
ARTIFACT
EVALUATED

PASSED

McTiny:
Fast High-Confidence Post-Quantum Key Erasure

for Tiny Network Servers

Daniel J. Bernstein
University of Illinois at Chicago,

Ruhr University Bochum

Tanja Lange
Eindhoven University of Technology

Abstract

Recent results have shown that some post-quantum cryp-
tographic systems have encryption and decryption perfor-
mance comparable to fast elliptic-curve cryptography (ECC)
or even better. However, this performance metric is con-
sidering only CPU time and ignoring bandwidth and stor-
age. High-confidence post-quantum encryption systems have
much larger keys than ECC. For example, the code-based
cryptosystem recommended by the PQCRYPTO project uses
public keys of 1MB.

Fast key erasure (to provide “forward secrecy”) requires
new public keys to be constantly transmitted. Either the server
needs to constantly generate, store, and transmit large keys, or
it needs to receive, store, and use large keys from the clients.
This is not necessarily a problem for overall bandwidth, but it
is a problem for storage and computation time on tiny network
servers. All straightforward approaches allow easy denial-of-
service attacks.

This paper describes a protocol, suitable for today’s net-
works and tiny servers, in which clients transmit their code-
based one-time public keys to servers. Servers never store full
client public keys but work on parts provided by the clients,
without having to maintain any per-client state. Intermediate
results are stored on the client side in the form of encrypted
cookies and are eventually combined by the server to obtain
the ciphertext. Requirements on the server side are very small:
storage of one long-term private key, which is much smaller
than a public key, and a few small symmetric cookie keys,
which are updated regularly and erased after use. The proto-
col is highly parallel, requiring only a few round trips, and
involves total bandwidth not much larger than a single public
key. The total number of packets sent by each side is 971,
each fitting into one IPv6 packet of less than 1280 bytes.

The protocol makes use of the structure of encryption in
code-based cryptography and benefits from small ciphertexts
in code-based cryptography.

1 Introduction

TLS 1.3 highlights the importance of “forward secrecy” by
switching completely to Diffie–Hellman-based cryptography
for confidentiality. The client initiates the connection and al-
ready on the first message sends the preferred cipher suite and
a public key. These systems are typically based on elliptic
curves though some finite-field options remain. Elliptic-curve
keys consume only 32–64 bytes and thus add very little over-
head to the packets and computation is very fast, even on
small devices.

Unfortunately, if large quantum computers are built then
Shor’s quantum algorithm [33] breaks ECC in polynomial
time. In the two decades since Shor found this quantum
speedup, research in cryptography has progressed to find sys-
tems that remain secure under attacks with quantum comput-
ers. There are several approaches to designing such post-
quantum systems but the main categories for public-key
encryption systems are based on codes, lattices, or—more
recently—isogenies between supersingular elliptic curves.
Code-based cryptography [23] was invented by McEliece
in 1978 and is thus just one year younger than RSA and
has held up much stronger against cryptanalysis than RSA.
Lattice-based cryptography started more than 15 years later
and security estimates are still developing; see, e.g., the re-
cent paper [1] claiming a 400× speedup in lattice attacks.
Isogenies in their current use started only in 2011 [17].

In 2015, the European project PQCRYPTO issued recom-
mendations [2] for confidence-inspiring post-quantum sys-
tems; for public-key encryption the only recommended sys-
tem was a code-based system which is closely related to
McEliece’s original proposal. However, when in 2016 Google
ran an experiment [8] deploying post-quantum cryptography
to TLS connections between Chrome (Canary) browsers and
Google sites they did not choose a code-based system but a
much more recent system based on lattices. The main issue
with the high-confidence code-based system is that it requires
a much larger key size—1MB vs. 1kB—for the same esti-
mated level of security. Google piggybacked the lattice-based

system with ECC so that the security of the combined system
would not be weaker than a pure ECC system.

In April 2018, Google’s Langley reported [21] on another
experiment with post-quantum cryptography, this time test-
ing no particular system but different key sizes. They tested
initiation packets of sizes 400, 1100, and 10000 bytes, saying
that these are meant to represent systems based on isogenies
and based on different types of lattices. Langley justified their
choice by writing “in some cases the public-key + cipher-
text size was too large to be viable in the context of TLS”.
There were too many sites that dropped the largest size so it
was skipped from further experiments and replaced by 3300
bytes. For these sizes they measured the increase in latency.
In a second experiment they measured round-trip times, this
time even skipping the 3300-byte size. These sizes are a far
cry from what is needed to transmit the 1MB keys of the
McEliece cryptosystem. See also the failure reported in [12]
to handle 300KB keys in OpenSSL.

For the experiments it is reasonable to use new systems in
combination with ECC; see [18–20] for a new lattice-plus-
ECC experiment by Google and Cloudflare. However, this
does not help with post-quantum security if lattices turn out
to be much weaker than currently assumed. This raises the
question how network protocols could possibly use the high-
confidence McEliece cryptosystem.

Of course, the key could be chopped into pieces and sent in
separate packets and the server could be instructed to buffer
the pieces and reassemble the pieces but this allows rogue
clients to flood the RAM on the server. See Section 2.

This paper introduces McTiny, a new protocol that solves
the problem of memory-flooding denial-of-service attacks
for code-based cryptography. McTiny handles the 1MB keys
of the McEliece cryptosystem, having the same basic data
flow as TLS in which the client creates a fresh public key for
each connection and sends it as the first step of the protocol.
McTiny splits the public keys into pieces small enough to fit
into network packets. On the client side the overhead is small
compared to creating the key and sending 1MB. The server is
not required to allocate any memory per client and only ever
needs to process information that fits into one Internet packet,
making McTiny suitable for tiny network servers.

Sections 2 and 3 motivate tiny network servers and review
existing results. Section 4 gives background in coding the-
ory. Sections 5 and 6 explain our new McTiny protocol. We
analyze cryptographic security in Sections 7–9 and present
our software implementation and evaluation in Section 10.
Finally we consider some alternative choices.

2 Server-memory Denial of Service, and the
Concept of Tiny Network Servers

Most—but not all!—of today’s Internet protocols are vulner-
able to low-cost denial-of-service attacks that make a huge

number of connections to a server. These attacks fill up all
of the memory available on the server for keeping track of
connections. The server is forced to stop serving some con-
nections, including connections from legitimate clients. These
attacks are usually much less expensive than comparably ef-
fective attacks that try to use all available network bandwidth
or that try to consume all available CPU time.

2.1 A Classic Example: SYN Flooding

The “SYN flooding” denial-of-service attack [14] rose to
prominence twenty years ago when it was used to disable an
ISP in New York, possibly in retaliation for anti-spam efforts;
see [9]. “SYN cookies” [4] address SYN flooding, but from a
broader security perspective they are highly unsatisfactory, as
we now explain.

Recall that in a normal TCP connection, say an HTTP
connection, the client sends a TCP “SYN” packet to the server
containing a random 32-bit initial sequence number (ISN);
the server sends back a “SYNACK” packet acknowledging
the client ISN and containing another random ISN; the client
sends an “ACK” packet acknowledging the server ISN. At this
point a TCP connection is established, and both sides are free
to send data. The client sends an HTTP request (preferably as
part of the ACK packet), and the server responds.

The server allocates memory to track SYN-SYNACK pairs,
including IP addresses, port numbers, and ISNs. This is ex-
actly the memory targeted by SYN flooding. A SYN-flooding
attacker simply sends a stream of SYNs to the server with-
out responding to the resulting SYNACKs. Once the SYN-
SYNACK memory fills up, the server is forced to start throw-
ing away some SYN-SYNACK pairs, and is no longer able to
handle the corresponding ACKs. The server can try to guess
which SYN-SYNACK pairs are more likely to be from le-
gitimate clients, and prioritize keeping those, but a sensible
attacker will forge SYNs that look just like legitimate SYNs.
If the server has enough SYN-SYNACK memory for c con-
nections, but is receiving 100c indistinguishable SYNs per
RTT, then a legitimate client’s ACK fails with probability at
least 99%.

SYN cookies store SYN-SYNACK pairs in the network
rather than in server memory. Specifically, the server encodes
its SYN-SYNACK pair as an authenticated cookie inside the
SYNACK packet back to the client, and then forgets the SYN-
SYNACK pair (if it is out of memory or simply does not
want to allocate memory). The client sends the cookie back
in its ACK packet. The server verifies the authenticator and
reconstructs the SYN-SYNACK pair.1

1For compatibility with unmodified clients, the server actually encodes
a very short authenticator inside the choice of server ISN. Modifying both
the client and the server would have allowed a cleaner protocol with a longer
authenticator. In this paper we are prioritizing security and simplicity above
compatibility, so we do not compromise on issues such as authenticator
length.

2.2 Why Stopping SYN Flooding is Not
Enough

SYN cookies eliminate the server’s SYN-SYNACK memory
as a denial-of-service target: a forged SYN simply produces
an outgoing SYNACK2 and does not interfere with legitimate
clients. But what happens if the attacker continues making a
connection, not merely sending a SYN but also responding to
the resulting SYNACK and sending the beginning of an HTTP
GET request? The server allocates memory for the established
TCP connection and for the HTTP state, much more memory
than would have been used for a SYN-SYNACK pair. The
attacker leaves this connection idle and repeats, consuming
more and more server memory. Again the server is forced to
start throwing away connections.

There is some entropy in the SYNACK that needs to be
repeated in the ACK. An attacker who sends blind ACKs will
only rarely succeed in making a connection, and these occa-
sional connections will time out before they fill up memory.
However, an on-path attacker, an attacker who controls any of
the machines that see the SYNACKs on the wire or in the air,
has no trouble forging ACKs. Forcing attackers to be on-path
might deter casual attackers but will not stop serious attackers
(see, e.g., [15]).

2.3 Tiny Network Servers

As mentioned above, not all Internet protocols are vulnerable
to these memory-filling denial-of-service attacks. Consider,
for example, a traditional DNS server running over UDP. This
server receives a UDP packet containing a DNS query, imme-
diately sends a UDP packet with the response, and forgets the
query. A careful implementation can handle any number of
clients without ever allocating memory.

DNS has an optional fallback to TCP for responses that
do not fit into a UDP packet. However, at many sites, all
DNS responses are short. Clients requesting information from
those sites do not need the TCP fallback;3 an attacker denying
TCP service will not deny DNS service from those sites. The
bottom line is that DNS can, and at some sites does, serve any
number of clients using a constant amount of server memory.

Another classic example is NFS, Sun’s Network File Sys-
tem [28]. NFS (without locks and other “stateful” features)
was explicitly designed to allow “very simple servers” for
robustness [28, Section 1.3]:

The NFS protocol was intended to be as stateless
as possible. That is, a server should not need to

2Amplifying a packet into a larger packet raises other denial-of-service
concerns, but the outgoing SYNACK is not much larger than the SYN.

3DNS-over-TCP was also in heavy use for an obsolete ad-hoc high-latency
low-security replication mechanism (periodic client-initiated “DNS zone
transfers”), but anecdotal evidence suggests that most sites have upgraded to
more modern push-style server-replication mechanisms, for example using
rsync over ssh.

maintain any protocol state information about any
of its clients in order to function correctly. State-
less servers have a distinct advantage over state-
ful servers in the event of a failure. With stateless
servers, a client need only retry a request until the
server responds; it does not even need to know that
the server has crashed, or the network temporarily
went down. The client of a stateful server, on the
other hand, needs to either detect a server failure
and rebuild the server’s state when it comes back
up, or cause client operations to fail.

