é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

SHARD: Fine-Grained Kernel Specialization with
Context-Aware Hardening

Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and
Dongyan Xu, Purdue University

https://www.usenix.org/conference/usenixsecurity21/presentation/abubakar

This paper is included in the Proceedings of the
30th USENIX Security Symposium.
August 11-13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium
is sponsored by USENIX.

I
+ » e - = =
. JEEEES o -
R W E »

SHARD: Fine-Grained Kernel Specialization with Context-Aware Hardening

Muhammad Abubakar

Adil Ahmad

Pedro Fonseca Dongyan Xu

Department of Computer Science and CERIAS, Purdue University
{mabubaka, ahmad37, pfonseca, dxu}@purdue.edu

Abstract

With growing hardware complexity and ever-evolving user re-
quirements, the kernel is increasingly bloated which increases
its attack surface. Despite its large size, for specific applica-
tions and workloads, only a small subset of the kernel code
is actually required. Kernel specialization approaches exploit
this observation to either harden the kernel or restrict access to
its code (debloating) on a per-application basis. However, ex-
isting approaches suffer from coarse specialization granularity
and lack strict enforcement which limits their effectiveness.

This paper presents SHARD, a practical framework to en-
force fine-grain kernel specialization. SHARD specializes at
both the application and system call levels to significantly
restrict the kernel code exposed to attackers. Furthermore,
SHARD introduces context-aware hardening to dynamically
enable code hardening during suspicious execution contexts.
SHARD implements an instance of a context-aware hardening
scheme using control-flow integrity (CFI), which provides
near-native performance for non-hardened executions and
strong security guarantees. Our analysis of the kernel attack
surface reduction with SHARD as well as concrete attacks
shows that SHARD exposes 181 x less kernel code than the
native kernel, an order of magnitude better than existing work,
and prevents 90% of the evaluated attacks. Our evaluation
shows that the average performance overhead of SHARD on
real-world applications is moderate—10% to 36% on NG-
INX, 3% to 10% on Redis, and 0% to 2.7% on the SPEC CPU
2006 benchmarks.

1 Introduction

Operating system kernels have seen an exponential growth
during the last two decades. The Linux kernel, for instance,
grew from 2.4 million [15] lines of source code in 2001 to
a staggering 27.8 million lines of source code in 2020 [14].
This growth is in large part a consequence of an increasingly
diverse range of functions (e.g., supporting many devices) im-
plemented by modern kernels. Unfortunately, because larger

kernels increase the trusted computing base (TCB), systems
have become increasingly vulnerable to attacks that exploit
kernel defects to take complete control of the machine.

A promising approach to minimize any software codebase
is by specialization through debloating [21,31,47,50], which
retains a small part of the codebase required for specific work-
loads and prevents the rest of the code from running. In the
context of the kernel, debloating the kernel code for specific
applications [30,36], can reduce the kernel code to 8.89% of
its native size and prevent attackers from exploiting many ker-
nel vulnerabilities without hindering application functionality.
However, because kernels are so large, even such kernel code
reduction leaves vulnerable a significant part of the kernel,
which can be exploited by attackers.

This paper proposes, SHARD, a practical framework for
dynamic kernel specialization that implements fine-grained
specialization. Unlike previous work that limits the granu-
larity of specialization to the application level, SHARD goes
significantly beyond by specializing the kernel at the system
call level for each target application, which further constraints
the amount of kernel code that an attacker can leverage. As
aresult, SHARD exposes 181 x less kernel code, on average,
than the native linux kernel, which is an order of magnitude
better than existing work on kernel debloating [30].

At a high-level, SHARD first identifies the kernel code re-
quired to execute a system call by a specific application and
then, during run-time, it ensures that only that kernel code is
allowed to run when the application invokes the same system
call. By profiling Linux with real-world applications, we con-
cluded that in the majority of cases, two system calls share
less than half of the kernel code that they execute. This low-
overlap is expected because the kernel implements several
classes of services (e.g., file operations, network operation,
process management) using distinct code. Hence, fine-grained
specialization, at the system call and application-level, signifi-
cantly reduces the amount of kernel code exposed to attackers
at any given point.

In addition to employing fine-grained specialization,
SHARD also addresses the challenge of identifying the parts of

USENIX Association

30th USENIX Security Symposium 2435

the kernel that a system call, invoked by a specific application,
should be allowed to execute, i.e., the kernel coverage of sys-
tem calls. Dynamic profiling of applications [30,36-38,53,62]
and static program analysis techniques [29,42,56,61] are com-
mon techniques used to identify the coverage of legitimate
execution (e.g., code that does not subvert the control-flow
of the kernel) but these techniques are either incomplete or
unsound when applied to complex systems, such as the kernel.
As aresult of these limitations, prior specialization techniques
compromise the security guarantees by either (a) only log-
ging executions that reach unexpected code [30], instead of
strictly enforcing specialization, which makes them ineffec-
tive at preventing attacks, or (b) overestimating the code that
should be allowed to execute, which significantly increases
the amount of code that attackers can use.

SHARD implements context-aware hardening, a new tech-
nique to address the limitations of program analysis and dy-
namic profiling techniques on complex code, such as kernels.
Context-aware hardening dynamically hardens kernel code for
suspicious executions, i.e., profiling or static analysis could
not determine that the execution should be allowed or not.
Because kernel code that falls under this class, even though
representing more than half of the kernel, only rarely executes,
context-aware hardening is a low-cost solution, unlike full-
system hardening, that enables strict debloating enforcement.

Context-aware hardening allows SHARD to dynamically
switch between hardened and non-hardened code according
to the specialization policy during a system call execution.
SHARD implements a specific context-aware hardening mech-
anism using fine-grained control-flow integrity (CFI) [20].
However, dynamic switching between CFI hardened and non-
hardened code versions is challenging. First, CFI uses integer-
based indexing at indirect call sites instead of function point-
ers, which must be consistent with non-hardened code ver-
sions to allow switching; therefore, non-hardened execution
would also be impacted (i.e., up to 40% overhead [29]). Sec-
ond, the switch from non-hardened to hardened code execu-
tion requires a special CFI check; since non-hardened code
does not ensure CFI during the transition. SHARD deals with
these challenges through a modified CFI instrumentation,
which relies on function addresses, and a custom CFI check
using Last Branch Record (LBR), ensuring secure transitions
from non-hardened to hardened code execution.

SHARD relies on an offline analysis, to determine kernel
coverage, and an online phase, during which the system is
protected. During the offline analysis, SHARD analyzes the
kernel to determine per-system call code coverage (i.e., re-
quired kernel code) for specific, benign application workloads.
SHARD achieves this using two program analysis approaches

— dynamic profiling, which may under-approximate coverage,
and static analysis, which may over-approximate the coverage.
During the online phase, SHARD uses a VMX-based mon-
itor to transparently enforce kernel debloating and context-
aware hardening. Importantly, SHARD does not require man-

Spec. Protection I;lells-:n:l Overhead
S A Ratio Strict Type
Specialized hardening
SplitKernel [39] X v Full N/A Coarse CFI* Manual 3-40%
ProxOS [52] X v NA N/A Isolation Manual 200-2400%
Dynamic debloating
FACECHANGE [30] X v 11.3x X Debl. Auto 0-40%
Multi-K [36] X v 11.3x X Debl. Manual 0-0.5%
Static debloating
Kurmus et al [38] X v/ 45x v Debl. Manual 0%
Kuo et al [37] X VvV 6575x Debl. N/A 0%
SHARD [this work] v/ v 181X v Debl. + Fine CFI* Auto 3-36%

Table 1: Comparison of SHARD with prior kernel specialization
work. Table compares the granularity of specialization ("Spec"), sys-
tem call-level ("S") and application-level ("A"); Ratio, strictness and
type of kernel protection; kernel instrumentation required; and the
application overhead. SplitKernel [39] implements stack exhaustion
and stack clearance checking, alongside coarse CFI, as hardening.
SHARD implements Fine CFI according to the context-aware policy.

ual modifications to the kernel source code, instead it employs
compile-time instrumentation to transparently introspect ker-
nel state required by the specialization policies.

We evaluated SHARD’s effectiveness on two popular appli-
cations, the Redis key-value store and the NGINX web server.
Our evaluation shows that SHARD reduces, on average, the
number of kernel instructions accessible to 0.49% for Redis
and 0.60% for NGINX, compared to the native Linux kernel.
Similarly, the number of ROP gadgets is reduced to 0.55%
and 0.60% respectively. In addition, SHARD protects the ker-
nel against 90% of the attack scenarios in our experiments by
preventing the execution of the vulnerable code or the exploit
payload. We found that the average overhead of SHARD is
only 3-10% across the redis-benchmark test suite for Redis
and 10-36% across varying request sizes for NGINX, despite
reducing the code by 181 x, an order of magnitude better than
previous work and strictly enforcing specialization. Finally,
on the SPEC CPU integer workloads, we observe a small
overhead of only 0-2.7%.

This paper makes the following main contributions:

e Fine-grained specialization, a kernel specialization
scheme that operates at the system call and application
level to increase specialization effectiveness.

e Context-aware hardening, a general approach to selec-
tively harden code during system calls to provide strict
and efficient specialization enforcement.

e The design of SHARD, the first fine-grained specializa-
tion framework for commodity unmodified kernels.

e An evaluation of SHARD on real-world applications and
real-world exploits and vulnerabilities.

The rest of the paper is organized as follows: §2 provides
background on kernel specialization and motivates SHARD.
§6 describes the threat model of SHARD. §7 and §8 describe
the design and implementation of SHARD. §9 provides a secu-

2436 30th USENIX Security Symposium

USENIX Association

ot

—— Nginx Redis

IS
P

o w
=) =]

=

Required Instructions (%)

0.0 0.2 0.4 0.6 0.8 1.0
System Calls

Figure 1: Distribution of instructions executed by each system call
made by Nginx and Redis. Numbers are normalized to the total
number of instructions required by each application and system calls
are sorted from highest to lowest.

rity analysis. §10 discusses the performance evaluation.§ 11,
§12 and §13 discuss limitations, related work, and conclude.

