were identified by both HPD models (see Table 4
bottom). This suggests a success rate of 1.86 x107>% (23
successes out of the 123 million trials) for this (y,d) attack,
performed by an adversary equipped with our HPD classifiers.

Figure 8 shows the portion of broken CEAL-generated
images in each of the 123 datasets of (7, d)-Attack (see § 10.3)
according to (left) HPD_model_1 and (right) HPD_attacker.
As expected, the number of broken CEAL images decreases
as the Hamming distance between the target and attack binary
key fingerprints increases.

We note that the KFG evaluation performed by Tan et
al. [50], assumed an adversary able to perform 2% brute force
attempts, which is similar to the effort required to control 122
of 123 bits of the input hash key, required by a (Y, 1)-attack.
Under such an adversary, Tan et al. [50] report a false accept
rate of 12% for Vash [1] and 10% for the OpenSSH Visual
Host Key [34]). This is significantly larger than CEAL’s 2
x107*% for the (123,1) attack and 1.86 x1073% for the
(123, d) attack or even the 1.7% human error rate we observed

Same mm Different
w

o

Label Frequency (%)

e 5~ R & & &
I
[ |
—— |
I
I
| |
I
I

b 4 n 40
b & n 20

b 4 n 15
b 4 n 20
b 4 n 60
b & n 15
b_8_n_40
b & n 60

b_16_n_20
b _16_n_40
b_16_n_60

©
L0
Vash Image Pairs Group

Figure 9: Distribution of “different” and “identical” labels
as annotated by human workers for Vash image pairs. The
number of image pairs that are identified as identical decreases
as the number of buckets (b) and number of nodes (n) in the
tree are decreased.

in our user studies.
alpha-CL-GAN under (y,1) and (y,d) Attacks. We now
report the performance of a (v, 1) and (7, d)-adversary when
breaking alpha-CEAL with 7y of 78. Similar to (y,d) attack
performed for CL-GAN, we generate Y= 78 million pairs of
(target, attack) samples. We observe that only a 295 images
were broken according to HPD_model_1. In addition, we
launched a (v, 1) attack on alpha-CL-GAN. Particularly, we
generate 1M target keys. For each target key, we consider all
78 attack keys that are in 1-Hamming distance of the target
key. We used the HPD_model_1 to decide if the generated
image pairs would be perceived as being the same by a human
verifier. This model identified 13 image pairs as identical.
We used the procedure described in §10.2 to label the 295
pairs of images that were identified by HPD_model_1 for
(v,d) attack and 13 pairs of images identified for (7, 1) attack
using 31 MTurk workers. Our workers identified 3 of 295 and
none of the 13 images to be identical.

10.4 Human-Distinguishability of Vash

Vash [1] is an open source implementation for random art [41],
that converts input binary strings into structured, visual finger-
prints. Vash seeds a PRNG with the input string, then uses the
PRNG to construct an expression tree structure. The number
of nodes of the tree, N, is chosen randomly using the PRNG.
Vash then converts this tree to an image: Each node in the
tree corresponds to an operation function, which modifies
pixel values of the image. Each operation is chosen randomly
(using the PRNG), from an existing pool of 17 operations,
e.g., ellipse, flower, “squircle”, etc. The operation parameters
(e.g., the two foci of an ellipse or the size of a flower) are
chosen randomly using the PRNG.

To study the ability of Vash [1] to generate human-
distinguishable images, we generated 120 different Vash im-



age pairs, as follows. We first quantized the random val-
ues used to select each Vash tree operation, into 32 buckets,
and quantized the operation parameter values into b buckets
(b € {4,8,16}) of the same size. We then generated random
trees until we had 30 trees of each size N € {15,20,40,60},
and corralled these trees into groups of 10. For each tree, we
selected a random node (i.e., operation) and changed the value
of one of its parameters by each of ¢ € {0.25,0.125,0.0625},
i.e., for each value of b. When selecting the operations, we
made sure that each operation type appears in almost the same
number of trees in each group. We generated thus 10 image
pairs for each of the 12 combinations of ¢ and n.