This may not sound like an important issue, but it
affects the protocol in some unexpected ways. We
feel that it may be worth a bit of extra complexity in
the protocol to be able to write very simple servers
that do not require fancy crash recovery.

An NFS server receives, e.g., a request to read the 7th block
of a file, returns the contents of the block, and forgets the
request. An important side effect of this type of server design
is that malicious clients cannot fill up server memory.

This paper focuses on tiny network servers that handle
and immediately forget each incoming packet, without allo-
cating any memory. The most obvious application is making
information publicly available, as in traditional DNS, anony-
mous read-only NFS, and anonymous read-only HTTP; as
DNS and NFS illustrate, it is possible to design protocols that
handle this application with tiny network servers. The concept
of a tiny network server also allows more complicated com-
putations than simply retrieving blocks of data. Tiny network
servers are not necessarily connectionless, but the requirement
of forgetting everything from one packet to the next means
that the server has to store all connection metadata as cookies
in the client. Tiny servers are not necessarily stateless, and
in fact the protocol introduced in this paper periodically up-
dates a small amount of state to support key erasure (“forward
secrecy”), but we emphasize that this is not per-client state.

Tiny network servers are compatible with reliable delivery
of data despite dropped packets: for example, DNS clients
retry requests as often as necessary. Tiny network servers
are also compatible with congestion control, again managed
entirely by the client. Tiny network servers provide extra
robustness against server power outages; trivial migration
of connections across high-availability clusters of identically
configured servers; and the ability to run on low-cost “Internet
of Things” platforms.

3 The Tension Between Tiny Network Servers
and Further Security Requirements

The obvious security advantage of designing a protocol to al-
low tiny network servers—see Section 2—is that these servers
are immune to server-memory denial of service.

What is not clear, however, is that tiny network servers are
compatible with other security requirements. The pursuit of
other security requirements has created, for example, DNS
over TLS and DNS over HTTPS, and all implementations of
these protocols allow attackers to trivially deny service by
filling up server memory, while the original DNS over UDP
allows tiny network servers that are not vulnerable to this
attack.

In this section we highlight three fundamental security
requirements, and analyze the difficulty of building a tiny
network server that meets these requirements. We explain
how to combine and extend known techniques to handle the
first two requirements. The main challenge addressed in the
rest of this paper is to also handle the third requirement, post-
quantum security.

3.1 Requirements
Here are the three requirements mentioned above:

• We require all information to be encrypted and authen-
ticated from end to end, protecting against interception
and forgery by on-path attackers.

• We require keys to be erased promptly, providing some
“forward secrecy”. For comparison, if key erasure is slow,
then future theft of the server (or client) allows an at-
tacker to trivially decrypt previously recorded ciphertext.

• We require cryptography to be protected against quan-
tum computers.

Typical cryptographic protocols such as HTTPS handle the
first two requirements, and are beginning to tackle the third.
However, these protocols create several insurmountable obsta-
cles to tiny network servers. For each active client, the server
has to maintain per-client state for a TCP connection, plus
per-client state for a TLS handshake followed by TLS packet
processing, plus per-client state for HTTP.

We therefore scrap the idea of staying compatible with
HTTPS. We instead focus on the fundamental question of
whether—and, if so, how—a tiny network server can provide
all of these security features.

3.2 Cookies Revisited
One approach is as follows. Aura and Nikander [3] claim to
straightforwardly “transform any stateful client/server proto-
col or communication protocol with initiator and responder
into a stateless equivalent”, and give some examples. The
“Trickles” network stack from Shieh, Myers, and Sirer [31,32]
stores all of the server’s TCP-like metadata as a cookie, and
also provides an interface allowing higher-level applications
to store their own state as part of the cookie. Why not apply
the same generic transformation to the entire per-connection

HTTPS server state X , straightforwardly obtaining a higher-
availability protocol where a tiny network server stores X as
a cookie on the client?

The problem with this approach, in a nutshell, is packet
size. These papers assume that a client request and a cookie fit
into a network packet. Consider, for example, the following
comment from Shieh, Myers, and Sirer: “Of course, if the
server needs lengthy input from the client yet cannot encode
it compactly into an input continuation, the server application
will not be able to remain stateless.”

Concretely, the Internet today does not reliably deliver
1500-byte packets through IPv4, and does not reliably de-
liver 1400-byte packets through IPv6 (even when IPv6 is
supported from end to end). Normally the lower layer actually
delivers 1500-byte packets, but tunnels sometimes reduce the
limit by a few bytes for IPv4, and usually reduce the limit by
more bytes for IPv6; see, e.g., [29] and [22].

These limits are actually on fragment size rather than end-
to-end packet size. Why not split larger packets into frag-
ments? The answer is that this is unacceptable for a tiny net-
work server. Fragments often take different amounts of time
to be delivered, so the server is forced to allocate memory for
fragments that have not yet been reassembled into packets.
This memory is a target of denial-of-service attacks. The only
safe solution is to limit the packet size to the fragment size.

IPv6 guarantees that 1280-byte packets (and smaller pack-
ets) can be sent from end to end, without fragmentation. This
guarantee simplifies protocol design. Historically, some net-
work links had even smaller packet-size limits, and technically
the IPv4 standard still allows routers to split packets into much
smaller fragments, but it is difficult to find evidence of prob-
lems with 1280-byte packets on the Internet today. This paper
focuses on clients and servers connected by a network that
delivers 1280-byte packets.

It is not entirely inconceivable that all essential details of an
HTTPS state could be squeezed into such a small packet, with
enough restrictions and modifications to HTTPS. But contin-
uing down this path would clearly be much more work than
directly designing a cryptographic protocol for tiny network
servers.

3.3 ECC For Tiny Network Servers
We instead start from an existing special-purpose crypto-
graphic protocol that does work with tiny network servers,
namely Bernstein’s DNSCurve [5]. This protocol takes ad-
vantage of the small size of public keys in elliptic-curve cryp-
tography (ECC), specifically 32 bytes for Curve25519.

A DNSCurve client starts with knowledge of the server’s
long-term public key sG, previously retrieved from a parent
DNS server. Here s is an integer, the server’s secret key; G is
a standard elliptic-curve point; and sG is the output of a math-
ematical operation, called elliptic-curve scalar multiplication,
whose details are not relevant to this paper. The client gener-

ates its own public key cG, and sends a packet to the server
containing cG and the ciphertext for a DNS query. The server
immediately responds with the ciphertext for a response, and
forgets the query. Both ciphertexts are encrypted and authen-
ticated under a shared secret key, a 256-bit hash of the point
csG; the server computes csG from s and cG, and the client
computes csG from c and sG. The client knows that the re-
sponse is from the server: the shared secret key is known only
to the client and the server, and nobody else can generate a
valid authenticator.

We highlight two limitations of DNSCurve compared to
HTTPS, and explain how to fix these. First, each public-key
handshake in DNSCurve handles only one query packet and
one response packet, while one HTTPS handshake is typically
followed by a web page, often 1000 packets or more.

A conceptually straightforward fix is to carry out a separate
DNSCurve-style query for each block of a web page. ECC
public keys are small, so the traffic overhead is small; ECC
operations are very fast, so there is no problem in CPU time.
However, our goal is actually to upgrade to post-quantum
cryptography, which uses much larger keys, creating perfor-
mance problems; see below.

A more efficient fix is for the server to encrypt and authen-
ticate the 256-bit shared secret key under a key known only
to the server, obtaining a cookie. The server includes this
cookie in the response to the client. The server then accepts
this cookie as an alternative to cG, allowing the client to carry
out subsequent queries without sending cG again.

The second limitation that we highlight is the lack of for-
ward secrecy in DNSCurve. DNSCurve clients can erase keys
promptly, for example discarding cG after one connection,
but it is not so easy for a DNSCurve server to move from one
long-term key to another: this requires uploading the new key
to the parent DNS server, something that could be automated
in theory but that is rarely automated in practice.

One fix is for the client to encrypt its confidential query
only to a short-term server key, rather than to the server’s
long-term key. This takes two steps: first the client issues
a non-confidential query asking for the server’s short-term
public key; then the client issues its confidential query to the
server’s short-term public key. The server frequently replaces
its short-term public key with a new short-term public key,
erasing the old key.

What makes these protocols easy to design, within the
constraint of tiny network servers, is the fact that ECC keys
and ciphertexts fit into a small corner of a network packet.
The question addressed in the rest of this paper is whether
tiny network servers can achieve encryption, authentication,
and key erasure for much larger post-quantum keys.

4 Code-Based Cryptography

This section explains the basics of code-based cryptography
and specifies the parameters used in this proposal.

McEliece introduced code-based cryptography in 1978
in [23]. The system uses error correcting codes and the public
and private keys are different representations of the same code;
the private one allows efficient decoding while the public one
resembles a random code which makes it hard to decode.
In 1986, Niederreiter [25] published a modification of the
McEliece scheme which decreases the ciphertext size. Nieder-
reiter’s original proposal involved some codes which turned
out to be weak, but using Niederreiter’s short ciphertexts with
the binary Goppa codes [16] proposed by McEliece in his
encryption scheme combines the benefits of both schemes.

McBits, by Bernstein, Chou, and Schwabe [7], extends this
public-key primitive into a full IND-CCA2 secure encryption
scheme, combining it with a KEM-DEM [13] construction.
The PQCRYPTO recommendations [2] include McBits as
the only public-key encryption scheme. McBits uses a code
of length n = 6960, dimension k = 5413 and adding t = 119
errors. These parameters (explained below) lead to a public
key of roughly 1MB and to a ciphertext length just n− k =
1547 bits. The same parameters are included in the Classic
McEliece submission [6] to NIST’s call for Post-Quantum
systems [26] as mceliece6960119. Classic McEliece has
been selected by NIST as a Round-2 candidate [27]. Similar
considerations as given in the next sections hold for other
parameters and other code-based systems with large public
keys.

This section explains how key encapsulation and decap-
sulation work; for details on key generation see [6]. The
description is independent of the exact parameters; we use
these for illustration purposes whenever concrete sizes are
necessary and because these parameters are recommended for
long-term security.

The codes considered in this paper are binary codes, mean-
ing that all entries are in {0,1} and that computations follow
the rules of IF2, i.e., 0+ 0 = 1+ 1 = 0,0+ 1 = 1,1 · 1 = 1,
and, as always, 0 ·a = 0 for any a.

4.1 Public and Private Keys
The public key is a binary matrix K = (I|K′) with n columns
and n− k rows. The leftmost (n− k)× (n− k) part is the
identity matrix I. The (n− k)× k matrix K′ differs per user.

The private key is an efficient decoding mechanism for
the code related to K. The decoding details do not matter for
this paper but the private key is much smaller than the public
key. Key generation is more computationally intensive than
encapsulation or decapsulation.

Example 1 We now introduce a small example
with n = 7 and k = 4 which we will use for the
following sections. Let

K =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 ,

then

K′ =

1 1 0 1
1 0 1 1
0 1 1 1

 .

4.2 Encapsulation and Decapsulation
The basic operation in encapsulation is to compute K ·e, where
e is a randomly chosen binary vector of length n which has
weight t, i.e., exactly t nonzero entries; and · denotes normal
matrix-times-vector multiplication over IF2. The result of this
computation is a binary vector c = Ke of length n− k. This
computation takes the first row k1 of K and computes the dot
product with e, resulting in the first bit of Ke, takes the second
row k2 to similarly produce the second bit of Ke, etc.

Example 2 Continuing in the setting of Exam-
ple 1 and choosing e = (0,1,0,0,0,1,0)⊥ gives
c = (0,0,1)⊥, the sum of the second and the sixth
column.