2 Background on Kernel Specialization

Kernel specialization approaches to improve system security
rely on either hardening [39, 52] or debloating (i.e., mini-
mizing) [30, 36,36, 38,62]. Hardening approaches generate
two versions of the kernel and during run-time ensure that
untrusted applications (i.g., target applications) use the hard-
ened version of the kernel while trusted application use the
native kernel version, without performance overhead.

Debloating approaches only allow the execution of kernel
code that a certain application, or group of applications, re-
quires. The remaining code of the kernel is either completely
removed statically [37,38, 53], retained in the binary but ob-
fuscated [30], or made inaccessible at run-time [36, 62]. By
minimizing the accessible code, debloating reduces the attack
surface for code reuse attacks [47, 50], i.e., attacks reusing
existing code sequences such as ROP gadgets [49], and can
generally reduce vulnerabilities in software [21,36,37].

Previous debloating work enforces kernel specialization
either at compile-time [37, 38, 53] or run-time [30, 36, 62].
Both approaches rely on an analysis phase to identify rele-
vant kernel code for a set of applications, by executing the
applications under representative workloads or by using static
analysis techniques, such as control-flow graph analysis. After
analysis, compile-time approaches statically compile a cus-
tom configured kernel containing only the required kernel fea-
tures. While run-time approaches create multiple versions of
the kernel (e.g., one kernel version for each target application)
and dynamically switch the system’s kernel-view whenever
the executed application changes.

2.1 Limitations of Existing Approaches

Despite extensive work on specialization techniques [30, 36—
38,53, 62], existing kernel specialization techniques, as sum-
marized in Table 1, are limited to coarse specialization and
do not provide strict debloating enforcement, which seriously

limits their effectiveness.

Coarse specialization. Existing kernel hardening and de-
bloating specialization approaches are coarse because they
only create a single kernel-view for the entire application.
As a result, existing approaches do not prevent a system call
invocation from using the kernel code that should only be ac-
cessed through other system calls by the application. Hence,
they have a low protection ratio (i.e., the ratio of baseline
to exposed instructions) that unnecessarily exposes a large
quantity of code for attack purposes.

To demonstrate the security impact of this limitation, we
devise an experiment employing single-view kernel special-
ization for two popular applications, the NGINX [16] web
server and the Redis [17] key-value store. In this experiment,
the applications can only access the required kernel code, as
determined through dynamic profiling of application work-
loads (refer to §7.2 for the profiling details). Figure 1 shows
what portion of the entire profiled kernel code is executed by
the system calls invoked by NGINX and Redis. The results
show that in both applications 80% of the system calls utilize
less than 15% of the profiled kernel code at a time. This result
demonstrates that further restricting which code can execute
given the application profile and the system call context can
significantly reduce the available code for attacks.

Limited debloating enforcement. Kernel debloating tech-
niques require an accurate analysis phase (refer to §2) to pro-
vide strict debloating enforcement within the kernel. However,
program analysis techniques are not complete and accurate
on complex code, such as kernel code which extensively uses
aliasing [22,29,42,44,56,61], so they either under-estimate
or over-estimate the kernel code required by the target appli-
cations. Existing schemes that under-estimate do not strictly
enforce debloating [30,36] but instead log suspicious execu-
tions, which does not prevent attacks and is hard to diagnose.
In contrast, existing schemes that over-estimate allow strict
enforcement but offer reduced debloating ratio and hence,
limited effectiveness [37,38].

In general, existing schemes analyze the kernel for debloat-
ing specialization either using (a) static call graph generation
or (b) dynamic workload-based profiling. The static tech-
nique constructs a call graph of the kernel and identifies the
kernel code that is reachable for each system call. However,
this technique fails to precisely resolve indirect call sites
(e.g., function pointers) and data-dependent paths; therefore,
it over-estimates the required kernel code and might allow
illegitimate executions during run-time.

On the other hand, dynamic profiling executes a represen-
tative application workload (e.g., test suites and benchmarks)
and traces all kernel code executed by the workload. However,
the profiled code coverage of such workloads is only 6% to
73% of the application’s code [36]. Therefore, at run-time,
an application might trigger a system call path that was not
profiled but is legitimate. Existing approaches do not provide

USENIX Association

30th USENIX Security Symposium 2437

strict enforcement in such cases (i.e., only log suspicious ex-
ecution paths for offline analysis [30]). Hence, a potentially
reachable code path is exploitable.

3 Fine-grained System Call Specialization

SHARD employs fine-grained specialization by providing dif-
ferent kernel-views depending on the application running
and the currently executing system call. Since the kernel im-
plements unique system calls for distinct services, such as
process management and device I/O, system calls providing
orthogonal services do not share much code with each other.
Hence, by specializing the kernel-view for an application at
each system call, the amount of kernel code exposed to the
attacker at any point is significantly reduced which further
restricts the attacker’s ability to construct ROP chains and
exploit vulnerabilities.

To validate fine-grained specialization, consider the assem-
bly instruction overlap between the top 10 system calls with
largest coverage, invoked by NGINX and Redis during profil-
ing, shown in Table 2. We observe that system calls providing
distinct services do not share much kernel code. For exam-
ple, in the case of Redis, read, which implements file and
network I/O operations, shares only 6.8% (4.9k out of 72.1k)
of its instructions with exit_group, which exits all process
threads. Similarly, in case of NGINX, recvfrom which re-
ceives network packets, shares only 9.6% (5.1k out of 53k) of
its instructions with write, which writes to local file. Given
the disparity in kernel code coverage across system calls,
system call-level specialization provides an opportunity to
significantly reduce exposure to attacks.

However, a system call-only specialization (i.e., agnostic
to the application) would not have a good protection ratio
either. For example, consider the write system call, which
shares less than 33% (22.9k out of 68.2k) of its instructions
across NGINX and Redis. The reason is that NGINX only
uses write for file I/O while Redis uses write for both file
and network I/O. Therefore, the execution profile of write
under Redis also includes networking functions that are not re-
quired by NGINX. Since system call-only specialization must
support both NGINX and Redis, it would provide access to
all instructions executable by write across both applications.
Hence, ignoring the application dimension would inflate the
attack surface in many scenarios.

4 Context-aware Hardening

SHARD employs context-aware hardening to address the un-
certainty of whether code is reachable from a particular sys-
tem call. In particular, SHARD analyzes the kernel using both
static analysis techniques and dynamic workload-based profil-
ing, to determine the accessibility of kernel code per-system
call. Then, SHARD enforces hardening (e.g., control-flow in-

System call
handler

Code class ‘ b Internal
Q Reachable N o ?erne'l
unctions
Potentially ‘ b ‘ b
. Unreachable

reachable
Figure 2: Classes of kernel functions relative to a system call.

tegrity [20]) when it is unsure if the kernel should be allowed
to execute a certain piece of code in the current context.

SHARD classifies code into three, disjoint categories at the
level of functions for each system call (as shown in Figure 2).
In particular, the reachable nodes are the kernel functions ex-
ecuted during dynamic workload-based profiling (e.g., bench-
marks and test suites). The potentially reachable nodes are the
kernel functions that static analysis indicates might be reach-
able from a certain system call. Furthermore, static analysis
can conclude (accurately) that some functions are not reach-
able from a certain system call; therefore, those are labeled
unreachable.

SHARD does not harden the kernel when a system call only
executes reachable functions. The reason is that our profiling
accurately concludes that these functions are accessible by the
currently invoked system call. Furthermore, reachable consti-
tutes a very small portion of the kernel’s code — only 0.49%
and 0.60% of the native kernel’s instructions are reachable,
on average, for Redis and NGINX, respectively (Table 3).
Therefore, they provide very few ROP gadgets (as we show
in §9.1) and can be more easily tested for correctness.

However, SHARD hardens the kernel when it detects an
execution that transitions from reachable to potentially reach-
able, since SHARD cannot accurately conclude that poten-
tially reachable code is accessible from the system call, , i.e.,
a potentially reachable code path. Therefore, hardening sig-
nificantly raises the bar for attacks on the system through such
executions. Furthermore, SHARD restricts access to unreach-
able functions since they should never be executed during
benign kernel execution of the invoked system call.

The context-aware hardening technique employed by
SHARD is fine-grained control-flow integrity (CFI) [20]. CFI
ensures that all control-flow transfers, at run-time, adhere to a
program’s statically-analyzed control-flow graph (CFG). As
shown by prior work [33], CFI can effectively prevent control-
flow hijacks. Note that other techniques can be applied to
implement context-aware hardening (as we discuss in §11).

5 System Model

This section describes the scenario envisioned for SHARD.

Untrusted application. We assume a service provider (e.g.,
a website owner) needs to provide a service to many untrusted

2438 30th USENIX Security Symposium

USENIX Association

& = = B
= - 5 4 E 2 3 E < - .ﬁg; = £
T 2 £ 8 2 g 353 53 S £ 5 £ 2 28 I 5§ £ &
] = Q Q = S I Q & 3 = 5] Q L R= b} s R=
g 2 & & § B 8 & & E g & & & = g &8 E & =
read | 72.1 19.1 324 49 37 1.6 69 24 48 sendfile64 82.8 1484 484 220 352 322 20.7 203 195 168
write 68.7 11.11324 45 37 05 3.8 2.1 43 recvfrom 53.0 119 329 31.0 10.1 101 9.7 5.1 00%
openat | 19.1 11.1 379 55 56 36 81 64 49 48 accept4 502 113344 318 99 97 88 50
accept GOSN 5.5 343 34 36 06 28 09 30 openat 22.0 119 113 40.1 105 9.8 213 120 75%
exit_group 49 45 56 34 137 29 08 39 19 56 writev 97 95 9.1 56
clone 37 37 36 36 29 11.0 0.1 26 04 29 setsockopt 92 90 86 42 -50%
readlink 1.6 0.5 06 08 0.1 86 00 15 00 newstat 9.2 302 19.0 10.8
epoll_wait 60N 38 28 39 26 00 84 14 38 mkdir 28.6 11.0 25%
futex 24 2.1 09 19 04 15 14 77 13 getdents 23.1 99
madvise |48 43 48 3.0 56 29 0038 13 77 write 10.8 11.0 99 2238 “0%
() Redis (6 NGINX

Table 2: Instruction overlap across system calls for Redis and Nginx configurations. Numbers represent thousands of instructions. Colors
represent the intersection size relative to the overall number of instructions used by the row system call. Diagonal represents the instruction
coverage of each system call. Only the highest coverage system calls for each configuration are shown.