We used the procedure of Section 10.2 to label these pairs
using 40 human workers. Each image pair was labeled by 10
workers. Figure 9 shows the portion of image pairs in each
category that were labeled as either identical or different. We
observe that human workers were able to consistently label
image pairs correctly as different, only when the number of
nodes N in the tree was 15, and the number of quantization
buckets was 4 (i.e., a parameter needed to be changed by
at least 0.25). Thus, Vash images are human-distinguishable
only when the generating tree is small. However, when we
generated 10,000 random Vash images (see the experiment in
§ 10.5), 99.98% of them were constructed from trees of more
than 15 nodes. This suggests that most of Vash-generated
images are vulnerable to attack.

10.5 CEAL vs. Vash

We compared CEAL and Vash [1] in terms of their capacity
and the human speed of verification. Tan et al. [50] com-
pare multiple text and visual KFG solutions, including Vash,
though against a weaker adversary. Our results for Vash are
consistent with those reported by Tan et al. [50].

For our comparison, we have generated 10,000 images ran-
domly (from random keys) using CEAL, and 10,000 images
using Vash. Then, separately for these datasets, we used the
HPD_model_1 to predict if all pairwise images are human-
distinguishable, i.e., using a total of 49,995,000 comparisons
per dataset.

Since HPD_model_1 was not trained on Vash images, we
sought to estimate its performance on Vash images. For this,
we evaluated HPD_model_1 on the 120 Vash image pairs
and their human-assigned labels, from § 10.4. HPD_model_1
achieved a FAR of 0.21, FNR of 0.14 and F1 of 0.76. Thus,
HPD_model_1 achieves decent performance on Vash images,
even though it was trained on dramatically different images
(of nature not geometric shapes).

To estimate the number of distinguishable images for

CEAL and Vash, we use the formula IAC(N,7 r)= A;—’rz where
N, is the number of samples until observing r repetition, i.e.,
human indistinguishable images (see [37]). This method pro-
vides only a lower bound estimate for the capacity of a visual
key fingerprint generator function, as any estimation method

Key fingerprint Attack # attacks found Verified

representation  dataset size by HPD_model_1 attacks
CEAL ~50M 0 0 (0%)
VASH ~50M 150 24 (16%)

Table 5: Attack datasets generated using 10K random images
for each key fingerprint representation and the result of user
study to label identified attacks by HPD_model_1.

fails when k >> 5%, where & is the real population size and s
is the sample size used for the estimate.

Among the almost 50 million Vash image pairs com-
pared, HPD_model_1 labeled 150 (3 x 1074 %) pairs as being
human-indistinguishable. In contrast, for the same number
of CEAL image pairs, HPD_model_1 did not label any pair
as human-indistinguishable. To build confidence that we did
not miss relevant images, we also used the more conservative
HPD_attacker model, to identify potentially indistinguishable
CEAL image pairs. We found 6 such pairs.

We then used the human workers and process described
in § 10.2 to confirm these 150 Vash and 6 CEAL image
pairs, i.e., with each image pair being labeled by 3 humans.
24 of the 150 (16%) Vash image pairs were confirmed as
being identical by the workers. Therefore, we estimate the
number of perceptually different images generated by Vash

as k(N,,r) = ;g’i = 2209 This result is consistent with the
findings of Hsiao et al. [24]. We note that the 24 collisions
occurred among 10,000 images chosen at random, and not
images engineered for an attack. Section 10.4 shows that an
adversary can engineer a collision for 99.98% of these images.
In contrast, none of the 6 CEAL image pair predicted to be
perceived as identical by HPD_attacker, was found identical
by the workers (see Table 5). Thus, we found no indistinguish-
able pairs among the 10,000 CEAL images.
Human Comparison Time. We studied the response times
of human participants when asked to compare the above 150
Vash image pairs and 48 CEAL image pairs of § 10.3, i.e.,
identified as potential attacks by HPD_model_1. We mea-
sured the comparison time to be the interval between the
moment when the image pair is shown to the worker, and
the moment when the worker selected the response (different
vs. identical). The workers were not allowed to change their
selection. The average comparison time over Vash attack im-
ages was 3.03s (M=1.4s, SD=5.42s), and for CEAL it was
2.73s (M=1.83s, SD=2.33s).