Decapsulation uses the private representation of the code to
recover the vector e from Ke. As can be seen in the example, e
is not unique. The same c is obtained by adding the fourth and
the seventh column, or just by taking the third column. The
cryptosystem restricts the weight t of e so that e is unique.

4.3 Security of Code-Based Cryptography
The cryptographic hardness assumption is that it is hard to
find e given K and c for e of fixed (small) weight t. This is
the syndrome decoding problem which is a hard problem in
coding theory for random codes. For a small example like
Example 1 it is easy to check all possibilities of low-weight
vectors e but the complexity of these attacks grows exponen-
tially with n and t. For code-based cryptography based on
binary Goppa codes the key-size (n− k) · k grows with the
security level λ (meaning an attacker takes 2λ operations) as
(c0 + o(1))λ2(lgλ)2, with c0 ≈ 0.7418860694, for the best
attacks known today. See e.g. the documentation of [6] for an
overview of attacks.

4.4 IND-CCA2 Security
The Classic McEliece system includes key confirmation and
computes ENC(K) = (c,C,S) with c = K · e, C = hash(2,e),
and S = hash(1,e,c,C). The pair (c,C) is the ciphertext and
S is the shared symmetric key. Here hash is a cryptographic
hash function.

Decapsulation in Classic McEliece computes
DEC(c,C,sk) = S, where S = hash(1,e,c,C) if the re-
covered e has the correct weight and satisfies C = hash(2,e).
Else S = hash(0,v,c,C), where v is a secret value stored for
this purpose. Thus, decapsulation never fails. Subsequent
steps use S in authenticated encryption, so invalid ciphertexts
will produce failed authenticators.

5 McTiny Public Keys

This section explains the mathematical details of how the
McTiny protocol (described in the next section) can work on
pieces of the public key while obtaining correct encryptions.

5.1 Partitioning of Public Keys
McTiny transmits a public key K from the client to the server.
It splits K and uses that the computation Ke can naturally be
composed using parts of K and e. Let K = (I|K′) and write

K′ =


K1,1 K1,2 K1,3 . . . K1,`
K2,1 K2,2 K2,3 . . . K2,`
...

...
...

. . .
...

Kr,1 Kr,2 Kr,3 . . . Kr,`

 ,

where the submatrices Ki, j are chosen to be approximately
equally sized and small enough to fit into a network packet
along with other message parts described in the next section.
For ease of exposition assume that each Ki, j has x columns
and y rows, so k = x · ` and n− k = y · r; in general the pieces
may have different sizes as specified by the system parameters.
All users use the same values for n, k, t, ` and r, so the size of
each Ki, j is universally known.

The client transmits K by sending Ki, j and the position
(i, j) for 1≤ i≤ r, 1≤ j ≤ `. Upon receipt of Ki, j the server
computes the partial result ci, j = Ki, je j, where e j denotes the
matching part of e and ci, j the matching part of the resulting
vector c. For example, c1,` = K1,`e` takes e` as the last x po-
sitions of e, and computes the matrix-vector multiplication
K1,`e` resulting in the length-y vector c1,`. The first y coordi-
nates of c are given by c1 = e1,0 +c1,1 +c1,2 + · · ·+c1,`, with
e1,0 the first y positions of e.

Example 3 In the setting of Example 1 sub-
matrices may be chosen as K1,1 = (1 1),K1,2 =
(0 1),K2,1 = (1 0),K2,2 = (1 1),K3,1 = (0 1), and
K3,2 = (1 1). The vector e = (0,1,0,0,0,1,0)⊥

gets split into e1,0 = (0),e2,0 = (1),e3,0 = (0),e1 =
(0,0)⊥,e2 = (1,0)⊥. Then c1 = e1,0 +c1,1 +c1,2 =
(0)+(1 1)(0,0)⊥+(0 1)(1,0)⊥ = 0, matching the
first coordinate of c computed earlier.

Note that each part ci j poses a decoding problem for e j
which is much easier than breaking McEliece. It is thus im-
portant that these pieces are cryptographically protected.

5.2 Optimization
The partial computations of ci, j are independent of one an-
other and can be performed in any order. These intermediate
results take only y bits and are thus much smaller than the
xy-bit sized parts of K′ that they cover.

We define a concrete example mctiny6960119 of McTiny,
using the mceliece6960119 parameters mentioned above
with k = 5413 and n− k = 1547. To minimize the size of
intermediate results we could take y = 1, x = 5413, and `= 1,
i.e., we could transmit one row of K′ at once. However, this
would require 1547 steps alone in the stage of sending Ki, j.
Using `= 2 and combining three rows produces chunks that
might be too large for the network packets. Observing that
1MB requires about a thousand packets of 1KB each and
aiming for a regular pattern of combination, we opt for `= 8
and r = 119 for mctiny6960119. Typical Ki, j then have 13
rows and 680 columns fitting into 1105 bytes. Replies with
ci j fit into 2 bytes.

6 The McTiny Protocol

This section introduces the McTiny protocol. Forward secrecy
is achieved by requiring each client to generate and send a
fresh public key K to the server. Clients are also responsible
for key erasure at the end of a session. McTiny makes it
possible for the server to compute Ke, for a big matrix K and
chosen weight-t vector e (see Section 4), without requiring the
server to allocate any per-client memory and without needing
more temporary memory than what fits into a network packet.
At the end of the McTiny protocol, server and client both
compute their shared symmetric key. The details of how this
shared key is computed match Classic McEliece [6] and the
client can use decapsulation from Classic McEliece.

Besides code-based cryptography for the public-key opera-
tions, McTiny uses authenticated encryption with symmetric
keys. The PQCRYPTO recommendations [2] suggest either
AES-GCM with AES-256 or Salsa20-Poly1305 with 256-bit
encryption keys and 128-bit authentication keys. McTiny fol-
lows McBits in using XSalsa20-Poly1305. (XSalsa20 handles
longer nonces than Salsa20.) We use AE(T : N : S) to denote
the authenticated encryption of T under key S using nonce N.

6.1 General Setup and Phases
The server has a long-term public key pk which is used to
authenticate the server and to derive a shared secret key to
encrypt and authenticate all messages after the initiation mes-
sage. The McTiny protocol uses a long-term McEliece key to
achieve full post-quantum security. The server administrator
generates this long-term key when setting up the server. The
public-key infrastructure, the mechanism that disseminates
and certifies server public keys, is outside the scope of this
paper; we simply assume that, when the McTiny protocol
begins, the client knows the server’s long-term public key.

The McTiny protocol runs in four phases. The first phase,
phase 0, is the initiation phase in which the client estab-
lishes contact with the server and the server proves its identity.
Specifically, the server uses its long-term private key sk to
decrypt the key S encapsulated by the client and respond to

the client’s initial request. Note that this key S is not forward-
secret. The client and the server use S to encrypt and authenti-
cate all following messages.

In phase 1 the client sends the matrix parts Ki, j to the
server and the server replies with encryptions of the partial
encryptions ci, j. Phase 2 is the row-wise combination and
phase 3 computes the KEM ciphertext. A full description
of the protocol is given in Figure 1. The following sections
explain the steps in detail. See Table 1 for the packet sizes in
each phase.

6.2 Nonces
XSalsa20-Poly1305 uses nonces with 24 bytes. In the McTiny
protocol the server is responsible for generating a random
22-byte N from which most nonces are generated as n =
(N,N0,N1) in a deterministic way. Bytes N0 and N1 are deter-
mined by the phase the protocol is in, information regarding
positions, and N0 is even for messages from the client to the
server and odd for messages the other way. Bytes are stated as
integers in [0,255] in the protocol. For concreteness we state
particular choices of (N0,N1) below for the mctiny6960119
parameters. These apply to a large range of codes.

6.3 Server Cookies
McTiny makes heavy use of encrypted cookies to store in-
termediate results in the network/on the client’s computer.
The cookie keys sm are symmetric keys that are used for cer-
tain time intervals. In time interval m the server uses sm to
encrypt cookies with data to itself. The server can decrypt
cookies returned to it during z time intervals, while it is using
sm,sm+1,sm+2,sm+3, . . . ,sm+z−1. When the server generates
sm+z it erases sm.

In mctiny6960119 we specify the time interval as one
minute and specify that the server remembers 8 cookie keys
in any time interval, i.e. while it uses sm it also remembers
sm−1,sm−2, . . .sm−7 but not sm−8 or earlier keys. Each cookie
contains one byte in clear which determines the cookie index
modulo 8, where numbers are assigned round robin. At 22
bytes, the nonce part N is chosen long enough so that it will
not repeat while the same cookie key is in use. To explain
these choices, assume keys are erased within 8 minutes. If the
server uses only 2 keys then client connections begin failing
after a 4-minute network outage. Increasing 2 to 8 cheaply
increases 4 minutes to 7 minutes. We allocate an entire byte
(and add a random multiple of 8 as grease, and have the client
repeat the entire byte) so that modifications to the cookie
policy do not require modifications to clients.

6.4 Phase 0: Initiation
To initiate communication, the client uses the server’s long-
term public key pk and derives a symmetric key S using the

Client Server (blue values shared accross connections)
. Set-up phase .

(sk,pk)←$KGen
. Phase 0 .

(k,K)←$KGen

(c̄,C̄,S)← ENC(pk)

R←${0,1}176
AE(0 : R,0,0 : S)

hash(pk), (c̄,C̄), (R,0,0)
S←DEC(c̄,C̄,sk)

N ←${0,1}176

E ←$SeedGen

sm← current cookie key

C0← (AE(S,E : N,1,0 : hash(sm)),m mod 8)
AE(C0 : N,1,0 : S)

(N,1,0)

. Phase 1 Run for all i = 1 . . .r, j = 1 . . . ` .

AE(Ki, j : N,2(i−1),64+ j−1 : S)

C0,(N,2(i−1),64+ j−1)
handle C0,M,sm . . .

Recover S,E from C0

sm← current cookie key

C0← (AE(S,E : N,1,0 : hash(sm)),m mod 8)

s← hash(sm,S)

M ←${0,1}176

ci, j← Ki, je j

Ci, j← (AE(ci, j : N,2i−1,64+ j−1 : s),m mod 8)
AE(C0,Ci, j : M,2i−1,64+ j−1 : S)

(M,2i−1,64+ j−1)

. Phase 2 Run for all i = 1,2, . . . ,dr/ve .

AE(Civ−v+1,1, . . . ,Civ,` : N,2(i−1),64+32 : S)

C0,(N,2(i−1),64+32)
handle C0,M,sm . . .

c j← e j,0 + c j,1 + · · ·+ c j,` for j = iv− v+1, . . . , iv
AE(C0,civ−v+1, . . . ,civ : M,2i−1,64+32 : S)

(M,2i−1,64+32)

. Phase 3 .

AE((c1,c2, . . . ,cr) : N,254,255 : S)

C0,(N,254,255)
handle C0,M,sm . . .

C← hash(2,e)

Z← hash(1,e,(c1,c2, . . . ,cr),C)

CZ ← (AE(Z : M,255,255 : hash(sm)),m mod 8)
AE(CZ ,(c1,c2, . . . ,cr),C : M,255,255 : S)

(M,255,255)
Z←DEC((c1,c2, . . . ,cr),C,k)

Figure 1: The McTiny Protocol. All AE ciphertexts are decrypted and validated. The offsets are chosen for `≤ 32.

phase bytes/packet packets bytes
0 query 810 1 810

reply 121 1 121
1 query 1226 952 1 167 152

reply 140 952 133 280
2 query 1185 17 20 145

reply 133 17 2 261
3 query 315 1 315

reply 315 1 315
queries 971 1 188 422
replies 971 135 977

Table 1: Packet sizes in each phase of mctiny6960119,
counting only application-layer data and not counting
UDP/IP/Ethernet overhead. A public key is 1 047 319 bytes.