Type Redis NGINX
Reachable 0.49% 0.60%
Potentially reachable 45.52% 44.35%
Unreachable 53.99% 55.05%

Table 3: The number of kernel instructions in each of the three
classes (Figure 2). The profiling details are provided in §9.3.

clients. The clients access the service by sending requests to
a client-facing application (i.e., untrusted application), such
as a web server or database application, installed on the ser-
vice provider’s machine. However, the service provider does
not trust their clients. There can be many reasons for clients
to attack the system, such as stealing information related to
other clients, taking control of the machine to corrupt the
service, compromising other services on the same machine,
or hiding evidence of attacks. We assume that controlling
the client-facing application process is not enough because
the application is sandboxed (e.g., Native Client [60], Linux
containers [45]), hence, the adversary needs to control the sys-
tem’s kernel to attack the provider. For presentation purposes,
we assume only one client-facing application but SHARD
works with groups of applications as well.

Trusted applications. The service provider may also need
to run trusted supporting services (e.g., back-end encryption
engine for a database) on the same machine that do not accept
input from the adversarial clients and are sandboxed from
direct attacks by the untrusted application.

Kernel. We assume the service provider has access to the
source code of the kernel; therefore, they can statically and
dynamically analyze the kernel and instrument it.

6 Threat Model

Attacker Capabilities. An adversary may control all client-
facing applications and the libraries used by these applications
to mount attacks against the kernel. In particular, the adversary
may invoke any system call, using any parameters and at any

time, from client-facing applications.

The adversary is capable of launching control-flow hijacks
against the system’s kernel. Such attacks redirect the pro-
gram’s control-flow to an arbitrary location by reusing the
code in the memory (i.e., system kernel in our case). The
requirements [51] for such attacks are (a) the existence of
an out-of-bounds or dangling pointer vulnerability that can
overwrite a code pointer, such as a function pointer or return
address and (b) the ability to execute an exploit payload (e.g.,
through ROP [49] or JOP gadgets [23]).

Kernel Assumptions. The system kernel is benign (i.e., writ-
ten by honest developers) but may contain bugs (e.g., memory-
safety violations). We make the following standard CFI as-
sumptions [29] about the kernel:

e Kernel uses NX protection or similar [2] to prevent
writes to kernel executable memory, thus code-injection
attacks are not possible unless protections are disabled.

e The kernel boots in a trusted state, therefore, the ini-
tial kernel image is not corrupted and does not contain
malicious code.

Out-of-scope. We assume that the SHARD framework and
the hardware is trusted and beyond the control of the adver-
sary. Side-channel attacks (e.g., cache attacks) and micro-
architectural leaks, although important, are not specific to
the kernel. Furthermore, such channels could be disabled by
firmware patches [13] or software solutions [63]. Finally, the
adversary does not have physical access to the machine, there-
fore, hardware attacks are out-of-scope.

7 Design of SHARD

This section provides a description of SHARD including a
design overview (§7.1) and a description of the offline analy-
sis (§7.2), kernel instrumentation (§7.3), and run-time kernel
specialization and hardening enforcement (Figure 7.4).

USENIX Association

30th USENIX Security Symposium 2439

Offline Analysis
(§7.2)
@ CFG Generation @ Dynamic Profiling

Offline Kernel Instrumentation
($2.3)
@ Kernel Compilation

Applications/
workloads

Hardened kernel code

@ Application Tracking

Run-time Monitor
(§7.4)

@ Run-time Debloating @ Selective Hardening

! 1
! 1
! 1
! 1
! '
! '
! Restricted kernel code H Invocation of a Execution of a Application of
l B ' . system call by an potentially reachable J CFI checks
' untrusted application code path
Ker: ”él i"“me || Kernel \ Unrestricted kernel code . } wp
ode !
L LT ; HHHH{_H!
: B Y
' » #
SHARD SHARD E SHARD ! SHARD SHARD SHARD
Analyzer Profiler ' Compiler , Monitor Monitor Monitor

#

Control Flow Gmph

Appllcauon I I
Coml

Code class and protection
[J reachable [l Unreachable [Potentially reachable B Hardened

Figure 3: Workflow of SHARD.

7.1 Overview

The SHARD framework consists of an offline analysis phase to
generate specialized configurations for each target application
and an online phase that enables, during run-time, kernel (de-
bloating) specialization and context-aware hardening based
on the generated configurations. Figure 3 demonstrates the
workflow of SHARD.

During the offline analysis (D~Q2), SHARD first creates
a static control-flow graph of the kernel to identify the un-
reachable code for each system call (@). Then, SHARD dy-
namically profiles the target application to identify the ker-
nel code required and commonly used by the application,
i.e., reachable code (). The remaining kernel code is la-
beled potentially reachable. Using the offline analysis infor-
mation, SHARD creates per-application configurations and
instruments the kernel code () for the online phase.

During the online phase (@~®), SHARD installs a VMX
security monitor to enforce specialization policies. The
SHARD monitor performs three tasks: (a) track the context
switches involving the untrusted application and its system
call invocations, (b) specialize the kernel-view of the untrusted
application on each system call, and (c) implement kernel
context-aware hardening using control-flow integrity [20] dur-
ing a system call if, and when, it executes potentially reach-
able code.

SHARD detects context switches to and from the target ap-
plication and system call invocation using lightweight kernel
instrumentation on context switch functions and system call
handlers (@). On each system call invoked by the untrusted
application, SHARD transparently replaces the kernel’s code
pages based on the application’s configuration, as determined
by the offline analysis ((3). This step debloats the kernel (i.e.,
disables the unreachable code) and allows SHARD to detect
kernel transitions to potentially reachable code. On detecting
a transition to potentially reachable code, SHARD similarly
replaces the kernel’s code pages with hardened versions ().
Finally, when the kernel execution returns from potentially
reachable code to reachable code, SHARD replaces the hard-

ened code pages with the previous specialized code pages.

7.2 Offline Analysis

This section describes how SHARD generates a target appli-
cation’s kernel configuration, which outlines the kernel code
required by the application on a per-system call basis. To
strike a balance between efficiency and effectiveness, SHARD
generates configurations using function-level granularity, i.e.,
SHARD determines which kernel functions are executed for
a given system call. SHARD implements two main analysis
stages: (a) static control-flow graph generation and (b) dy-
namic profiling using application workloads.

Static control-flow graph generation. SHARD statically an-
alyzes the kernel to create a control-flow graph (CFG) of the
kernel. In particular, the CFG differentiates the reachable
+ potentially reachable kernel code from the unreachable
kernel code for each system-call. Note that while the CFG
over-estimates the potentially reachable code (as mentioned
in §2.1), it is sound when it determines that code is unreach-
able. The CFG is generated once per-kernel version, regard-
less of the target application.

SHARD leverages a two-layered type analysis algo-
rithm [42] to generate the CFG. This two-layered analysis ex-
ploits the kernel’s extensive use of struct types for function
pointer storage, to significantly increase precision over previ-
ous approaches [55]. It matches indirect call sites which load
function pointers from a field within a struct, to functions
stored to that field of that struct for precisely identifying
the number of potential targets for the call site. In addition,
SHARD also uses the generated control-flow graph to enforce
control-flow integrity in context-aware hardening (§7.4).

Dynamic profiling using application workloads. SHARD
executes the target applications using representative work-
loads (e.g., benchmarks or test suites) to identify the reachable
kernel code during each invoked system call.

The dynamic profiling takes place in a benign environ-
ment. SHARD uses lightweight compile-time instrumentation

2440 30th USENIX Security Symposium

USENIX Association

UD2 ; Kill process

Figure 4: SHARD’s instrumentation for the shadow stack.
shadow_stack refers the $gs register which is randomized on each
hardening instance. The base of the shadow stack is stored in the
%fs register to check if the shadow stack is empty.

to generate a kernel version that supports offline dynamic
profiling. The instrumentation ensures that the kernel traps,
on each kernel function (not previously-logged for a certain
system call) when the untrusted application executes, into
SHARD'’s profiler (using UD2 instructions) which executes in
VMX root mode. Hence, SHARD can record the (a) system
calls invoked by the application, and (b) kernel functions used
by the system calls.

SHARD labels exception and interrupt handlers as reach-
able code, for each system call, since they might execute
at any time. SHARD determines the exception and interrupt
handler coverage the same way it determines system call cov-
erage. Since SHARD relies on compile-time instrumentation,
our current implementation does not specialize kernel code
written in assembly and hence considers it reachable.

7.3 Offline Kernel Instrumentation

After analysis, SHARD compiles three versions of each ker-
nel code page, UNRESTRICTED, RESTRICTED, and HARD-
ENED, using the unmodified kernel’s source code. The UN-
RESTRICTED version (§7.3-(a)) enables all kernel functions
and is used only by trusted applications. The RESTRICTED
version (§7.3-(b)) enables only the reachable code relative
per-system call. The HARDENED version (§7.3-(c)) contains
both the reachable and potentially reachable code, and is
shown only to untrusted applications. Furthermore, SHARD
ensures that functions are address-aligned across the three
versions of code pages by padding them with NOP instruc-
tions. Therefore, different versions of the same code page are
interchangeable without impairing the kernel’s correctness.

UNRESTRICTED code pages. The system runs various ap-
plications that are trusted (refer to §5). Therefore, SHARD
compiles UNRESTRICTED code pages that do not restrict or
harden the kernel’s code to allow native execution of trusted

rax 7 oa DC te t RAX
MOV S%rax,
SHR $0xc,

CMP $0x7ff,%r
JA abort

MOV $TAB(,3%rcx, 8), %r
TEST %rcx, %rcx
JE abort
MOV %ra

CX

sedx

CMP 0x0, (%rcx, %rdx, 1)
JE abort

CALLQ *%rax

up2
Figure 5: SHARD’s CFI instrumentation at indirect call sites.

applications.