11 Discussion and Limitations

Increasing Entropy. To increase the entropy of the CEAL
key fingerprint generator, one could design and train multiple
generators (see § 9.2), then use the input key to decide which
generator to use (e.g., the value of the key’s first two bits
to pick one out of 4 generators). However, this approach
imposes an exponential increase on computation and storage:



to achieve k bits of entropy, we need to train and access 2*
generators. Instead, in the proposed CEAL approach, we use
careful training to achieve its entropy.

Improving HPD. Due to false positives, our evaluation is
bound to have missed attack images. This is hard to avoid,
given the need to evaluate millions of image pairs, a task
that is infeasible with humans. We note that when model-
ing attacker capabilities, we used an HPD with higher recall
than the one used to train the generator. This suggests that
an adversary who has a better HPD, thus a higher chance of
identifying potentially successful attacks, does not have sub-
stantial advantage against a CEAL image generator trained
with a simpler HPD (though we cannot generalize this result).

However, both the attacker and the adopters of CEAL have

the incentive to build a powerful HPD classifier. The attackers
seek to find key fingerprint images most likely to be confused
by users. The organizations adopting CEAL to protect their
users would like to train a CEAL generator that uses the most
of the key bandwidth available through human perception and
the image generation algorithm. Thus, we expect adoption
of CEAL (e.g., the CAPTCHA application of § 4) would
increase interest in research of models for the limits of human
visual perception.
Generalization of Results. The results of our studies do not
generalize to the entire population, as we performed them
on only a subset of Mechanical Turk workers. Such workers
are generally better educated and more tech saavy than the
broader population [26], thus are not representative of the en-
tire population. For instance, we conjecture that workers who
work on visualization tasks are less likely than the general
population, to suffer from vision problems. Mechanical Turk
workers also have different goals (minimize their time invest-
ment, maximize financial gains) which may differ from those
of regular key fingerprint based authentication users, i.e., not
only minimize time investment, but also correctly detect at-
tacks. However, Redmiles et al. [43] have shown that in terms
of security and privacy experiences, Mechanical Turk worker
responses are more representative of the U.S. population than
responses from a census-representative panel.

Our experiments are not equivalent to a lab study, since we
do not know the circumstances or experience of the annota-
tors. In addition, since a majority of the image pairs that we
show to participants are attack images (i.e., believed to be
visually similar), our studies also differ from the simulated
attack format of Tan et al. [50], where the attack images form
a small minority. The evaluation of Tan et al. is indeed more
suitable for evaluating how humans react to attack images, in
realistic settings. However, the goal of our experiments was
different: we needed humans to validate image pairs predicted
by HPD to be successful attacks. For instance, in one experi-
ment we had to “human-validate” 1,473 image pairs. While
our experiments are seemingly biased toward labeling image
pairs as attack images, in this particular experiment, only 23
(1.6%) of the 1,473 image pairs were confirmed to be suc-

cessful attacks. Further studies are needed to evaluate CEAL
under realistic attack conditions such as the one proposed by
Tan et al. [50].

In addition, we have trained CEAL to only generate nature
landscape images. Our results do not generalize to other types
of images.

More experiments are needed to verify that results of com-
parisons are consistent in scenarios where key fingerprints
are displayed on devices with different screen properties (e.g.,
size and resolution), or even when printed on paper, to be
compared against an image shown on a screen. Our experi-
ments showed no difference between the responses from users
comparing the key fingerprint on different devices. However,
an extensive study is required to properly evaluate this aspect.