Classic McEliece KEM. The client sends the KEM ciphertext,
a hash of the server’s public key, and AE(0 : R,0,0 : S). The
plaintext 0 is a 512-byte extension field, currently unused.

The server uses sk to decapsulate the KEM ciphertext and
retrieve S. It verifies and decrypts AE(0 : R,0,0 : S). It then
picks a random seed E of 32 bytes, computes C0 = (AE(S,E :
N,1,0 : hash(sm)),b), using the current cookie key sm and
b = m mod 8. The seed E determines the low-weight vector
e through a deterministic function, see [6] for details. The
server then picks a 22-byte nonce N, and computes and sends
AE(C0 : N,1,0 : S),(N,1,0) to the client. At this point the
server forgets all data related to this client.

The client verifies the authenticity and stores (C0,N).
For mctiny6960119, S and E have 32 bytes, nonces have

24 bytes, and AE(T : N : S) has the same length as T plus a 16-
byte authentication tag. In total, C0 has 32+32+16+1 = 81
bytes and the message to the client has 40 bytes more for the
nonce N,1,0 and the authenticator under S.

6.5 Phase 1: Partial Public-Key Encryption
Phase 1 sends the matrix pieces Ki, j to the server which then
computes the partial matrix-vector products as described in
Section 5. Here we detail the cryptographic protections for
this computation.

For every partial matrix Ki, j the client sends AE(Ki, j :
N,2(i−1),64+ j−1 : S),C0,(N,2(i−1),64+ j−1) to the
server, where 1≤ i≤ r is the row position and 1≤ j≤ ` is the
column position. The offset 64 works for `≤ 32. This nonce
is deterministic within one run and will repeat, but only to
resend the same message. The related nonces save bandwidth.

If the server obtained this message before the expiry of
cookie key decrypting C0, the server obtains (S,E) and uses
S and N to verify and decrypt the payload to obtain Ki, j.
The server recovers e from E and computes the partial
matrix-vector multiplication ci, j = Ki, je j. The position of
this matrix is computed from the nonce. The server then re-
computes C0 = (AE(S,E : N,1,0 : hash(sm)),b), using the

current cookie key sm and the same nonce N,1,0 as be-
fore. Finally, it computes a client-specific cookie key s =
hash(sm,S) and the cookie matching the partial encryption
Ci, j = (AE(ci, j : N,2i−1,64+ j−1 : s),b). It picks a fresh
22-byte random nonce M, sends AE(C0,Ci, j : M,2i−1,64+
j−1 : S),(M,2i−1,64+ j−1) to the client, and forgets all
data related to the client.

The client verifies, decrypts, updates C0, and stores Ci, j
for future use. If partial encryptions are missing, the client
re-requests by sending the same packet with the latest C0.

For mctiny6960119 the public key is split into 119× 8
blocks so that 119 · 8 = 952 packets need to be sent. Each
packet from client to server has 1226 bytes and each reply
from the server has 140 bytes (81 in C0, 2+16+1 in the Ci j,
16 in the authenticator, and 24 in the nonce).

6.6 Phase 2: Row-wise Combination
This phase combines the partial encryptions row-wise. The
protocol specifies a split of the r × ` blocks from phase
1 into batches of w blocks. Once the client has obtained
all blocks in one batch—this may be part of a row as
Ci,wJ+1,Ci,wJ+2, . . . ,Ci,wJ+w or cover one or several rows as
Civ−v+1,1,Civ−v+1,2, . . . ,Civ−v+1,`, . . . ,Civ,1,Civ,2, . . . ,Civ,` for
v = w/`—it sends them for partial combination. For simplic-
ity and because it matches the sizes of mctiny6960119 we
describe the case where several complete rows of blocks can
be handled in one step. For rows iv−v+1 through iv the client
sends AE(Civ−v+1,1,Civ−v+1,2, . . . ,Civ,` : N,2(i−1),64+32 :
S),C0,(N,2(i−1),64+32). The nonce is separated from the
other nonces as `≤ 32.

The server checks the authenticator and, for each j
from iv − v + 1 through iv, decrypts C j,1, . . . ,C j,` to ob-
tain the pieces c j,1, . . . ,c j,` of c j. As described in Sec-
tion 5, the server computes c j = e j,0 + c j,1 + c j,2 + · · ·+
c j,`, with e j,0 the matching y positions of e. Finally it
sends AE(C0,civ−v+1,civ−v+2, . . . ,civ : M,2i − 1,64 + 32 :
S),(M,2i−1,64+32).

The client verifies, decrypts, updates C0, and stores
civ−v+1,civ−v+2, . . . ,civ for future use. As before, missing
pieces are re-requested.

In mctiny6960119 v= 7 rows of blocks (i.e., 91 rows from
the original matrix) are handled together. Thus, nonces from
the client to the server have N0 ∈ {0,2,4, . . . ,32}. Messages
from client to server have 1185 bytes, messages from server
to client have 133 bytes.

6.7 Phase 3: Decapsulation
Eventually all ci,1≤ i≤ r, are known to the client. To match
the Classic McEliece key derivation, McTiny has the client
send c to the server. The server computes the plaintext confir-
mation C = hash(2,e), shared secret Z = hash(1,e,c,C) and
shared-key cookie CZ = AE(Z : M,255,255 : hash(sm)) for a

fresh nonce M. The server sends (AE(CZ ,c,C : M,255,255 :
S),(M,255,255)) to the client which then computes Z =
DEC(c,C,k) and stores Z and cookie (CZ ,M) for future use.
The client erases all other data including S and (k,K).

In mctiny6960119 client and server each send 315 bytes
in this phase. In total, 971 packets are sent by the client to
the server, each prompting a reply fitting into one packet and
never amplifying the size.

The McTiny key exchange ends at this point, and the client
communicates securely with the server using session key Z.
Details of a session protocol are outside the scope of this
paper, but the main point is that the client can include (CZ ,M)
in subsequent packets so that the server can reconstruct Z.
Any packet back includes an updated cookie (CZ ,M) using
a fresh nonce; the session protocol can update Z here for
prompt key erasure within a session. When the session ends
(explicitly or by a timeout), the client erases all data.

7 Key Erasure

Key erasure should prevent an attacker learning secrets from
past connections if he steals the server or client or both.

7.1 Key Erasure On the Server Side

An attacker who steals a server obtains the server’s long-term
secret key sk. If the attacker keeps the server online it can
decrypt all future traffic to the server, and can pose as the
server. The question is whether the attacker can also decrypt
past traffic. Traffic is encrypted under the key Z exchanged by
the McTiny protocol, so the question is whether the attacker
learns Z for past connections.

The secret key sk allows the attacker to decapsulate all
KEM messages ever sent to the server (phase 0) and obtain
all shared keys S. These decrypt all messages sent between
client and server in subsequent phases under the respective
S. In particular, the attacker sees a McEliece ciphertext (c,C)
sent by the server to the client. However, unless there is a se-
curity problem with the McEliece system, the attacker cannot
determine Z from this ciphertext.

By stealing the server, the attacker also learns the server’s
recent cookie keys sm, . . . ,sm−z+1. In mctiny6960119 the
attacker obtains the cookie keys used for the last 8 minutes.
The cookie keys allow the attacker to decrypt cookies under
the last z keys from the server to itself; in particular, the
attacker can obtain Z for any recent connection by decrypting
the cookie CZ . However, the attacker cannot decrypt older
cookies. Cookies are often repeated across packets, but this
linking of packets is already clear from simple traffic analysis.

Here is what the attacker sees for an older McTiny con-
nection, a connection that completed more than z intervals
before the theft: the client’s short-term McEliece public key
K (in blocks Ki, j); a random ciphertext (c,C) sent to this key,

communicating a secret key Z to the client; and the cookies
C0 and Ci, j for 1≤ j ≤ `,1≤ i≤ r.

The shared secret Z could be computed from E included in
C0, but the keys to all the C0 cookies are erased.

Each ci j includes information on e as a much simpler de-
coding problem, but the ci j are encrypted in the Ci j under
erased cookie keys.

7.2 Keep Alive
An attacker planning to steal a server in the future has an
interest in keeping a connection alive by replaying messages
from the client. The client messages include C0 or CZ in plain
and a replay will prompt the server to reply as long as these
outer cookies can be decrypted. Each reply includes a fresh
C0 or CZ but these cookies are superencrypted under S or Z
which the attacker does not know, yet.

The client is assumed to maintain state, so will no longer
reply (and provide fresh versions of C0 or CZ) after the con-
nection was closed. The attacker loses the ability to cause
replies after the last cookie expired. Thus an active attacker
can extend the lifetime by z−1 time intervals.

In mctiny6960119 this means that 15 minutes after the
end of a connection even an active attacker cannot recover
any short-term keys by stealing the server.

7.3 Key Erasure On the Client Side
Similarly, an attacker who steals a client obtains the secret
keys that decrypt current connections, but the McTiny client
software does not retain the keys for a connection once the
connection is over. Of course, other parts of the client system
might retain data for longer.

Since the client has state it will not keep a connection open
longer than specified by its local timeouts. An active attacker
cannot override the client’s timeout policy.

8 Confidentiality and Integrity

In the absence of server theft, there is an extra layer of pro-
tection for confidentiality: all packets from the client are en-
crypted to the server’s long-term McEliece key (phase 0) or
use authenticated encryption. The choice of cryptographic
primitives follows best practices, so we look for weaknesses
introduced by the protocol. We first analyze what an external
attacker is faced with and then what a malicious client can do.

8.1 Passive External Attacker
Authenticated encryption guarantees confidentiality and in-
tegrity, but only if different messages never share nonces. If
AE is AES-GCM, and an attacker sees AE(T1 : N : S) and
AE(T2 : N : S) for T1 6= T2, then the attacker can also pro-
duce authenticators for arbitrary ciphertexts under (N′ : S) for

any N′. Our choice of XSalsa20-Poly1305 for AE limits the
impact, but the attacker can still produce authenticators for
arbitrary ciphertexts under (N : S). Either way, we need to
analyze the potential for nonce reuse.

All packets from the server to the client use authenticated
encryption with a fresh nonce under shared key S. The random
part of the nonce has 22 bytes (176 bits) and thus the choice
will not repeat while S is in use. Additionally, the domains for
the nonces are separated by step and direction using the last
two bytes. If a step is repeated due to packet loss, the server
will make a fresh choice of M. Hence, the attacker will not
observe nonce reuse for different plaintexts.

The subsequent messages from the client to the server
are encrypted and authenticated using S and a nonce which
depends on the first random nonce N chosen by the server.
Again the last two bytes provide domain separation. This
makes the choice of nonce deterministic for each encryption
and the same nonce and key are used when retransmitting in
the same phase, but only to encrypt the same plaintext.

The attacker also sees C0 = (AE(S,E : N,1,0 :
hash(sm)),m mod 8) using several cookie keys sm un-
der the same nonce N,1,0. All cookies encrypt the same
message, hence nonce-reuse under the same sm is no problem.
There is no weakness in AE for using the same nonce and
plaintext under different keys.

The connection for a different client served by the same
server uses a different S′ and N′. Figure 1 highlights values
shared across clients in blue. Messages with the same key
either have different nonces or are identical.