However, UNRESTRICTED code pages are still minimally
instrumented to track context switches to untrusted applica-
tions as well as padded with NOP instructions to align code
with the RESTRICTED and HARDENED versions. In particular,
SHARD instruments the kernel’s (a) context switch function
(e.g., __switch_to in Linux) and (b) common system call
handler (e.g., do_syscall_64 in Linux), to notify its run-
time monitor when untrusted applications execute and invoke
a system call, respectively. The notification of system calls is
enabled only during the execution of untrusted applications.
RESTRICTED code pages. Based on SHARD’s dynamic pro-
filing (§7.2-(b)), SHARD compiles RESTRICTED frames for
each system call required by the untrusted application. Such
code pages contain only the reachable kernel functions re-
quired by a specific system call invoked by the application,
while the remaining code (i.e., potentially reachable and un-
reachable) is replaced with undefined (UD2) instructions.
HARDENED code pages. SHARD compiles HARDENED
code pages with both potentially reachable and reachable
code enabled and hardened. These code pages are used when
SHARD detects during runtime the execution of potentially
reachable code. Since, such execution is possibly malicious,
SHARD ensures that all enabled kernel code, i.e., both reach-
able and potentially reachable, is hardened until the execution
returns from the potentially reachable code path. SHARD re-
quires a single HARDENED version of each kernel code page
(unlike RESTRICTED versions which are application and sys-
tem call-specific) since the hardening checks (explained be-
low) protect the execution within the kernel, irrespective of
the system call and application.

SHARD enforces control-flow integrity (CFI) in HARD-
ENED code pages, ensuring all control flow transfers adhere
to the control-flow graph (CFG) generated in §7.2-(a). Impor-
tantly, unlike prior system [39], SHARD ensures fine-grained
CFI by checking whether the destination of an indirect control-
flow transfer is valid from that specific code location. In par-
ticular, SHARD enforces CFI on forward indirect control-flow
transfers using a technique that is based on Restricted Pointer
Indexing (RPI) [29, 56], while protecting backwards return
transfers using the shadow stack.Hence, SHARD’s hardening

USENIX Association

30th USENIX Security Symposium 2441

prevents both ROP and JOP attacks.

Note that SHARD’s contribution isn’t the hardening mech-
anisms or implementations, which are from existing work. In
particular, SHARD’s contribution lies in the efficient, context-
aware application of hardening mechanisms. The following
paragraphs provide details about SHARD’s instrumentation
related to RPI and shadow stack.

Restricted Pointer Indexing (RPI). Traditional RPI uses
integer-based indexing into a call target table (refer to [29]
for details) for indirect control-flow transfers. However, such
indexing would raise compatibility issues when passing func-
tion pointers from UNRESTRICTED and RESTRICTED to
HARDENED code pages, because the former use function
addresses (natively used by the compiler). A naive solu-
tion would be to modify RESTRICTED and UNRESTRICTED
pages to use integer-indexing as well. However, such ap-
proach would incur considerable overhead, up to 40% [29],
for code pages that otherwise would execute at near-native
speed. Therefore, SHARD uses a modified version of RPI
which uses function addresses to ensure that non-hardened
code versions are not impacted.

Figure 5 illustrates SHARD’s RPI instrumentation to en-
force control-flow integrity at indirect call sites. In particular,
SHARD maintains two call target tables for reference. Each
valid target address from an indirect call site contains a corre-
sponding reference in a first call table, which references an
entry in a second call table. The call target tables are popu-
lated with valid targets using the kernel’s control-flow graph
(generated in §7.2-(a)) and then marked as read-only to avoid
tampering at run-time.

The first target table contains an entry for each kernel code
frame (i.e., 2048 entries in Linux’s case), indicating if a branch
to the target kernel code frame is allowed or not, from the
indirect call site. The second table contains an entry for each
offset in a frame (i.e., a 4 KB frame has 4096 offsets), indi-
cating whether a branch to such an offset of the kernel frame
is allowed or not. On each indirect control transfer, the instru-
mentation asserts that the corresponding entries exist in both
tables, otherwise, the control-flow does not follow CFI and
the program is terminated by SHARD.

Shadow stack. Shadow stack stores a backup copy of the
stack to prevent an adversary from returning to a different
address during execution. Each program thread is allocated
a separate shadow stack. SHARD uses randomization to hide
the shadow stacks and prevent malicious modification. In
particular, SHARD uses the segment register ($gs) to random-
ize the shadow stack [25] on each context-aware hardening.
However, randomization-based shadow stack protection is
not fundamental to SHARD’s design; hence, other techniques
(e.g., memory protection [57]) can be adopted by SHARD.

Figure 4 shows SHARD’s instrumentation for the shadow
stack. At the start of each function, SHARD’s instrumenta-
tion stores the return address in the shadow stack. Then, on
the subsequent return, the instrumentation asserts whether

Potentially Enable Shadow ~ Disable

reachable hardening stack ~ hardening

is executed # | is empty *
SHARD SHARD SHARD
Monitor Monitor Monitor

Control-flow
+*» Return

Code class and protection
DReachable IPotemiallyreachable
IUnreachable Hardened

Other
—>» Indirect call —> Trap

Figure 6: SHARD context-aware hardening cycle.

the return address stored in the native stack and the shadow
stack’s return address are consistent. Furthermore, SHARD’s
instrumentation tracks when the shadow stack is empty, i.e.,
the potentially reachable code path has completed execu-
tion. In particular, on each return, the instrumentation checks
whether the shadow stack pointer is pointing towards the
shadow stack’s base (stored in $fs segment register). If yes,
the instrumentation triggers a UD2 to inform SHARD.

Shadow stack implementation using segment registers can
potentially suffer from time-of-check-to-time-of-use (TOCT-
TOU) attacks [28], i.e., the return address is correct at the
time of validation but is modified before the return instruction.
However, an extensive study on shadow stacks [24] suggests
that exploiting this race is non-trivial since it requires highly
precise timing. Nevertheless, mitigations exist against this
problem [24], at slightly higher performance costs.

7.4 Run-time Monitor

During the online phase, the SHARD monitor executes in
VMX root mode to track the execution of untrusted applica-
tions, as well as enforce debloating and context-aware hard-
ening.

Workflow. SHARD monitor operates in four major stages.

1. Initial kernel-view. The SHARD monitor enables the
UNRESTRICTED version for all kernel code pages to allow
the unrestricted execution of trusted applications and detect
the execution of the untrusted application.

2. Debloating enforcement. The monitor is notified through
kernel instrumentation on (a) context switches to untrusted ap-
plications and (b) system call invocations by untrusted applica-
tions. On system call invocations by the untrusted application,
the monitor switches all kernel code pages to RESTRICTED,
based on the specific system call and application configura-
tion (generated in §7.2) to enforce debloating by allowing
only reachable code to execute.

3. Hardening enforcement. During the execution of RE-
STRICTED pages, a triggered UD2 signals that the kernel tried
to execute an unreachable or potentially reachable kernel
code. If the kernel tried to execute unreachable code, the mon-

2442 30th USENIX Security Symposium

USENIX Association

itor terminates the application since such execution cannot
be legitimate. On the other hand, if the attempt was towards
a potentially reachable code path, SHARD enforces context-
aware hardening by (a) implementing an initial CFI check
using the CPU Last Branch Record (LBR) and (b) switching
the kernel-view to HARDENED (illustrated in Figure 6). The
initial CFI check ensures that the first control-flow transfer
from reachable to potentially reachable is valid.

4. Disabling hardening. Lastly, the monitor disables hard-
ening, i.e., switches from HARDENED code pages to RE-
STRICTED, when the system returns to the reachable code
from where it triggered the hardening (refer to the shadow
stack implementation in Figure 4).

Transparent and efficient kernel-view switch. The
SHARD monitor uses a VMX feature, Extended Page Tables
(EPT) [32], to achieve transparent and efficient switching
between different versions of the kernel code pages. In partic-
ular, the monitor uses the EPT to redirect the guest memory
view of the system from one (host) physical page to another.

Since the kernel is huge and spans many code pages (e.g.,
2048 code pages in our Linux kernel), updating the EPT en-
tries individually for each page would be costly. Therefore,
SHARD updates the EPT at the page directory-level, i.e., 512
pages at once, to change the kernel-view. For efficiency, dur-
ing initialization, the SHARD monitor statically creates page
tables for each system call using the configuration of each
application (generated in §7.2). Then, on system call invoca-
tions, the monitor updates the page directory entries to point
towards these already-crafted page tables.

LBR-based control-flow integrity check. At an UD2-trap,
during the execution of RESTRICTED code pages, although
SHARD changes the code versions to HARDENED, the current
control-flow transfer (that raised the trap) would be unpro-
tected without an additional check. In particular, while HARD-
ENED code page versions enforce CFI during their execution,
SHARD should enforce the same while the system transitions
from RESTRICTED to HARDENED versions.

Therefore, the SHARD monitor implements a custom CFI
check for such control-flow transfers using the Last Branch
Record (LBR). In particular, the LBR stores information
about the 32 most recent faken branches by the processor [32].
The stored information includes the source and target ad-
dresses of the branches. Using this information, SHARD en-
sures that the control-flow transfer’s target address is a valid
target for its source (using the CFG generated in §7.2-(a)). If
it is not, SHARD terminates the program, otherwise, switches
the RESTRICTED versions of the kernel’s code pages to their
HARDENED versions.

8 Implementation

SHARD’s implementation consists of a static analyzer, a dy-
namic profiler, an LLVM instrumentation pass, and a run-time

Component Lines of code
Static analyzer 2047
Dynamic profiler 171
Offline kernel instrumentation 822
Run-time monitor 1842
Total 4882

Table 4: SHARD components’ lines of code.

monitor. Table 4 lists the lines of source code for each compo-
nent of the implementation. SHARD’s source code is available
at https://github.com/rssys/shard.