Finally, we have explored only (y,d) attacks, for various
values of d, for an adversary equipped with the HPD networks
that we have developed. Future endeavors may investigate
other types of attacks, including e.g., ones that attempt to find
collisions for input latent vectors that are not similar.
Resistance to Adversarial Machine Learning. An attacker
who has gained access to the CEAL network weights can
leverage adversarial machine learning (e.g. gradient based)
techniques to infer the input string from a target output CEAL
image. While this problem is outside the scope of this work
(e.g., CEAL images are often computed from input strings
whose values are public) we note that in cases where this
input is sensitive, one can apply CEAL to a hash of the input.
This would force the adversary to further invert the hash to
recover sensitive information.

12 Conclusions

In this paper, we proposed and have built the first human per-
ception discriminator, a classifier able to predict whether hu-
mans will perceive input images as identical or different. We
have used HPD to introduce CEAL, a new approach to train
visual key fingerprint generation solutions, that provide input-
distribution properties. We have shown that a CEAL-trained
VKEFG is substantially superior to state-of-the-art solutions,
in terms of entropy, human accuracy and speed of evaluation.

References

[1] The Vash: Visually pleasing and distinct abstract art, gen-
erated uniquely for any input data. https://github.
com/thevash, 2014.

[2] White paper: Whatsapp encryption
https://www.whatsapp.com/security/
WhatsApp-Security-Whitepaper.pdf, 2016.

[3] Viber Encryption Overview. https://www.viber.
com/security-overview, Last accessed, 2019.

[4] WhatsApp: End-to-end encryption. https://faq.
whatsapp.com/en/general/28030015?1ang=en,
Last accessed, 2019.

overview.


https://github.com/thevash
https://github.com/thevash
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.viber.com/security-overview
https://www.viber.com/security-overview
https://faq.whatsapp.com/en/general/28030015?lang=en
https://faq.whatsapp.com/en/general/28030015?lang=en

(5]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

WP_MonsterID. http://scott.sherrillmix.com/
blog/blogger/wp_monsterid/, Last accessed, 2019.
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation, pages 265-283, 2016.

akwizgran. Encode random bitstrings as pseudo-random
poems. https://github.com/akwizgran/basic-english,
Last accessed 2019.

Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On
a class of error correcting binary group codes. Informa-
tion and control, 3(1):68-79, 1960.

Jon Callas, Lutz Donnerhacke, Hal Finney, and Rodney
Thayer. Openpgp message format. Technical report,
RFC 2440, November, 1998.

Tian Qi Chen, Xuechen Li, Roger B Grosse, and
David K Duvenaud. Isolating sources of disentangle-
ment in variational autoencoders. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 31, pages 2610-2620. 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman,
Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable
representation learning by information maximizing gen-
erative adversarial nets. In Proceedings of the 30th Inter-
national Conference on Neural Information Processing
Systems, NIPS’ 16, pages 2180-2188, 2016.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a simi-
larity metric discriminatively, with application to face
verification. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 2005.

Kate Conger. TechCrunch: Facebook Messenger adds
end-to-end encryption in a bid to become your primary
messaging app. https://tinyurl.com/uetk9b5,
2016.

Sergej Dechand, Dominik Schiirmann, Karoline Busse,
Yasemin Acar, Sascha Fahl, and Matthew Smith. An em-
pirical study of textual key-fingerprint representations.
In Proceedings of the USENIX Security Symposium,
pages 193-208, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 248—
255, 20009.

Chris Donahue, Akshay Balsubramani, Julian McAuley,
and Zachary C. Lipton. Semantically decomposing the

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

latent spaces of generative adversarial networks. In Pro-
ceedings of the International Conference on Learning
Representations, 2018.

Carl Ellison and Steve Dohrmann. Public-key support
for group collaboration. ACM Transactions on Infor-
mation and System Security (TISSEC), 6(4):547-565,
2003.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversar-
ial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 2672—
2680. 2014.