8.2 Active External Attacker

The Classic McEliece KEM is secure against active attacks,
hence the shared secret S is not known to the attacker. Authen-
ticated encryption protects the other packets against active
attackers attempting to forge or modify packets. Every cipher-
text is verified upon receipt.

Clients and external attackers cannot influence the choice
of nonce and any modification of N leads to invalid authenti-
cators and thus to no reply from the server. The client accepts
messages under key S. Replays of server messages will not
cause a reaction from the client as it has state.

Mixing cookies and messages from different clients does
not work. The server accepts cookies under its most recent
cookie keys sm,sm−1, . . . ,sm−z+1 and uses the symmetric key
S provided in C0 to decrypt and check the rest of the message.

The attacker can replay a valid client message and cause
the stateless server to handle it again. If the cookie key has
changed this leads to a different C′0 in the reply. For the outer
encryption a random M (or N in phase 0) is chosen, hence
only the last two bytes of the nonce repeat, the rest of the
nonce differs, meaning no loss in security.

8.3 Malicious client
A malicious client knows S and Z anyway, so its targets are the
cookie keys. The following assumes that the client manages
to send the attack packets in the same cookie interval. Else
more retries are needed.

The encryption of Z uses fresh 22 bytes for the nonce.
The computation of C0 is deterministic depending on verified
values. Initiating a new connection and thus changing E leads
to a fresh choice of N.

The malicious client can send K11 and K′11, likely causing
c11 6= c′11. This produces C11 6=C′11 which use the same nonce
and key. The client (as opposed to an external attacker) obtains
these cookies. However, the key s = hash(sm,S) is used only
for this client, limiting the use to forging server cookies for
this one step in its own connection. Furthermore, if K11 and
K′11 differ only in the first column, the client learns that the
first bit in e is set if C11 6= C′11 and else that it is not set.
However, the target of the McTiny protocol is for the server
to send e to exactly this client.4

Note that both of these attempts come at the expense of
sending two messages under the same nonce with S, giving
away the authenticator under that key and nonce. This is not
an attack as the client could choose to leak S in its entirety.

9 Security Against Quantum Computers

The McTiny protocol is designed to make the well-studied
McEliece cryptosystem practical for tiny network servers. All
public-key cryptography in the protocol uses this system for
its resistance to attacks using quantum computers.

The McTiny protocol is flexible in the parameter choices for
the code-based part with minimal adjustments on the number
of steps per phase. mctiny6960119 uses very conservative
parameters. This means that even an active attacker with a
quantum computer cannot break the public-key encryption.

All of the keys for symmetric cryptography are 32 bytes,
providing ample protection against Grover’s algorithm and
the choice of XSalsa20-Poly1305 for AE follows recommen-
dations for post-quantum security.

10 Implementation and Evaluation

This section describes our implementation of the
mctiny6960119 protocol, and evaluates whether the
protocol lives up to its promise to run safely on tiny
network servers. The implementation is now available at
https://mctiny.org.

10.1 Interface
Our software provides four main tools:

4The malicious client learns this bit prematurely, but to learn e it needs
about 6960 steps, much more than a regular run of 971 steps would take.

https://mctiny.org

• master creates a new mctiny6960119 server identity:
a long-term public key and a long-term secret key.

• rotate is run every minute to update the pool of 8 server
cookie keys, creating a new cookie key and erasing the
oldest cookie key.

• server handles the server side of the mctiny6960119
protocol: it binds to a specified UDP port on a specified
local IP address and handles incoming request packets
from any number of clients.

• client performs one run of the client side of the
mctiny6960119 protocol, communicating to a server
at a specified address and port, using a specified server
public key.

The decomposition of server-side tools is meant to easily
support replicated server deployments as follows. The server
administrator runs the master tool on a master device, and
pushes the results to each server through standard tools such
as rsync. Each server runs the server and rotate tools. The
master device needs enough resources to generate and store
the public key, but each server can be much smaller.

The master, rotate, and server tools manage data
in a state directory specified by the caller. The public
key is stored in a file state/public/d53... where
d53... is a 256-bit key hash in hex. The secret key is
stored in state/secret/long-term-keys/d53.... The
server tool transparently supports multiple secret keys
for multiple identities on the same host. Cookie keys are
stored in state/secret/temporary-cookie-keys/0
through state/secret/temporary-cookie-keys/7,
with state/secret/temporary-cookie-keys/latest
symlinked to the current key.

Our API for each of these tools is the standard UNIX com-
mand line, making the tools directly usable from a wide range
of languages. The command line involves some overhead to
spawn a new process, and obviously the same functions could
also be provided through APIs with less overhead, but we have
not found evidence that the command line is a performance
problem here.

10.2 Internals
We reused existing Classic McEliece software [6] for key
generation (in master for long-term keys, and in client for
short-term keys), encryption (in client for long-term keys),
and decryption (in server for long-term keys, and in client
for short-term keys). We also reused existing software for
symmetric encryption (XSalsa20), symmetric authentication
(Poly1305), and hashing (SHAKE256).

We obtained all of this software from the SUPERCOP
cryptographic benchmarking framework. The tests described
below use version 20191017 of SUPERCOP, the latest version
at the time of this writing.

For our new McTiny software components, we selected the
C programming language, with the goal of eliminating unnec-
essary performance overheads. C is, however, notorious for
encouraging devastating bugs, such as memory-safety bugs.
We do not have evidence that a Rust rewrite would make the
software noticeably slower; it could even be faster. We are
also not claiming that achieving any particular performance
level is more important than reducing risks of bugs.5

We wrote new cryptographic software for
mctiny6960119’s matrix-partitioning encryption (in
server), ensuring compatibility of the final result with
Classic McEliece. We also wrote new software for the
higher-level aspects of mctiny6960119, such as packet
construction, packet parsing, and the general packet flow.
Overall we wrote about 2500 lines of new code; see Table 2.
The file mctiny.h is output by a 160-line mctiny.py that
supports variations in McTiny parameters.

10.3 RAM Consumption
Running size on the compiled server binary shows 206586
bytes of code, 792 bytes of initialized data, and 23824 bytes
of bss (further RAM initialized to 0 at program startup). See
Table 2. The code size includes all of the cryptographic soft-
ware that we imported from SUPERCOP, such as the Classic
McEliece software and the SHAKE256 software. Our code
uses only a small amount of stack space, and it avoids all heap
allocation and mmap-based allocation.

We do not claim that the entire program would work in such
a small amount of RAM without modification. The problem
is that we also use some OS libraries that were not designed
to be small: we use stdio for file management and printing
error messages, we call getaddrinfo to determine the local
IPv4 or IPv6 address to use, etc. We found that the server
works with stack size limited to 92KB (ulimit -s 92) but
not with a smaller stack size. Also, monitoring system calls
with strace shows various memory allocations from stan-
dard libraries at program startup.

The rotate program uses 920 bytes of initialized data and
944 bytes of bss. The master program needs more RAM to
create a public key: it uses 752 bytes of initialized data and
1062560 bytes of bss. The client program uses 800 bytes of
initialized data and 1154648 bytes of bss.

10.4 Network Usage
On an unloaded network we saw (as expected—see Table 1)
971 packets from the client to server, plus 971 packets from
the server to the client, for a complete mctiny6960119 key
exchange. The packets from client to server occupied a total
of 1 188 422 bytes of application-layer data (not counting
per-packet bandwidth overhead, which is normally 8 bytes

5We did take some steps to reduce these risks, such as running tests under
Address Sanitizer.

text data bss c h file purpose
155 0 0 0 0 0 13 8 hash SHAKE256 wrapper (copied)

5406 0 0 0 24 0 216 72 mctiny library for McTiny computations
8377 209 526 0 800 0 1 154 648 530 0 mctiny-client connect to a server
2589 184 487 0 752 0 1 062 560 149 0 mctiny-master create a server key
3063 22 944 104 920 0 944 199 0 mctiny-rotate rotate cookie keys once
6538 206 586 24 792 32 23 824 546 0 mctiny-server serve any number of clients

989 196 599 0 656 0 1 064 952 63 0 mctiny-test local keypair/enc/dec test
5313 0 0 0 0 0 612 24 pacing client-side congestion control
1158 0 8 0 1284 0 111 20 packet build and parse packets

Table 2: Source and object sizes. The “c” and “h” columns are the number of lines in file.c and file.h. The “text”, “data”, and
“bss” columns are the sizes reported by the standard size tool for the object file file.o, and for the linked binary file when a
second number is reported. Sizes of binaries listed here include sizes for cryptographic software imported from SUPERCOP
(e.g., the Classic McEliece software), but do not include sizes for standard shared libraries from the OS (e.g., getaddrinfo).
Code is compiled for Intel Haswell using gcc with optimizations -O3 -march=native -mtune=native. Compiler verson is
7.4.0, as shipped with the current long-term-support version of Ubuntu (Ubuntu 18.04).

for UDP, plus 20/40 bytes for IPv4/IPv6, plus 38 bytes for
Ethernet). The packets from server to client occupied a total
of 135 977 bytes of application-layer data. For comparison, a
mceliece6960119 public key by itself is 1 047 319 bytes.

10.5 CPU Usage
Haswell, introduced 2013, is not the newest Intel microarchi-
tecture, but it is one of the most common optimization targets
in recent papers on cryptographic primitives and in the NIST
post-quantum project. SUPERCOP’s latest benchmarks report
the following speeds for mceliece6960119 on one Haswell
core: 0.71 ·109 cycles median for keygen (with high variance:
the quartiles are 0.50 ·109 and 1.31 ·109), 153944 cycles for
enc (much less variance: quartiles 148612 and 169396), and
305880 cycles for dec (quartiles 304616 and 306232).

We collected mctiny6960119 timings on a Haswell, specif-
ically a quad-core 3.1GHz Intel Xeon E3-1220 v3, for compa-
rability to these microbenchmarks. To estimate the total server
time, we ran a series of 1000 key exchanges and observed in
ps that the server process had accumulated 17 seconds of
CPU time, i.e., 17 milliseconds (53 million cycles on one CPU
core) per key exchange. Generic packet processing can incur
significant costs that the OS does not attribute to the process,
but this measurement shows that the mctiny6960119 server
computations consumed only about 40 CPU cycles per byte
communicated. (The client computations are more expensive
since the client generates a short-term public key.)

We also instrumented the server with calls to a cycle
counter, printing and resetting the counter whenever the server
computed a session key. These figures showed that the server
took 44.4 million cycles per key exchange (standard deviation
1.1 million cycles) for all activities outside recvfrom and
sendto. Within the 44.4 million cycles, 20.8 million cycles
(standard deviation 0.4 million cycles) were spent on the core

cryptographic computations in phase 1: regenerating the low-
weight vector from a seed and computing the corresponding
partial encryption.

10.6 Security Against Server CPU Overload
An attacker trying to overload a quad-core 3.1GHz CPU with
10Mbps of network traffic needs to consume 10000 cycles
per byte. (A site paying for a larger Internet connection can,
presumably, afford more than one CPU to handle the load.) In
our server software, the maximum cycles per byte are spent in
McEliece decapsulation for the first packet, about 400 cycles
per byte to handle 810 bytes of application-layer data (and
slightly fewer cycles per byte when bandwidth overhead is
taken into account).

Note that adding the encrypted 512-byte extension field to
the first packet has the side effect of reducing the load per byte.
For comparison, unencrypted zero-padding of query packets
is well known to reduce query amplification and other per-
query-byte costs, but this protection could be compromised
by network links that try to compress packets.