The static analyzer uses the two-layer type analysis algo-
rithm [42], which, to the best of our knowledge, is the current
state-of-the-art in kernel CFG generation. The analysis al-
gorithm divides indirect calls based on whether they load
function pointers from a struct or not. For the former case,
all call pointers loaded from a particular field of a structure are
matched with all functions stored to that field. Such functions
are identified using taint analysis. For the latter, the analysis
uses traditional signature-matching approach [54]. The static
analyzer resolves an indirect call site to 7 targets, on average,
in the kernel’s CFG. Using the CFG, we create and populate
control-flow integrity target tables (refer to §7.3-(c)). On av-
erage, we require only two tables (i.e., a frame table and an
offset table) for each indirect call site in our kernel.

Furthemore, we wrote an LLVM-5 [41] instrumentation
pass to instrument the kernel and create different types of
code page versions (refer to §7.3). It supports the Linux kernel
v4.14 with modules built-in and can be extended to work on
any kernel that compiles to the LLVM IR (e.g., BSD). It can
also be extended to work for dynamically-loaded modules,
similar to prior work [30].

Finally, we implement the dynamic profiler (refer to §7.2)
and the run-time monitor (refer to §7.4) in the KVM mod-
ule. The run-time monitor reserves a random 400KB memory
region within the guest for shadow stacks. The reserved re-
gion should be configured based on the maximum number of
threads that the target program executes (i.e., 1KB for each
thread’s shadow stack). Note that SHARD also randomizes the
base of a shadow stack (on each hardening instance); hence,
an attacker must continuously guess the shadow stack’s lo-
cation, even if they guess the base address of the reserved
memory. Please refer to existing sources [24, 64] for a full
entropy analysis of randomization-based shadow stack pro-
tection, as well as its limitations and other approaches.

9 Security Evaluation

SHARD’s goal is to restrict the attacker capabilities to conduct
control-flow hijacks by reducing the amount of kernel code
exposed and employing context-aware hardening through CFI.
Therefore, we quantify and provide an analysis of SHARD’s
attack surface in §9.1. Furthermore, we analyze the number

USENIX Association

30th USENIX Security Symposium 2443

https://github.com/rssys/shard

—— NGINXspyarD Redissyarp — Assortedsp

—e— NGINXp

—m— Redisp

Assembly Instructions (%)
S

\

N

Vg
>
i
§

=

() p——t—p—p—sp a—n S EAEBAERARE sz = =S —y
T X ¥ T T T S O T T TN O 9N ©.x O Y TS TS XS
= w0 = 2 CoE s s ot 23 29 ¢ a8t 00 xE
3RS 038 eSS 88 S8ERER0E8ESS
£ E 5 oo S0 geovooc ooy ez BE8T &
05 Y% o c 8 > ©w o] o o S 2 o £
% ~ 3 B0 © g .80 = 28 2 I

[& 2 [} [} o

~ NH o o c

4 = o

1]

&

set_tid_address
rt_sigprocmask

madvise
rt_sigsuspend

bind
accept
listen
writev
recvfrom
mmap
munmap{ ¢
connect
mkdir
getdents
clone
access{ ¢
joctl{ ¢
exit_group
futex
epoll_wait
write
read

sendfile64
socket

newstat
pwrite64
openat

accept4
mprotect | 4

readlink
setsockopt
socketpair
pread64

Figure 7: Attack surface reduction (debloating) across system calls. Numbers represent the assembly instructions available relative to the
native kernel for each system call. XYZgysrp and XY Zup refers to application XYZ running with SHARD and application-only (existing)
debloating respectively. Assortedsp refers to system call-only debloating using NGINX, Redis, and LTP workloads.

of ROP and JOP gadgets exposed by SHARD in §9.2. Finally,
we show how SHARD’s reduced attack surface and hardening
prevents actual kernel attacks in §9.3.

9.1 Attack Surface Reduction

SHARD restricts the attack surface to the reachable code. In
particular, SHARD disables the unreachable code at every
system call, while it hardens the potentially reachable code
through control-flow integrity (CFI).

In the following, we show the attack surface in terms
of reachable assembly instructions. Furthermore, we com-
pare SHARD’s exposed attack surface against both existing
application-only kernel debloating (i.e., debloating at the level
of each application and not system call) and system call-only
debloating (i.e., debloating at the level of each system call
and not application).

Setup and methodology. We use two popular real-world
applications, NGINX [16] web server and Redis [17] key-
value store. To dynamically profile these applications, we
used the ab [1] and redis-benchmark suites, respectively.
In particular, we used ab with a range of file sizes from 1KB
to 128KB and redis-benchmark with default settings.

We determine the attack surface of application-only ker-
nel debloating (NGINXsp and Redissp in Figure 7) through
dynamic profiling of the test applications. Furthermore, to
estimate the attack surface of system call-only debloating
(Assortedsp in Figure 7), we calculate the upper bound of
the kernel code required for each system call by combining
the dynamic profiles of NGINX, Redis, and the Linux Test
Project (LTP) [40]. Note that our assorted workload might
not consider all kernel functions required by each system call,
however, we expect that it provides a good approximation.

Finally, we determine the attack surface of SHARD
(NGINXgy arp and Redisqyarp in Figure 7) by determin-
ing the reachable code at each system call through dynamic
profiling of the test applications.

Results. Figure 7 shows the number of instructions of as-
sembly code, differentiated by each system call invoked by
the test applications. Our analysis reveals that for half the
system calls, SHARD exposes between 0 — 0.2% of assembly
instructions in the Linux kernel. Even in the worst case, only
4.87% of the kernel’s instructions are available to the attacker.

In contrast to SHARD, the coarse debloating employed by
previous (application-only) kernel debloating systems, reveals
a constant and large attack surface, which represents the cu-
mulative sum of all kernel code that an application requires
during execution. Furthermore, while system call-only de-
bloating alternative performs similar to SHARD for simpler
system calls such as setuid, dup2, which only execute a few
internal kernel functions, it performs much worse for more
complex system calls (e.g., read). The reason is that complex
system calls implement multiple functions, using many ker-
nel functions, most of which are not required by a specific
application.

9.2 ROP and JOP Gadget Analysis

This section analyzes the ROP and JOP gadgets exposed by
SHARD as well as system call and existing application-only
kernel debloating approaches. Similar to assembly instruc-
tions, SHARD only allows the attacker to construct ROP and
JOP gadgets using reachable code. Note that reduction in
ROP and JOP gadgets is not a comprehensive metric for reduc-
tion in attacks since a few gadgets are enough for meaningful
exploits [58,59]. Nevertheless, such analysis aids in SHARD’S
comparison with existing approaches [21,31,36,46,47,50]
that also provide such gadget analysis.

Setup and methodology. The evaluation setup, methodol-
ogy, and applications are the same as §9.1.

Results. Table 5 shows the absolute number of ROP and JOP
gadgets exposed under all applications and debloating types
considered, across system calls. On average, SHARD shows a
reduction (compared to the native Linux kernel) of 149 and

2444 30th USENIX Security Symposium

USENIX Association

Min Max Median Avg Factor
Native kernel 339017 339017 339017 339017 1x
NGINX4p 33614 33614 33614 33614 10x
Redisap 32090 32090 32090 32090 11x
Assortedsp 0 67260 8783 15757 22%
NGINXgyarRD 0 16689 440 2273 149x
Redisggarp 0 14605 519 1854 183x

Table 5: ROP and JOP gadgets exposed by SHARD and other ap-
proaches across system calls. Only systems that specialize across
system calls have non-constant values. All numbers were obtained
using the ROPGadget tool [12]. Factor refers to the ratio between
the native kernel and the system average.

183 considering NGINX and Redis, respectively, which is
an order of magnitude better than existing application-focused
and system call-only debloating.

9.3 Attack Evaluation and Analysis

This section describes how SHARD prevents control-flow hi-
jacks, which require kernel vulnerabilities and exploit pay-
loads, through an attack analysis.

Setup and methodology. We consider five diverse exploit
payloads which have previously been evaluated by others [35,
43,58,59]. Furthermore, we randomly selected a list of Linux
vulnerabilities.

Table 6 provides an overview of the exploit payloads (P; -
Ps). Py elevates the privileges of a user process, giving root
privilege to the process. P, disables the separation between
kernel and user processes, which allows an adversary to ex-
ecute user code in kernel space. Lastly, P3, P4. and P5 allow
the attacker to inject malicious code in the kernel by disabling
NX protections, i.e., make writable memory executable or
executable memory writable.

Table 7 provides an overview of the list of vulnerabilities
considered (V| - Vyg). These vulnerabilities include out-of-
bounds access such as buffer overflows, use-after-free access
for a dangling pointer, and double-free issues. These vulner-
abilities are caused by kernel bugs in a diverse set of kernel
functionality, including the ext4 file system, keyring facility,
block layer, and networking module.

Finally, we use the same test applications (mentioned
in §9.1) for attack evaluation.

Attack analysis. SHARD can prevent the execution of 4 out
of the 5 considered payloads, for the NGINX and Redis con-
figurations. In particular, P3, P4, and Ps are either completely
disabled (i.e., in unreachable code) or hardened using CFI
(i.e., in potentially reachable code). SHARD also prevents Py,
which requires the execution of two kernel functions in succes-
sion, prepare_kernel_cred which creates root credentials
and commit_creds which commits the credentials to grant
the application root access. However, only commit_creds is
reachable (in system calls setuid, setgid, and setgroups)

Payload Dependencies Protection Prevented
Unr Hard
P1: Privilege eleva. [58] commit_creds, v X v
prepare_kernel_cred
P2: Disable SMAP [59] native_write_cr4 X X X
P3: Set memory exec. [48] set_memory_x v X v
P4: Set memory writ. [43] set_memory_rw X v v
P5: Modify page table [43] lookup_address 4 X v

Table 6: SHARD’s protection against exploit payloads. “Unr” stands
for unreachable and “Hard” represents hardening. For Py, only
prepare_kernel_cred is unreachable but since the exploit re-
quires both functions, we classify it as unreachable.

while running NGINX or Redis. While an attacker can recre-
ate the credentials using ROP gadgets, it would be very chal-
lenging because SHARD exposes few ROP gadgets (i.e., 175,
118, and 207, respectively) for these system calls. Finally,
SHARD cannot prevent the execution of P, because it depends
on native_write_cr4, a function required by interrupt han-
dlers and, therefore, reachable from every system call (as
mentioned in §7.2).