Michael T Goodrich, Michael Sirivianos, John Solis,
Gene Tsudik, and Ersin Uzun. Loud and clear: Human-
verifiable authentication based on audio. In Proceedings
of the EEE International Conference on Distributed
Computing Systems, 2006.

Will Grathwohl and Aaron Wilson. Disentangling space
and time in video with hierarchical variational auto-
encoders. arXiv preprint arXiv:1612.04440, 2016.
Robert Greszki, Marco Meyer, and Harald Schoen. Ex-
ploring the effects of removing “too fast” responses and
respondents from web surveys. Public Opinion Quar-
terly, 79(2):471-503, 2015.

Peter Gutmann. Do users verify ssh keys. Login, 36:35—
36, 2011.

Alexis Hocquenghem. Codes correcteurs d’erreurs.
Chiffres, 2(2):147-56, 1959.

Hsu-Chun Hsiao, Yue-Hsun Lin, Ahren Studer, Cassan-
dra Studer, King-Hang Wang, Hiroaki Kikuchi, Adrian
Perrig, Hung-Min Sun, and Bo-Yin Yang. A study of
user-friendly hash comparison schemes. In Proceedings
of the Annual Computer Security Applications Confer-
ence, pages 105-114, 2009.

Huima. The bubble babble binary data encoding. https:
//tinyurl.com/phra64b, 2000.

Ruogu Kang, Stephanie Brown, Laura Dabbish, and Sara
Kiesler. Privacy attitudes of mechanical turk workers
and the us public. In Proceedings of the 10th Symposium
On Usable Privacy and Security, pages 37-49, 2014.
Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehti-
nen. Progressive growing of gans for improved quality,
stability, and variation. In Proceedings of the 6th In-
ternational Conference on Learning Representations
(ICLR 2018), 2018.

Hyunjik Kim and Andriy Mnih. Disentangling by Fac-
torising. In Proceedings of the 35th International Con-
ference on Machine Learning, pages 2654-2663, 2018.
Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In Proceedings of the 3rd
International Conference for Learning Representations
(ICLR 2015), 2015.


http://scott.sherrillmix.com/blog/blogger/wp_monsterid/
http://scott.sherrillmix.com/blog/blogger/wp_monsterid/
https://tinyurl.com/uetk9b5
https://tinyurl.com/phra64b
https://tinyurl.com/phra64b

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. preprint arXiv:1312.6114, 2013.
Abhishek Kumar, Prasanna Sattigeri, and Avinash Bal-
akrishnan. Variational Inference of Disentangled Latent
Concepts from Unlabeled Observations. In Proceed-
ings of the 6th International Conference on Learning
Representations, 2018.

G. Li, J. Wang, Y. Zheng, and M. Franklin. Crowd-
sourced data management: A survey. In Proceedings of
the IEEE 33rd International Conference on Data Engi-
neering, pages 39-40, 2017.

Yue-Hsun Lin, Ahren Studer, Yao-Hsin Chen, Hsu-Chun
Hsiao, Li-Hsiang Kuo, Jonathan M McCune, King-Hang
Wang, Maxwell Krohn, Adrian Perrig, Bo-Yin Yang,
et al. Spate: small-group pki-less authenticated trust es-
tablishment. IEEE Transactions on Mobile Computing,
9(12):1666-1681, 2010.

Dirk Loss, Tobias Limmer, and Alexander von Gern-
ler. The drunken bishop: An analysis of the openssh
fingerprint visualization algorithm, 2009.

Lars Mescheder, Andreas Geiger, and Sebastian
Nowozin. Which training methods for GANs do ac-
tually converge? In Proceedings of the Intl. Conference
on Machine Learning, pages 3481-3490, 2018.

Maina M. Olembo, Timo Kilian, Simon Stockhardt, An-
dreas Hiilsing, and Melanie Volkamer. Developing and
testing a visual hash scheme. In Proceedings of the Eu-
ropean Information Security Multi-Conference (EISMC,
pages 91-100, 2013.