10.7 Security Against Memory Flooding
At no time does the server allocate any per-client storage.
Each client packet is handled immediately and then forgotten.
We built the server software to avoid allocating memory in
response to client packets; we audited the source code for
this property; and we checked with strace that, once the
program entered its packet-handling loop, its system calls
consisted entirely of recvfrom, sendto, and an occasional6

key-file access. In short, this is a tiny network server, making
it immune to server-memory denial of service.

6The server automatically caches each key for 1 second, or 10000 uses,
whichever comes first.

11 Conclusions and Further Considerations

The previous sections have shown that at very little overhead
in the number of packets and a few extra round trips, the con-
servative McEliece system can be fit into tiny network servers
for forward secrecy without using any per-client memory.

Server operators might be concerned about the generous
usage of randomness on the server side. We point out that
the random nonces can be generated by advancing a stream
cipher. Server operators might also be concerned about the
cost of hashing. We used hash to simplify the description.
Any way of deterministically deriving subkeys from a master
key works and is often cheaper.

The analysis of nonce reuse attacks took up a significant
portion of the security analysis. Our choice of XSalsa20-
Poly1305 already limits the potential for damage but designers
could replace AE with a wide-block cipher to further limit
this potential. Such ciphers are currently less common and
we managed to achieve protection without this choice, but the
analysis would be simpler.

We encourage further analysis, including proofs if possible,
of McTiny and variants of McTiny.

Acknowledgments

This work was supported by the U.S. National Science
Foundation under grant 1913167, by the European Commis-
sion under Contract ICT-645622 PQCRYPTO, and CHIST-
ERA USEIT (NWO project 651.002.004), by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy – EXC 2092
CASA-390781972, by the Netherlands Organisation for Sci-
entific Research (NWO) under grant 628.001.028 (FASOR),
and by the Cisco University Research Program.

References

[1] Martin R. Albrecht, Léo Ducas, Gottfried Herold,
Elena Kirshanova, Eamonn W. Postlethwaite, and Marc
Stevens. The general sieve kernel and new records in
lattice reduction. In EUROCRYPT (2), volume 11477
of Lecture Notes in Computer Science, pages 717–746.
Springer, 2019. https://eprint.iacr.org/2019/
089.

[2] Daniel Augot, Lejla Batina, Daniel J. Bernstein, Joppe
Bos, Johannes Buchmann, Wouter Castryck, Orr Dunkel-
man, Tim Güneysu, Shay Gueron, Andreas Hülsing,
Tanja Lange, Mohamed Saied Emam Mohamed, Chris-
tian Rechberger, Peter Schwabe, Nicolas Sendrier, Fred-
erik Vercauteren, and Bo-Yin Yang. Initial recom-
mendations of long-term secure post-quantum systems,
2015. PQCRYPTO project https://pqcrypto.eu.
org/docs/initial-recommendations.pdf.

[3] Tuomas Aura and Pekka Nikander. Stateless connec-
tions. In Yongfei Han, Tatsuaki Okamoto, and Sihan
Qing, editors, Information and Communication Secu-
rity, First International Conference, ICICS’97, Beijing,
China, November 11–14, 1997, Proceedings, volume
1334 of Lecture Notes in Computer Science, pages
87–97. Springer, 1997. http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.30.4436.

[4] Daniel J. Bernstein. SYN cookies, 1996. https://cr.
yp.to/syncookies.html.

[5] Daniel J. Bernstein. DNSCurve: Usable security for
DNS, 2009. https://dnscurve.org.

[6] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo
von Maurich, Rafael Misoczki, Ruben Niederhagen,
Edoardo Persichetti, Christiane Peters, Peter Schwabe,
Nicolas Sendrier, Jakub Szefer, and Wen Wang. Classic
McEliece. Submission to NIST post-quantum call for
proposals, 2017. https://classic.mceliece.org/.

[7] Daniel J. Bernstein, Tung Chou, and Peter Schwabe.
McBits: Fast Constant-Time Code-Based Cryptogra-
phy. In CHES, volume 8086 of Lecture Notes in Com-
puter Science, pages 250–272. Springer, 2013. https:
//binary.cr.yp.to/mcbits.html.

[8] Matt Braithwaite. Experimenting with post-
quantum cryptography, 2016. https://security.
googleblog.com/2016/07/experimenting-with-
post-quantum.html.

[9] Robert E. Calem. New York’s Panix service is crippled
by hacker attack, 1996. https://partners.nytimes.
com/library/cyber/week/0914panix.html.

[10] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
congestion-based congestion control. Communications
of the ACM, 60:58–66, 2017. https://queue.acm.
org/detail.cfm?id=3022184.

[11] CDN Planet. Initcwnd settings of major CDN providers,
2017. https://www.cdnplanet.com/blog/
initcwnd-settings-major-cdn-providers/.

[12] Eric Crockett, Christian Paquin, and Douglas Stebila.
Prototyping post-quantum and hybrid key exchange
and authentication in TLS and SSH. https://eprint.
iacr.org/2019/858.

[13] Alexander W. Dent. A Designer’s Guide to KEMs. In
Kenneth G. Paterson, editor, Cryptography and Cod-
ing, 9th IMA International Conference, Cirencester, UK,
December 16-18, 2003, Proceedings, volume 2898 of
Lecture Notes in Computer Science, pages 133–151.
Springer, 2003. https://eprint.iacr.org/2002/
174.

https://eprint.iacr.org/2019/089
https://eprint.iacr.org/2019/089
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4436
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4436
https://cr.yp.to/syncookies.html
https://cr.yp.to/syncookies.html
https://dnscurve.org
https://classic.mceliece.org/
https://binary.cr.yp.to/mcbits.html
https://binary.cr.yp.to/mcbits.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://partners.nytimes.com/library/cyber/week/0914panix.html
https://partners.nytimes.com/library/cyber/week/0914panix.html
https://queue.acm.org/detail.cfm?id=3022184
https://queue.acm.org/detail.cfm?id=3022184
https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/
https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2002/174
https://eprint.iacr.org/2002/174

[14] Jason Fairlane. Flood warning, 1996. https://
archive.org/download/2600magazine/2600_13-
2.pdf.

[15] Ryan Gallagher and Glenn Greenwald. How the
NSA Plans to Infect ‘Millions’ of Computers with
Malware, 2014. https://theintercept.com/2014/
03/12/nsa-plans-infect-millions-computers-
malware/.

[16] V. D. Goppa. A new class of linear correcting codes.
Problemy Peredači Informacii, 6(3):24–30, 1970.
http://www.mathnet.ru/php/archive.phtml?
wshow=paper&jrnid=ppi&paperid=1748&option_
lang=eng.

[17] David Jao and Luca De Feo. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isoge-
nies. In PQCrypto, volume 7071 of Lecture Notes
in Computer Science, pages 19–34. Springer, 2011.
https://eprint.iacr.org/2011/506.

[18] Kris Kwiatkowski. Towards post-quantum cryptogra-
phy in TLS, 2019. https://blog.cloudflare.com/
towards-post-quantum-cryptography-in-tls/.

[19] Krzysztof Kwiatkowski, Nick Sullivan, Adam Lan-
gley, Dave Levin, and Alan Mislove. Measuring
TLS key exchange with post-quantum KEM, 2019.
Second PQC Standardization Conference, https:
//csrc.nist.gov/CSRC/media/Events/Second-
PQC-Standardization-Conference/documents/
accepted-papers/kwiatkowski-measuring-
tls.pdf.

[20] Adam Langley. CECPQ2, 2018. https://www.
imperialviolet.org/2018/12/12/cecpq2.html.

[21] Adam Langley. Post-quantum confidentiality for TLS,
2018. https://www.imperialviolet.org/2018/
04/11/pqconftls.html.

[22] Marek Majkowski. Fixing an old hack - why we
are bumping the IPv6 MTU, 2018. https://blog.
cloudflare.com/increasing-ipv6-mtu/.

[23] Robert J. McEliece. A public-key cryptosys-
tem based on algebraic coding theory, 1978. JPL
DSN Progress Report http://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF.

[24] Akshay Narayan, Frank Cangialosi, Prateesh Goyal,
Srinivas Narayana, Mohammad Alizadeh, and Hari Bal-
akrishnan. The case for moving congestion control out
of the datapath. In Sujata Banerjee, Brad Karp, and
Michael Walfish, editors, Proceedings of the 16th ACM
Workshop on Hot Topics in Networks, Palo Alto, CA,
USA, HotNets 2017, November 30 - December 01, 2017,

pages 101–107. ACM, 2017. https://people.csail.
mit.edu/alizadeh/papers/ccp-hotnets17.pdf.

[25] Harald Niederreiter. Knapsack-type cryptosystems
and algebraic coding theory. Problems of Con-
trol and Information Theory, 15:159–166, 1986.
http://citeseerx.ist.psu.edu/showciting?
cid=590478.

[26] NIST. Post-quantum cryptography: Round 1
submissions, 2017. https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-
submissions.

[27] NIST. Post-quantum cryptography: Round 2
submissions, 2019. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/Round-2-
Submissions.

[28] Bill Nowicki. NFS: Network File System proto-
col specification, 1989. https://tools.ietf.org/
html/rfc1094.

[29] Phillip Remaker. IPv6 MTU gotchas and other
ICMP issues, 2011. https://blogs.cisco.com/
enterprise/ipv6-mtu-gotchas-and-other-
icmp-issues.

[30] Jim Roskind. QUIC: Quick UDP Internet connec-
tion, 2013. https://www.ietf.org/proceedings/
88/slides/slides-88-tsvarea-10.pdf.

[31] Alan Shieh, Andrew C. Myers, and Emin Gün
Sirer. Trickles: A stateless network stack for im-
proved scalability, resilience, and flexibility. In
Amin Vahdat and David Wetherall, editors, 2nd
Symposium on Networked Systems Design and
Implementation (NSDI 2005), May 2-4, 2005,
Boston, Massachusetts, USA, Proceedings. USENIX,
2005. https://www.cs.cornell.edu/~ashieh/
trickles/trickles-paper/trickles-nsdi.pdf.

[32] Alan Shieh, Andrew C. Myers, and Emin Gün
Sirer. A stateless approach to connection-oriented
protocols. ACM Trans. Comput. Syst., 26(3),
2008. https://www.cs.cornell.edu/people/egs/
papers/trickles-tocs.pdf.

[33] Peter W. Shor. Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer. SIAM J. Comput., 26(5):1484–1509, 1997.
https://arxiv.org/abs/quant-ph/9508027.