Regarding vulnerabilities, SHARD disables 5 out of 10 vul-
nerabilities considered because they are located in unreach-
able code for these applications. The remaining 5 vulner-
abilities can be triggered since they exist in reachable or
potentially reachable code. However, they cannot always be
exploited as we explain in the next paragraph.

Considering control-flow hijacks, which require both a vul-
nerability and an exploit payload (as explained in §6), an
attacker can attempt 50 concrete attacks using the consid-
ered 5 payloads (P; - Ps) and 10 vulnerabilities (V| - Vig).
Because SHARD can prevent hijacks by either disabling the
vulnerability or the exploit, SHARD prevents 90% (45 out of
50) of the attacks. In particular, SHARD is only susceptible to
attacks using the payload P; and the exposed 5 vulnerabili-
ties (V3, Vg, Vg, Vo, and Vp), as both the payload and the
vulnerabilities are reachable in these applications.

Our analysis indicates that SHARD can invalidate many ex-
ploit payloads and vulnerabilities, hence, it is highly effective
at thwarting control-flow hijacks, despite low overhead (§10).

Defense validation. To validate our analysis, we attempted
six control-flow hijacks using NGINX and Redis. For this, we
used the exploit payload, Py, and three vulnerabilities namely
CVE-2016-0728 [18], CVE-2017-5123 [7], and CVE-2017-
7308 [8]. We attempted each control-flow hijack by both
overwriting a function pointer and a return address, i.e., six
attacks in total. SHARD successfully prevented all six attacks
because the payload was unreachable for both application;
hence, jumps to the payload were caught by SHARD.

10 Evaluation

This section describes the experimental setup for SHARD
(§10.1), evaluates its overhead through micro-benchmarks

USENIX Association

30th USENIX Security Symposium 2445

CVE Vulnerable Function Unr Prevented

=
-
)
v
)
~
3
o]
W

V1:2016-0728 [18] join_session_keyring v ¢ vV vV V V
V2:2017-5123 [7] SyS_waitid v Vv Vv VvV /
V3:2017-7308 [8] packet_set_ring X v X v vV
V4:2017-10661 [3] SyS_timerfd_settime v v Vv /V V /
V5:2017-11176 [4] SyS_ng_notify VR A VAV
V6:2017-17052 [5] get_net_ns_by_id X v X v v Vv
V7:2018-7480 [10] blkcg_init_queue v v Vv / / /
V8:2018-10880 [6] extd4_update_inline_.. X X V V V
V9:2018-17182[9] vmacache_flush_all X v X v vV
V10: 2019-20054 [11] ext4_xattr_set_entry X VvV X V V V/

Table 7: SHARD’s effectiveness against control-flow hijacks attacks
using different vulnerabilities and payloads (Table 6). The code of
some vulnerabilities is unreachable (“Unr”).

(§10.2) and real-world applications (§10.3), and evaluates the
impact of profiling accuracy (§10.4).

10.1 Experimental Setup

Machine specification. We conducted all our experiments
on an Intel (R) Core (TM) i7-6500U CPU @ 2.50GHz with
4 MB of last-level cache, 8 GB of memory, and support for
the Last Branch Record (LBR).

Kernel configuration. Our SHARD-protected kernel was
Linux kernel v4.14, which ran inside a guest virtual machine
(VM). The VM was allocated 4 GB of memory, 1 thread, and
connected to the host with a 1 Gb/s virtual connection.

SHARD configuration. SHARD’s monitor was installed on
the KVM module of the host, running Linux kernel v4.15.

10.2 Micro-benchmarks

This section analyzes the memory footprint of SHARD and
the overhead of SHARD monitor’s operations.

Memory footprint. SHARD maintains various versions of
instrumented kernel code pages (i.e., UNRESTRICTED, RE-
STRICTED, and HARDENED) and call target tables to enforce
control-flow integrity (CFI) (refer to §7.2). Table 8 shows
the memory overhead incurred by SHARD. Each application
incurs a different overhead for RESTRICTED code page ver-
sions, based on the invoked system calls and kernel func-
tions. The main memory overhead is caused by call target
tables, maintained for each indirect kernel call site, to enforce
CFI. Nevertheless, this memory consumption is negligible in
comparison with the memory available in modern machines
(usually tens of GBs).

Monitor overhead. The SHARD monitor performs 3 opera-
tions (refer to §7.4): (a) trap on context switches and system
calls, (b) switch the EPT to enforce hardening and debloat-
ing, and (c) perform an LBR-based check for CFI during
hardening. To ascertain the runtime overheads, we create a
benchmark which executes a system call (i.e., getgid) in

Component Required memory (MB)

Kernel code pages

UNRESTRICTED 8.0

RESTRICTED (NGINX, Redis) 14.4 — 18.0

HARDENED 8.0
CFI tables

Frame table 14.0

Offset table 34.0
Total 78.4 — 82.0

Table 8: Memory footprint of SHARD.

BN SHARD-trusted SHARD

&
s

BN SHARD-always-hardened

Overhead (%)

-
-
5 |
0

x o W a a Sa T x T ~ 8
uaSzo O%SOdeum 5 8
SL558°885583835%3¢8¢ ¢
g = g o %5 & I
= © zz g z
@ = [T a
~ a -~ ~

Figure 8: Performance overhead of redis-benchmark.

a loop for 10 million iterations. This is lightweight system
call that only takes 0.43 us on average to execute in the na-
tive kernel. We measure how long it takes for the benchmark
to complete, while selectively enabling each operation, and
comparing it against the native (non-monitored) execution.

Our results show that a trap at each system call adds an aver-
age overhead of 1.21 us per-system call. Furthermore, switch-
ing the EPT involves updating 4 page directory entries (since
our kernel is 8 MB and a page directory holds 2 MB of pages)
and the INVEPT instruction, which adds 0.60 us. Also, the
SHARD monitor implements a CFI-check using LBR, which
requires referencing the two call target tables and retrieving
the latest entry in the LBR, taking 1.01 us on average.

10.3 Real World Applications

This section evaluates SHARD’s overhead while executing
real-world widely-deployed applications, NGINX web server
and Redis key-value store, that match our use-case scenario
(refer to §5). Furthermore, we also evaluate SHARD with a
well-known set of real-world workloads, SPEC CPU 2006.

Common settings and terminology. We profiled each ap-
plication using the experiment workload. The client-server
experiments (NGINX and Redis) were performed by sending
requests from clients on the host machine. We ran each exper-
iment 10 times and report the average overhead compared to
a native (uninstrumented) Linux kernel.

In Figure 8 and Figure 10, "SHARD-trusted" refers to sce-
narios where SHARD does not enforce debloating or harden-
ing (i.e., for trusted applications), "SHARD " means SHARD’S
overhead while enforcing debloating and context-aware hard-

2446 30th USENIX Security Symposium

USENIX Association

I Hardening EPT Switches B Total Traps

=10t
p

s of i
QL L=

INCR e
LRANGE 300 s

REDY S —

PiNG INL 1 e s

PO

[e —

Lropl— e

LRANGE oy

LRANGE 100 P——

RO s

LPUSH—

PiNG e —

SET e

RPUSH e

MSET_

g —
LRANGE 500 e

Figure 9: SHARD statistics while running redis-benchmark.

ening, and "SHARD-always-hardened" means SHARD’s over-
head while enforcing debloating and full-hardening on each
system call. Note that SHARD-always-hardened can only be
realized using SHARD’s framework, i.e., it is not existing
work, and is included for performance comparison.

Figure 9 and Figure 11 illustrate the overall statistics for
SHARD, including number of exits and EPT switches (for
debloating or context-aware hardening), related to NGINX
and Redis, respectively.

Redis key-value store. We evaluate Redis using the offi-
cial redis-benchmark. The benchmark ran with the default
configuration, sending requests from 50 concurrent clients.

Figure 8 shows the overheads for the redis-benchmark
tests. The average overhead across all the tests for SHARD
is 6.83%. Considering the execution statistics (Figure 9), we
notice more than 40,000 traps per-second in some tests. How-
ever, since the application invoked the same system calls
(i.e., mostly read and write) successively, 96.15% of these
traps did not require switching the EPT (for debloating or
hardening). Switching the EPT requires invalidation of the
instruction cache, which is costly to repopulate. Due to few
such cases, the overhead remains low. Additionally, we no-
ticed 29 average instances of hardening per-second. However,
their overall impact on the execution was low since hardening
was only enforced for small durations.

Moreover, SHARD-always-hardened incurs an additional
overhead of 0.1-11% over SHARD (average increases to
11.49%). In particular, we observe a high overhead when the
benchmark application invokes many system calls in a small
span of time (e.g., for INCR and GET). In contrast, bench-
mark applications (e.g., LRANGE) that execute for longer
periods and invoke system calls less frequently, exhibit less
overhead for full-hardening. Finally, while running Redis as
a trusted application (SHARD-trusted), we only observe an
average overhead of 1.2%, because SHARD did not trap its
execution. The negligible overhead is due to the lightweight
instrumentation of UNRESTRICTED code pages (mentioned
in §7.2) and demonstrates the performance benefits of spe-
cialization.

NGINX web server. We used the apachebench, ab [1], to
send 10,000 requests using 25 concurrent clients to an NGINX

60 B SHARD-trusted SHARD EEEE SHARD-always-hardened
40
b
2
£
5
>
© 20

07 2 7} 8 16 32 o4 128

File Size (KB)

Figure 10: The performance overhead of NGINX across varying
requested file sizes.

web server running a single worker thread.

Figure 10 shows the end-to-end latency increase across dif-
ferent requested file sizes. We observe a higher SHARD over-
head for NGINX, 22.21% on average. Unlike Redis, which
successively calls the same system call, we observe (Fig-
ure 11) a high number of traps which incur EPT switches (i.e.,
NGINX invokes distinct system calls successively). Further-
more, while the overhead is high (up to 37%) for smaller file
sizes, it is amortized over memory and I/O overhead as the file
size increases. Note that NGINX showcases the worst-case
scenario for SHARD’s overhead, i.e., many distinct system
calls per-second. In practice, we expect system calls to be
small in number (as we show for SPEC below) or to be similar
(as Redis). Also, we observe a very low number of hardening
instances, showing that in many cases a good representative
profiling workload ensures low run-time deviation.