A. Orlitsky, N. P. Santhanam, and K. Viswanathan. Pop-
ulation estimation with performance guarantees. In
Proceedings of the IEEE International Symposium on
Information Theory, pages 20262030, 2007.

Outdoor 64 image dataset.
https://github.com/junyanz/iGAN/tree/master/train_dc-
gan.

John Padgette. Guide to bluetooth security. NIST Special
Publication, 800:121, 2017.

C Alejandro Parraga, Tom Troscianko, and David J Tol-
hurst. The human visual system is optimised for pro-
cessing the spatial information in natural visual images.
Current Biology, 10(1):35-38, 2000.

Adrian Perrig and Dawn Song. Hash visualization: A
new technique to improve real-world security. In Pro-
ceedings of the Intl. Workshop on Cryptographic Tech-
niques and E-Commerce, pages 131-138, 1999.

Alec Radford, Luke Metz, and Soumith Chintala. Unsu-
pervised representation learning with deep convolutional
generative adversarial networks. In Proceedings of the
Intl. Conference on Learning Representations, 2016.
Elissa M Redmiles, Sean Kross, and Michelle L
Mazurek. How well do my results generalize? com-

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

paring security and privacy survey results from mturk,
web, and telephone samples. In Proceedings of the IEEE
Symposium on Security and Privacy, 2019.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, Xi Chen, and Xi Chen.
Improved techniques for training gans. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Sys-
tems 29, pages 2234-2242. 2016.

Zachary Schuessler. Delta E 101. http://
zschuessler.github.io/Deltak/learn, 2011.
Ling Shao, Fan Zhu, and Xuelong Li. Transfer learning
for visual categorization: A survey. IEEE Transactions
on Neural Networks and Learning Systems, 26(5), 2015.
Gaurav Sharma, Wencheng Wu, and Edul N Dalal. The
ciede2000 color-difference formula: Implementation
notes, supplementary test data, and mathematical ob-
servations. Color Research & Application, 30(1), 2005.
William Suberg. Report: 2.3 Million Bitcoin
Addresses Targeted by Malware That ‘Hijacks’
Windows Clipboard. https://www.viber.com/
security-overview, 2018.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1-9, 2015.

Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith
Cranor, Jeremy Thomas, and Blase Ur. Can unicorns
help users compare crypto key fingerprints? In Pro-
ceedings of the CHI Conference on Human Factors in
Computing Systems, pages 3787-3798, 2017.

N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl,
I. Goldberg, and M. Smith. Sok: Secure messaging.
In Proceedings of the IEEE Symposium on Security and
Privacy, pages 232-249, 2015.

Benjamin Dumke von der Ehe. go-unicornify overview,
November 2017.

Yangli Hector Yee and Anna Newman. A perceptual
metric for production testing. In Proceedings of the
ACM SIGGRAPH 2004 Sketches, 2004.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. How transferable are features in deep neural
networks? In Proceedings of the 27th International
Conference on Neural Information Processing Systems,
NIPS’ 14, pages 3320-3328, 2014.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio
Torralba, and Aude Oliva. Learning deep features for
scene recognition using places database. In Proceed-
ings of the 27th International Conference on Neural
Information Processing Systems, pages 487-495, 2014.


http://zschuessler.github.io/DeltaE/learn
http://zschuessler.github.io/DeltaE/learn
https://www.viber.com/security-overview
https://www.viber.com/security-overview

	Introduction
	Related Work
	Problem Definition
	Adversary Model

	Applications
	Background
	Approach
	The CEAL System
	Human Perception Discriminator (HPD)
	Training CL-GAN
	Input Mapper

	Data
	HPD Classifier Dataset

	Implementation
	HPD Training and Parameter Choice
	CL-GAN Training and Parameter Choice
	Choice of Input Mapper Parameters
	alpha-CEAL

	Empirical Evaluation
	CEAL Overhead
	User Study Procedure
	Resilience of CEAL to Preimage Attacks
	Human-Distinguishability of Vash
	CEAL vs. Vash

	Discussion and Limitations
	Conclusions