[34] Lixia Zhang, Scott Shenker, and David D. Clark. Ob-
servations on the dynamics of a congestion control algo-
rithm: The effects of two-way traffic. ACM SIGCOMM
Computer Communication Review, 21:133–147, 1991.

https://archive.org/download/2600magazine/2600_13-2.pdf
https://archive.org/download/2600magazine/2600_13-2.pdf
https://archive.org/download/2600magazine/2600_13-2.pdf
https://theintercept.com/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://theintercept.com/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://theintercept.com/2014/03/12/nsa-plans-infect-millions-computers-malware/
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1748&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1748&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1748&option_lang=eng
https://eprint.iacr.org/2011/506
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://blog.cloudflare.com/increasing-ipv6-mtu/
https://blog.cloudflare.com/increasing-ipv6-mtu/
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://people.csail.mit.edu/alizadeh/papers/ccp-hotnets17.pdf
https://people.csail.mit.edu/alizadeh/papers/ccp-hotnets17.pdf
http://citeseerx.ist.psu.edu/showciting?cid=590478
http://citeseerx.ist.psu.edu/showciting?cid=590478
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://tools.ietf.org/html/rfc1094
https://tools.ietf.org/html/rfc1094
https://blogs.cisco.com/enterprise/ipv6-mtu-gotchas-and-other-icmp-issues
https://blogs.cisco.com/enterprise/ipv6-mtu-gotchas-and-other-icmp-issues
https://blogs.cisco.com/enterprise/ipv6-mtu-gotchas-and-other-icmp-issues
https://www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf
https://www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf
https://www.cs.cornell.edu/~ashieh/trickles/trickles-paper/trickles-nsdi.pdf
https://www.cs.cornell.edu/~ashieh/trickles/trickles-paper/trickles-nsdi.pdf
https://www.cs.cornell.edu/people/egs/papers/trickles-tocs.pdf
https://www.cs.cornell.edu/people/egs/papers/trickles-tocs.pdf
https://arxiv.org/abs/quant-ph/9508027

××+

××++++++++++

××++×× ++×× ++×× ++×× ++×× ++++×× ++++×× ++

×× ++×× ++×× ++++×× ++×× ++×× ++×× ++×× ++×× ++++×× ×× ++++×× ++×× ×× ++++×× ++×× ++++++

×× ++×× ++×× ++++×× ++×× ++++×× ++×× ++×× ++×× ++×× ++++×× ++++×× ++×× ++×× ++++×× ++++×× ×× ++++×× ++++×× ++++×× ++++×× ++×× ++++×× ++×× ++++×× ×× ++++×× ++++++

×× ++×× ++×× ++++×× ++×× +++++×× ++×× ++++×× ++++×× ++++++++×× ++++++×× ++++×× ++++×× ++++×× ++++×× ++×× ×× +++++×× ++++++×× ×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++×× ++×× ++×× ++×× ++×× ++×× ×× ×× +++++×× ++×× ++++×× ++++++++×× ++++×× ++++×× ++++×× ×× ++++×× ++++×× ++×× ++×× ++×× +++++++++++

×× ++×× ++×× ++×× ++×× ++++×× ++×× ++++×× ++×× ++×× ++×× ++×× ++++×× ++×× ++++×× ++×× +++++++×× ++++×× ++×× ++×× ++×× ++×× ++++×× ++++×× ++×× ++×× ++++×× ++×× ++×× ++++×× ++×× ++×× +++×× +×× ++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ×× ++×× ++×× ×× ++++×× ×× ++×× ++×× ++×× ×× ++×× ×× ++×× ++×× ×× ++++×× ×× ++++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ×× +++×× ++×× ×× ++×× +

×× +×× ×× ++++×× ++×× ++×× ++++×× ++×× ++×× ++×× ++×× ++++×× ++++×× ++×× ++×× ++++×× ++×× +++×× ++++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++++×× ++×× ++++×× ++×× ++×× ++++×× ++×× ++×× ++×× +++×× ++++×× ×× ++×× ++×× ++×× ×× ++×× ×× ++×× ++×× ×× ++++×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ×× ++×× ++++×× +×× ++×× ++×× ×× ++×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ++×× +×× ×× ++×× ++×× ++×× ×× ++++×× ×× ++×× ++×× ×× ++×× ++×× ++×× ×× ++×× ×× ++++×× ×× ++×× ++

×× +×× ×× ++×× ++×× ×× ++×× ++×× +×× ++×× ++×× ×× ++×× ++×× ++×× ×× ++×× ×× ++×× ++×× ×× ++×× ++×× +×× ++×× ++×× ++×× ++×× ×× ++×× ++×× +×× ++×× ×× ++×× ++×× ++++×× ×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× +++++×× ××

×× +

0.000
0.117
0.234
0.351
0.468
0.585
0.702
0.819
0.936
1.053
1.170

131072 262144 393216 524288 655360 786432 917504 1048576 1179648

Figure 2: Timing of network packets observed by a server that accepts a TCP connection and sends 1MB.

A Latency and Congestion Control

There are two obvious limits on the speed of a network proto-
col. There is also an unobvious limit, which is the main topic
of this appendix.

As a running example, this appendix reports measurements
of data transfer between one computer in the United States and
another computer in Europe. The long-distance link between
these two sites is reportedly able to handle 100Mbps, and the
LANs can handle more than this. The minimum ping time
we observed between the two computers is marginally under
0.117 seconds. The obvious limits are as follows:

• Each packet consumes bandwidth. This 100Mbps
network connection cannot transmit more than 12.5
megabytes per second. Furthermore, not all of this data
is application-layer data: as mentioned earlier, the total
packet size is limited, and there are per-packet overheads.

• Sometimes a packet is in reply to a previous packet, and
thus cannot be sent until that packet is received. The
flow of data in a protocol implies that a certain number
of round trips must be consumed, no matter how much
bandwidth is available for sending packets in parallel.

To see that this is not the complete picture, consider a test
TCP server that accepts a connection and then sends a server-
specified amount of data over the connection. The second
limit forces this connection to take at least two round trips, i.e.,
0.234 seconds, and this is the latency we observed for small
amounts of data. For 1 megabyte (more precisely, exactly 220

bytes) we saw 1.066 seconds (average over 100 experiments,
standard deviation 0.024 seconds), i.e., two round trips plus
0.832 seconds. Evidently only 1.25 megabytes per second
were being transmitted during these 0.832 seconds.

One might try to explain this as the total 12.5-megabyte-
per-second bandwidth being split across 10 users, so that each
user has only 1.25 megabytes per second of available band-
width. However, the network was not actually so heavily used.

We measured sending 10 megabytes and saw 3.67 seconds (av-
erage over 100 experiments, standard deviation 0.46 seconds),
more than 3 megabytes per second. Three experiments with
sending 100 megabytes took 12.4 seconds, 17.8 seconds, and
19.1 seconds respectively, in each case more than 5 megabytes
per second.

The reason that short TCP connections are slower—the
unobvious limit mentioned above—is congestion control. We
now briefly review the basic principles of congestion control,
and then give an example of the exact timing of a McTiny
connection using our implementation of congestion control.

A.1 A Brief Introduction to Congestion

Suppose a router receives packets on a fast LAN more quickly
than it can deliver those packets to the Internet. The packets
pile up in a buffer inside the router; this is called congestion.
A packet is not delivered until previous packets are delivered;
the delay while a packet is waiting in the router’s buffer is
called congestion delay. If the buffer fills up then packets
are lost; this is called congestion loss and produces further
slowdowns. Routers often provide large buffers (bufferbloat)
to try to avoid congestion loss, but these buffers allow con-
gestion delay to increase even more.

TCP senders impose various limits upon their packet-
sending rates to try to reduce congestion when there are signs
of congestion, and to try to avoid creating congestion in the
first place. This is called congestion control. The details are
the topic of thirty years of active research.

In particular, when a TCP connection begins, the sender
starts slowly, in case the network does not have much available
bandwidth. For example, Akamai sends at most 32 packets at
first; Cloudflare sends at most 10, which is also the current
Linux default; see [11] for a broader survey. The sender then
ramps up speed as long as acknowledgments show that the
data is flowing smoothly—but acknowledgments arrive only
after a round trip.

××+

××++++++++++
××++××××++×××× ++×× ++×××××× ++×× ++++++++++
×× ++×××× ++×× ++×× ×× ++×× ×× ++×× ×× ++×× ×× ++×× ×× ++×× ×× ++×× ++×× ++×× ×× ++++++++++++++++×× ×× ++++++×× ×× ++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++×× ×× ++++×× ×× +++×× ×× ++++×× ×× ++×× ×× ++++×× ×× ++×× ++×× ++×× ×× ++++×× ++++×× +++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++×× ++++++×× ++++×× ++++×× ×× ++++×× ×× +++++×× ×× ++++×× ×× ++++×× ++×× ++++×× ×× ++++×× ×× ++++×× ++×× ++++×× ×× ++++×× ++×× ++×× ++++×× ×× ++++×× ×× +++++×× ×× ++++×× ×× ++++++×× ×× ++++×× ×× ++++×× ×× ++++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× +++×× ++++×× ++++×× ++×× ++++×× ++++×× ++++×× ++++×× ++×× ++++×× ++++×× ++++×× ++×× ++++×× +++++×× ++×× ++++×× ++++×× ++++×× ++++×× ++×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ++×× ×× ++×× ++×× +++×× ×× ++++×× ×× ++++×× ×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ×× ++++×× ++×× ++×× ×× ++++×× ×× ++++×× ×× +++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ++×× ×× ++++×× ++×× +++×× ×× ++++×× ×× +++×× +++×× +++×× ×× +++×× +++×× +++×× ×× +++×× ×× ++++++×× ×× +++×× ×× +++×× ++++++×× +++++×× +++×× ++++++×× ++++++×× +++×× ++++++×× +++×× ++++++×× +++×× +++×× +++++×× +++×× ++++++×× +++×× +++×× ++++++×× +++×× +++×× ++++++×× +++×× +++×× ++++++×× ++×× ++++++×× +++×× +++++×× +++×× +++×× ++++++×× +++×× +++×× ++++++×× +++×× ++++×× ++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× +++++++×× ++++×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× +++×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× +

0.000
0.117
0.234
0.351
0.468
0.585
0.702
0.819
0.936
1.053

131072 262144 393216 524288 655360 786432 917504 1048576 1179648

Figure 3: Similar to Figure 2, but telling the Linux TCP stack to use BBR instead of CUBIC.

A.2 Measuring TCP Congestion Control

Figure 2 shows the timings of packets in a typical example
of the experiments mentioned above, sending 1 megabyte
through TCP from the United States to Europe. Each network
packet sent by the server produces a red plus in the figure.
The vertical position is the time in seconds when the server
sends the packet. The horizontal position is the total num-
ber of bytes in all packets that have been sent, including the
application-layer data (eventually reaching 1 megabyte) and
78 bytes of per-packet overhead: 20-byte TCP header, 20-byte
IPv4 header, 26-byte Ethernet header, and 12 bytes of spacing
between Ethernet packets.

Beware that packet-tracing tools such as tcpdump
report the size of each Ethernet packet without the
12 bytes of spacing. Also, TCP segmentation offload
means that the kernel gives larger packets to the net-
work card, which then puts smaller packets on the
wire; packet-tracing tools show the larger packets. We
ran ethtool --offload eth0 tx off rx off to disable
TCP segmentation offload, so that the same tools would show
the packets on the wire; we did not find any resulting differ-
ences in TCP latency.

Each network packet received by the server produces a blue
cross and a green cross in the figure, at the time in seconds
when the server receives the packet. These packets acknowl-
edge receipt of various packets sent earlier by the server. The
horizontal position of the blue cross is the total number of
bytes in the acknowledged packets, while the horizontal po-
sition of the green cross is the total number of bytes in the
acknowledgment packets.

At time 0.000, the server receives a SYN packet opening
a connection, and sends a SYNACK packet in response. At
time 0.117, the server receives an ACK packet. After about
0.005 seconds of starting a data-generating application, the
server sends a quick burst of 10 packets. Many more packets
are ready to send, and could be sent given the available band-
width, but the server is not yet confident about the available
bandwidth.

These 10 packets are acknowledged slightly after time

0.234, prompting the server to send a burst of 20 packets.
The burst size continues ramping up exponentially for a few
more round trips. For example, there is a red burst of about
120000 bytes starting around time 0.468, creating about 0.010
seconds of congestion delay in the network router. These
packets are delivered to the client at about 100Mbps, and the
acknowledgments from the client create a blue burst in the fig-
ure starting around time 0.585 with a slope of about 100Mbps.
This in turn triggers a longer red burst starting around time
0.585 with a slope of about 200Mbps, creating more conges-
tion delay in the router. The difference between red and blue
angles in the figure reflects the difference between 100Mbps
and 200Mbps.