The full-hardening enforcement of NGINX (SHARD-
always-hardened) incurs an additional overhead of 8-20%
over SHARD. In particular, the average performance overhead,
with full-hardening enforcement, becomes 38.17%. Finally,
running NGINX as a trusted application (SHARD-trusted)
incurs only 1.59% average overhead, similar to Redis.

SPEC CPU 2006. We ran SHARD on the SPEC CPU 2006
integer suite, which includes 12 applications that range from
file compression (bzip2) to gene sequencing (hmmer). All
experiments used the reference workloads.

Table 9 shows the overhead caused by SHARD on SPEC
applications, including the number of traps. In general, we
observe very low overhead (between —0.37 and 2.73%) for
these applications. The reason behind this is that while we see
many traps at the SHARD monitor, they were dispersed over
long-running tests. We expect such patterns to be common in
many applications; for such applications SHARD’s overhead
will likely be very low as well.

10.4 Impact of Profiling Accuracy

This section demonstrates the impact of profiling (in)accuracy
on the performance of SHARD. In particular, we illustrate
SHARD’s performance when profiled with a (a) different ap-
plication, (b) different application workload, or (c) partial
application workload.

Terminology. Related to Figure 12, Figure 13, and Figure 14,

USENIX Association

30th USENIX Security Symposium 2447

. BN Hardening I EPT Switches BN Total Traps

<10
i3
=10!
3 10°
s
£10?
£
]
=10

10°

1 2 4 8 16 32 64 128
File Size (KB)

Figure 11: SHARD statistics while running NGINX.

Benchmark Execution time Total EPT Overhead
Baseline(s) SHARD(s) | raps Switches
400.perl 306 307 195050 75070 0.32%
401.bzip2 436 442 109789 37386 1.38%
403.gcc 270 269 79805 27630 -0.37%
429.mcf 365 375 46804 30845 2.74%
445.gobmk 464 471 125006 796438 1.51%
456.hmmer 356 363 79813 28292 1.97%
458.sjeng 507 518 41770 27955 2.17%
462.libquantum 322 325 34986 25311 0.93%
464.h264ref 669 683 87162 41142 2.09%
471.omnetpp 381 390 464386 31215 2.36%
473 .astar 440 442 44225 28441 0.45%
483.xalancbmk 237 240 123595 28655 1.27%

Table 9: SPEC CPU 2006 results. Table only shows numbers while
running untrusted applications with SHARD.

SHARD refers to scenarios where profiling was accurate—
SHARD was profiled using the same application and work-
load against which it was evaluated, whereas SHARD-Prof ;.
refers to scenarios where SHARD was profiled with a different
application or workload or partial workload.

Profiling using different application. To evaluate the im-
pact of a different application profile on performance, we
generated a SHARD profile using Redis and ran NGINX with
the generated profile. We used the redis-benchmark for pro-
filing. For evaluation, we used ab to send 10,000 requests
using 25 concurrent clients to an NGINX server with one
worker thread (similar to §10.3).

Figure 12 shows the performance overhead of Redis profile
(SHARD-Prof,,g4;5) compared to accurate profiling (SHARD).
As expected, SHARD-Prof,.4;; performs considerably worse.
In particular, we noticed a very high number of hardening
instances with SHARD-Prof,,;;; because NGINX and Redis
profiles are highly-disjoint (as illustrated in §3). For example,
retrieving 1KB files, SHARD-Prof,.y;; incurs ~ 24,000 hard-
ening instances per-second, compared to ~ 300 hardening
instances per-second with SHARD. Consequently, SHARD-
Prof,.4;s exhibits a much higher overhead (i.e., upto 89%).

Profiling using different application workload. Next, we
evaluated the impact of profiled application workloads on ap-
plication performance. In particular, we generated a SHARD
NGINX profile using ab. Afterwards, we evaluated NGINX’s
performance using wrk [19]. During profiling, ab generated

100
SHARD EEE SHARD-Profg.;

60

10

rm
0= 2 1 8 16 2 64 128

File Size (KB)

Overhead (%)

Figure 12: The performance overhead of NGINX when the system
is profiled with the same (SHARD) and different (SHARD-Prof;,,4;5)
application.

10 SHARD Bl SHARD-Prof,,

30
. I I B .=
1 2 4 8 16 32 64 128

File Size (KB)

Overhead (%)

=

Figure 13: The performance overhead of NGINX when the system is
profiled with the same (SHARD) and different application workload
(SHARD-Prof,).

requests for files between 1 to 128 KB size using 25 concur-
rent clients. Then, during evaluation, wrk requested the same
files using the same number (25) of clients.

Figure 13 shows the performance overhead of the ab pro-
file (SHARD-Prof,;) compared to an accurate profile using
wrk (SHARD). We notice that the specific profiled workload,
related to an application, has little impact on the application’s
performance (i.e., less than 2% increase in performance over-
head mostly for SHARD-Prof,;,). Hence, we conjecture that
as long as the profiling workload for an application is com-
prehensive, the exact workload type is less important.

Profiling using partial application workload. Finally, we
show the impact on application performance when SHARD
is profiled using a partial set of application workloads. In
particular, we generated a SHARD profile using half the
redis-benchmarks and evaluated the performance using the
rest. The benchmark applications in the profiling and evalua-
tion sets were randomly chosen. Figure 14 shows the perfor-
mance with complete (SHARD) and partial (SHARD-Prof 1)
application workload profiles. We notice that SHARD-Prof .,
increases performance overhead only between 0 —3%. Hence,
our results suggest that a partial profile is also sufficient to
offer high performance for an application.

11 Limitations and Discussion

Context-aware control-flow integrity (CFI) creates a narrow
window of opportunity for an attacker that full CFI would
not. In particular, while the attacker cannot execute an exploit

2448 30th USENIX Security Symposium

USENIX Association

o
St

SHARD B SHARD-Profy,,

~
w
(%]

Figure 14: The performance overhead of Redis when the sys-
tem is profiled with complete (SHARD) and partial set of
redis-benchmark (SHARD-Prof}q).

Overhead (%)
= 8

INCR
SADD
SPop
RPop

RPUSH
MSET]

payload directly with context-aware CFI (due to SHARD’s
hardening and debloating), the attacker can potentially make
a malicious update to a function pointer and trick trusted ap-
plications (for which the kernel is not hardened or debloated
by SHARD) to use the malicious function pointer. Although
possible, we expect such attacks to be significantly difficult
to perform for several reasons. In particular, the untrusted ap-
plication is sandboxed (refer to §5); therefore, its interactions
with the outside world are rigorously controlled. Furthermore,
the attacker must both know the system call semantics of a
trusted application and be able to trick the application to use
the malicious function pointer in a specific scenario to con-
duct such attacks. We leave the investigation of these attacks
to future work.

Moreover, other techniques can be applied to the kernel
with SHARD to provide alternative or complementary context-
aware hardening protection. For example, stack exhaustion
and stack clearance checks can be applied to prevent attacks
through the kernel’s stack. These techniques, unlike CFI, are
not subject to the limitations of selective hardening [39].

12 Related Work

Dynamic kernel debloating. SHARD is most closely re-
lated to previous work in application-driven, run-time ker-
nel (debloating-based) specialization [30, 36, 62]. However,
compared to these schemes, SHARD significantly reduces the
attack surface by specializing at both the application and sys-
tem call levels and strictly enforces debloating.

Static kernel debloating. Static, configuration-based spe-
cialization [37, 38, 53] is another approach for kernel min-
imization. Since such techniques statically determine the
kernel-view, they provide good performance but with lower se-
curity guarantees (e.g., larger attack surface and/or non-strict
enforcement).

Application specialization. Specializing of applications has
been explored extensively, including for debloating purposes.
Trimmer [50] employs static analysis techniques to identify
reachable application code with respect to a particular user-

provided input. Quach et al [47] statically identify library
code needed by an application and use piece-wise compi-
lation and loading to specialize the library-view of the ap-
plication at run-time. Azad et al [21] and Razor [46], use
dynamic profiling to identify and remove the code that is
not needed by an application in a particular usage scenario.
Finally, CHISEL [31] adopts a delta debugging approach to
obtain a minimal program satisfying a set of test cases. Unlike
these systems, specializing at the kernel requires addressing
additional complexities (e.g., a very large codebase which is
hard to accurately analyze statically or dynamically profile)
to provide strict enforcement guarantees with low overhead.

Kernel CFI. Control-flow integrity [20] prevents control-
flow hijacks by ensuring that control-flow transfers are only
to valid targets. Previous work has applied CFI to protect
privileged software, including kernels and hypervisors. Hy-
perSafe [56] applies CFI to hypervisors. For CFI enforcement,
they introduce a lightweight Restricted Pointer Indexing (RPI)
approach. SHARD proposes a modified implementation of
RPI which is compatible with function addresses.

KGuard [34] protects the kernel against return-to-user at-
tacks by ensuring indirect control-flow transfers in the kernel
cannot target user space addresses. KCoFI [26] uses the se-
cure virtual architecture (SVA) [27] to enforce CFI on the
system’s kernel. However, their implementation incurs a high
overhead, exceeding 100% in some scenarios. Furthermore,
Ge et al. [29] apply fine-grained CFI to kernel software by
using RPI. The instrumentation causes a high overhead of up
to 50%. While SHARD’s implementation of CFI is similar, it
introduces a modified RPI instrumentation, compatible with
function addresses, which allows near-native non-hardened
execution. Additionally, SHARD enforces strict debloating,
which completely removes many vulnerabilities; thereby, pre-
venting a wide-range of attacks with a low overhead, unlike
CFI-only schemes.

Specialized kernel hardening. To the best of our knowl-
edge, the Split-Kernel [39] technique is the only previous
effort in specialized kernel hardening. Both Split-Kernel and
SHARD implement selective hardening of kernel execution
by providing different kernel views to applications based on
whether they are trusted or not. However, a major difference is
that Split-Kernel fully hardens the kernel view (using coarse-
CFI) of untrusted applications, which incurs a high overhead
(40% on average on a web server). In contrast, SHARD avoids
this overhead by hardening only potentially reachable code
paths while allowing reachable code to execute unrestricted.