Overall this TCP server sent 769 packets, including 1
packet to accept the connection, 766 packets that each sent
1368 bytes of application-layer data (the maximum amount
the client was willing to accept; note that this was over IPv4
rather than IPv6), 1 packet that sent the remaining 688 bytes
of application-layer data, and 1 packet to acknowledge the
client closing the connection (which this client did not do until
after receiving all the server data). These packets consumed
1 108 566 bytes including per-packet overhead. Meanwhile
the TCP client sent 430 packets, consuming 33 548 bytes
including per-packet overhead. Note that TCP typically ac-
knowledges two packets at once.

Figure 2 used CUBIC, the default congestion-control
mechanism in Linux. Figure 3 instead uses BBR [10], a
new congestion-control mechanism from Google; sysctl
net.core.default_qdisc=fq followed by sysctl
net.ipv4.tcp_congestion_control=bbr enables BBR
under Linux. There are many differences between CUBIC
and BBR, and one of these differences is already visible
just after time 0.117: instead of sending a burst of 10
packets as quickly as possible, the server sends 5 separated
bursts of 2 packets each. This separation (“packet pacing”
from [34]) reduces the chance of producing immediate
congestion, and in general produces a smoother data flow.
Comparing the figures also shows that BBR sent slightly
more acknowledgment traffic (590 packets from the client,

+

××++++++++++++++++++++×× +×× +×× ++×× +×× +×× +×× ++×× +×× ++×× +×× ++×× ++×× +×× ++×× ++×× ++×× ++×× +×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× +×× ++×× ++×× ++×× ++×× +×× ++×× ++×× +×× ++×× ++×× ++×× +×× ++×× ++×× +×× ++×× ++×× +×× ++×× +×× ++×× +×× ++×× +×× ++×× +×× +×× ++×× ++×× +×× ++×× +×× ++×× ++×× +×× +×× ++×× ++×× ++×× ×× ++×× ++×× +×× ++×× +×× ++×× +×× ++×× ++×× ++×× ++×× +×× +×× ++×× +×× ++×× ++×× ++×× +×× +×× ++×× ++×× ++×× +×× ++×× ++×× ++×× +×× ++×× ++×× ++×× ++×× ++×× +×× ++×× ++×× ++×× +++×× +×× ++×× ++×× +×× ++×× +++×× +×× +++×× +×× ++×× ++×× ++×× +×× ++×× ++×× ++×× +×× +++×× ++×× +×× +×× ++×× +×× +++×× ++×× ++×× ++×× +×× +×× +++×× +×× +×× +++×× +×× ++×× ++×× ++×× +×× +++×× +×× +++×× +×× +×× ++×× +×× +++×× +×× ++×× +×× +++×× +×× +++×× ×× +++×× ++×× +×× ++×× +×× ++×× +×× +++×× ++×× +×× ++×× +×× +++×× ++×× +×× ++×× ++×× +×× ++×× +×× ++×× +++×× +×× +×× ++×× +++×× ++×× ++×× ×× +++×× +++×× ×× ++×× +×× +++×× +×× ++×× ++×× +×× ++×× ++×× ++×× ++×× +++×× +×× ++×× +×× ++×× ×× ++×× ++×× +×× ++×× ++×× ++×× ++×× ++×× +×× ++×× ++×× +++×× ×× ++×× ++×× ++×× ++×× ++×× +×× +×× +++++×× ×× +×× ++×× +++×× +×× ++×× +×× ++×× +×× +++×× ++×× +×× +×× ++×× ++×× +++×× ++×× ×× ++×× ++×× +++×× ++×× ×× +++×× ++++×× ×× ×× ++×× ++×× +++×× ×× ++×× +++×× ++×× +×× +×× ++×× +++×× ×× +++×× ++×× ++×× +×× ++×× ×× ++×× +++×× ++×× ×× +++×× ++×× +++×× ×× +++×× +×× +++×× +×× ++×× ++×× +×× ++×× +++×× ×× +++×× ++×× ×× +++×× ++×× ×× +++×× +++×× ×× +++×× ++×× +×× +×× +++×× +×× ++×× ++×× +×× +++++×× ×× +×× +++++×× ×× ×× ×× +++×× +++++×× ×× +×× ++×× +++×× ×× +++×× ×× +++×× ×× +++++×× ×× +×× ++×× +++×× +×× ++×× +×× ×× +++×× +++++×× +×× +×× +×× +++×× +×× ++×× +×× ×× ++++++×× +×× ×× +×× ++++×× ×× ×× +++×× ++×× ++++×× ×× +++×× ×× +++×× +×× ++×× +×× ++++++×× ×× +×× ×× +++×× +×× +×× ++++×× ×× +++×× +×× +++×× +×× ++×× +++×× +×× ++×× ×× ×× +++×× ++++×× +×× +++×× ×× +×× +++×× ×× ×× ++++×× ++×× +++×× +×× +++×× +×× +++×× +×× ++×× +×× +++×× +×× +++×× ×× +×× ++×× ++++×× ×× ++++×× ×× +×× +×× ++++×× +×× ×× +++×× +×× ++×× ++++×× +×× ×× ×× ++++×× ++×× ++++×× +×× +×× +++×× +×× ×× ++×× ++++×× +×× ×× +++×× ++++×× +×× ×× ++×× +×× ++++×× +×× ++×× +×× ×× +++×× +×× +++×× +×× ++++×× +×× ×× ++×× ++++×× ×× +×× +++×× +×× +++×× ++×× ×× +++×× +×× +++×× +×× ×× +++×× ++×× ++×× ×× ++×× ++×× ++++×× +×× ×× ++++×× ×× +++++×× +×× +×× ×× ++×× ++++×× +×× ×× +++×× +×× ++++×× ×× ++++×× ×× ++×× +++×× ×× ++++×× ×× +×× +++×× ++×× +++×× +×× ×× ×× +++×× ++×× ++×× ×× +++++×× +×× ×× ++++×× +×× ++×× ×× ++×× ++++×× ×× ++++×× ×× +×× ++++×× +×× ×× ×× +++×× +++++×× +×× +×× ++×× +×× ×× ++++×× ++×× ++++×× ×× +×× ++++×× +×× +×× +×× +×× +×× +×× +×× +×× +×× +×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× +

××

0.000
0.117
0.234
0.351
0.468
0.585
0.702
0.819
0.936
1.053
1.170
1.287

131072 262144 393216 524288 655360 786432 917504 1048576 1179648 1310720

Figure 4: Timing of network packets observed by a McTiny client.

consuming 46 028 bytes including per-packet overhead) than
CUBIC did, and also that BBR sent more data between time
0.702 and time 0.819 than CUBIC did, saving time overall.

The bottom line is that, because of congestion control, TCP
takes about 9.1 round-trip times to send 1MB using CUBIC,
or 8.5 round-trip times to send 1MB using BBR. Smaller
congestion-control details also affect the latency: e.g., raising
the initial packet limit from 10 to 32 would have saved more
than 1 round-trip time.

A.3 Building McTiny Congestion Control
We decided to integrate TCP-like congestion control into our
McTiny software. TCP itself is incompatible with the concept
of a tiny network server, but, as mentioned earlier, congestion
control can be managed entirely by the client.

There is a software-engineering problem here. Congestion-
control software is typically developed as part of a monolithic
TCP network stack, and interacts with the rest of the network
stack through a thick interface, so reusing the software out-
side the TCP context is difficult. There have been efforts to
build reliable network protocols on top of UDP, and some of
these protocols—e.g., Google’s QUIC [30]—imitate TCP’s
congestion-control mechanisms, but again we did not find
something easy to reuse.

We thus wrote yet another implementation of congestion
control. We put some effort into designing a simple inter-
face for future reusability, taking some API ideas from [24]
but building a userspace library rather than a tool designed
to integrate with the OS kernel. We first implemented CU-
BIC but found that the bursts of traffic in CUBIC frequently
overload UDP buffers (which are typically configured by the
OS with less space than TCP buffers), creating packet losses
and often considerable slowdowns. We considered variants of
CUBIC with pacing but in the end threw CUBIC away and
implemented BBR. As explained in [10], BBR handles packet
loss much better than CUBIC, and tends to avoid overloading

buffers in the first place.

A.4 Measuring McTiny Congestion Control
Figure 4 shows an example of the timing of all of the net-
work packets in one McTiny run between the computer in
the United States and the computer in Europe. The CPUs on
these computers were, respectively, a quad-core 3.1GHz Intel
Xeon E3-1220 v3 (Haswell) and a quad-core 3.5GHz Intel
Xeon E3-1275 v3 (Haswell). The elapsed client time mea-
sured by time was 1.664 seconds, including 0.423 seconds
of “user” CPU time (on a single core; this is about 6% of the
time available on a quad-core CPU in 1.664 seconds of real
time) and 0.009 seconds of “sys” CPU time. Most of the CPU
time is for generating an ephemeral McEliece key, which the
client could have done any time in advance.

The total vertical spacing in the figure covers 1.268 seconds,
about 10.9 round-trip times. Each packet is shown at the time
it is sent or received by the client. For comparison, Figures 2
and 3 show times on the server, but in those cases the 1MB
of data was being sent by the server whereas in Figure 4 the
1MB of data is being sent by the client.

As the figure shows, our BBR implementation paces pack-
ets somewhat more smoothly than the Linux TCP BBR imple-
mentation, but overall we increase rate along essentially the
same curve as in Figure 3. The last few round trips in McTiny
transmit much less data; the red, blue, and green curves are
close to vertical at this point. There is more data sent and re-
ceived in Figure 4 than in Figure 3—there is more overhead in
each packet for cryptographic protection, data is sent in some-
what smaller packets, and each packet is acknowledged—but
this makes relatively little difference in latency.

To summarize, our McTiny software is using the network
in this example with similar efficiency to TCP, plus two round-
trip times for final cleanup in the McTiny protocol. For our
software, as for TCP, the first megabyte of data sent through
this network is limited primarily by congestion control.

	Introduction
	Server-memory Denial of Service, and the Concept of Tiny Network Servers
	A Classic Example: SYN Flooding
	Why Stopping SYN Flooding is Not Enough
	Tiny Network Servers

	The Tension Between Tiny Network Servers and Further Security Requirements
	Requirements
	Cookies Revisited
	ECC For Tiny Network Servers

	Code-Based Cryptography
	Public and Private Keys
	Encapsulation and Decapsulation
	Security of Code-Based Cryptography
	IND-CCA2 Security

	McTiny Public Keys
	Partitioning of Public Keys
	Optimization

	The McTiny Protocol
	General Setup and Phases
	Nonces
	Server Cookies
	Phase 0: Initiation
	Phase 1: Partial Public-Key Encryption
	Phase 2: Row-wise Combination
	Phase 3: Decapsulation

	Key Erasure
	Key Erasure On the Server Side
	Keep Alive
	Key Erasure On the Client Side

	Confidentiality and Integrity
	Passive External Attacker
	Active External Attacker
	Malicious client

	Security Against Quantum Computers
	Implementation and Evaluation
	Interface
	Internals
	RAM Consumption
	Network Usage
	CPU Usage
	Security Against Server CPU Overload
	Security Against Memory Flooding

	Conclusions and Further Considerations
	Latency and Congestion Control
	A Brief Introduction to Congestion
	Measuring TCP Congestion Control
	Building McTiny Congestion Control
	Measuring McTiny Congestion Control