13 Conclusion

This paper presents SHARD, a run-time fine-grained kernel
specialization system that combines debloating with context-
aware hardening to prevent kernel attacks. SHARD achieves
an order of magnitude higher attack surface reduction than

USENIX Association

30th USENIX Security Symposium 2449

prior work and implements strict enforcement. Furthermore,
SHARD incurs an overhead of only 3-10% on Redis, 10-36%
on NGINX, and 0-2.7% on the SPEC CPU benchmarks.

Acknowledgement

We thank our shepherd, Vasileios Kemerlis, and the anony-
mous reviewers for their valuable comments and suggestions.
We also thank Mathias Payer for earlier discussion on soft-
ware debloating and hardening. This work was supported in
part by ONR under Grant N00014-17-1-2513. Any opinions,
findings, and conclusions in this paper are those of the authors
and do not necessarily reflect the views of the ONR.

References

[1] ab - apache http server benchmarking tool.
https://httpd.apache.org/docs/2.4/programs/
ab.html/.

[2] Amd64 architecture programmer’s manual vol-
ume 3: General-purpose and system instructions.
https://www.amd.com/system/files/TechDocs/
24594 . pdf.

[3] Cve-2017-10661 detail. https://nvd.nist.gov/
vuln/detail/CVE-2017-10661.

[4] Cve-2017-11176 detail. https://nvd.nist.gov/
vuln/detail/CVE-2017-11176.

[5] Cve-2017-17052 detail. https://nvd.nist.gov/
vuln/detail/CVE-2017-17052.

[6] Cve-2017-17052 detail. https://nvd.nist.gov/
vuln/detail/CVE-2018-10880.

[7]1 Cve-2017-5123.
org/CVE-2017-5123.

[8] Cve-2017-7308 detail. https://nvd.nist.gov/
vuln/detail/CVE-2017-7308.

[9] Cve-2018-17182 detail. https://nvd.nist.gov/
vuln/detail/CVE-2018-17182.

[10] Cve-2018-7480 detail. https://nvd.nist.gov/
vuln/detail/CVE-2018-7480.

[11] Cve-2019-20054 detail. https://nvd.nist.gov/
vuln/detail/CVE-2019-20054.

[12] Jonathansalwan/ropgadget. https://github.com/
JonathanSalwan/ROPgadget.

https://security.archlinux.

[13]

[14]

[15]

(16]

(17]
(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

L1 terminal fault / cve-2018-3615 , cve-2018-3620,cve-
2018-3646 / intel-sa-00161. https://software.
intel.com/security-software-guidance/
software-quidance/ll-terminal-fault.

The linux kernel enters 2020 at 27.8 million
lines in git but with less developers for 2019.
https://www.phoronix.com/scan.php?page=
news_item&px=Linux-Git-Stats-EOY20194#:~:
text=The%20Linux%20Kernel%20Enters%202020,
Less%20Developers$20For%202019%20%2D%
20Phoronix&text=As%200£%20this%20morning%
201in, in%20at%2027.8%20million%201lines!

Linux kernel grows past 15 million lines of
code. https://www.tomshardware.com/news/
Linux-Linus-Torvalds-kernel-too-complex-code,
14495 .html.

Nginx | high performance load balancer, web server,
amp; reverse proxy. view-source:https://www.
nginx.com/.

Redis. redis.io.

Vulnerability details : Cve-2016-0728. https://www.
cvedetails.com/cve/CVE-2016-0728/.

wrk - a http benchmarking tool.
com/wg/wrk.

https://github.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow integrity principles, implementations, and
applications. ACM Transactions on Information and
System Security (TISSEC), 2009.

B. A. Azad, P. Laperdrix, and N. Nikiforakis. Less is
more: Quantifying the security benefits of debloating
web applications. In Proceedings of the 28th USENIX
Security Symposium (Security), 2019.

J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu. Effec-
tive static analysis of concurrency use-after-free bugs in
linux device drivers. In Proceedings of USENIX Annual
Technical Conference (ATC), 2019.

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-
oriented programming: a new class of code-reuse attack.
In Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security, pages
30-40, 2011.

N. Burow, X. Zhang, and M. Payer. Shining light on
shadow stacks. arXiv preprint arXiv:1811.03165, 2018.

N. Burow, X. Zhang, and M. Payer. Sok: Shining light
on shadow stacks. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 985-999, 2019.

2450 30th USENIX Security Symposium

USENIX Association

https://httpd.apache.org/docs/2.4/programs/ab.html/
https://httpd.apache.org/docs/2.4/programs/ab.html/
https://www.amd.com/system/files/TechDocs/24594.pdf
https://www.amd.com/system/files/TechDocs/24594.pdf
https://nvd.nist.gov/vuln/detail/CVE-2017-10661
https://nvd.nist.gov/vuln/detail/CVE-2017-10661
https://nvd.nist.gov/vuln/detail/CVE-2017-11176
https://nvd.nist.gov/vuln/detail/CVE-2017-11176
https://nvd.nist.gov/vuln/detail/CVE-2017-17052
https://nvd.nist.gov/vuln/detail/CVE-2017-17052
https://nvd.nist.gov/vuln/detail/CVE-2018-10880
https://nvd.nist.gov/vuln/detail/CVE-2018-10880
https://security.archlinux.org/CVE-2017-5123
https://security.archlinux.org/CVE-2017-5123
https://nvd.nist.gov/vuln/detail/CVE-2017-7308
https://nvd.nist.gov/vuln/detail/CVE-2017-7308
https://nvd.nist.gov/vuln/detail/CVE-2018-17182
https://nvd.nist.gov/vuln/detail/CVE-2018-17182
https://nvd.nist.gov/vuln/detail/CVE-2018-7480
https://nvd.nist.gov/vuln/detail/CVE-2018-7480
https://nvd.nist.gov/vuln/detail/CVE-2019-20054
https://nvd.nist.gov/vuln/detail/CVE-2019-20054
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.tomshardware.com/news/Linux-Linus-Torvalds-kernel-too-complex-code,14495.html
https://www.tomshardware.com/news/Linux-Linus-Torvalds-kernel-too-complex-code,14495.html
https://www.tomshardware.com/news/Linux-Linus-Torvalds-kernel-too-complex-code,14495.html
view-source:https://www.nginx.com/
view-source:https://www.nginx.com/
redis.io
https://www.cvedetails.com/cve/CVE-2016-0728/
https://www.cvedetails.com/cve/CVE-2016-0728/
https://github.com/wg/wrk
https://github.com/wg/wrk

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J. Criswell, N. Dautenhahn, and V. Adve. Kcofi: Com-
plete control-flow integrity for commodity operating
system kernels. In Proceedings of IEEE Symposium on
Security and Privacy (S&P), 2014.

J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Se-
cure virtual architecture: A safe execution environment
for commodity operating systems. In Proceedings of the
21st ACM Symposium on Operating Systems Principles
(SOSP), 2007.

T. H. Dang, P. Maniatis, and D. Wagner. The perfor-
mance cost of shadow stacks and stack canaries. In
Proceedings of the 10th ACM Symposium on Informa-
tion, Computer and Communications Security, pages

555-566, 2015.

X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained
control-flow integrity for kernel software. In Proceed-
ings of the IEEE European Symposium on Security and
Privacy (EuroS&P), 2016.

Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu. FACE-
CHANGE: application-driven dynamic kernel view
switching in a virtual machine. In Proceedings of the
44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, (DSN), 2014.

K. Heo, W. Lee, P. Pashakhanloo, and M. Naik. Effec-
tive program debloating via reinforcement learning. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2018.

Intel Corporation. Intel® 64 and IA-32 Architectures
Optimization Reference Manual. December 2016.

K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer.
Block oriented programming: Automating data-only at-
tacks. In Proceedings of the 2018 ACM Conference on
Computer and Communications Security (CCS), 2018.

V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis.
kguard: lightweight kernel protection against return-to-
user attacks. In Proceedings of the 21st USENIX Secu-
rity Symposium (Security), 2012.

A. Konovalov. Blogger.
googleprojectzero.blogspot.com/.

https://

H. Kuo, A. Gunasekaran, Y. Jang, S. Mohan, R. B.
Bobba, D. Lie, and J. Walker. Multik: A framework
for orchestrating multiple specialized kernels. CoRR,
abs/1903.06889, 2019.

H.-C. Kuo, J. Chen, S. Mohan, and T. Xu. Set the con-
figuration for the heart of the os: On the practicality
of operating system kernel debloating. Proceedings of
the ACM on Measurement and Analysis of Computing
Systems, 2020.

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth,
V. Rothberg, A. Ruprecht, W. Schroder-Preikschat,
D. Lohmann, and R. Kapitza. Attack surface metrics
and automated compile-time OS kernel tailoring. In Pro-
ceedings of the 20th Annual Network and Distributed
System Security Symposium (NDSS), 2013.

A. Kurmus and R. Zippel. A tale of two kernels: To-
wards ending kernel hardening wars with split kernel.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2014.

P. Larson. Testing linux® with the linux test project. In
Ottawa Linux Symposium, page 265, 2002.

C. Lattner and V. Adve. Llvm: A compilation frame-
work for lifelong program analysis & transformation.
In International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pages 75-86. IEEE,
2004.

K. Lu, A. Pakki, and Q. Wu. Detecting missing-check
bugs via semantic-and context-aware criticalness and
constraints inferences. In Proceedings of the 28th
USENIX Security Symposium (Security), 2019.

A. Lyashko. Hijack linux system calls: Part iii. system
call table. Blog] System Programming, Available at:.

A. Machiry, C. Spensky, J. Corina, N. Stephens,
C. Kruegel, and G. Vigna. DRCHECKER: A soundy
analysis for linux kernel drivers. In Proceedings of the
26th USENIX Security Symposium (Security), 2017.

D. Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux journal,
2014.

C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and
W. Lee. RAZOR: A framework for post-deployment
software debloating. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 1733-1750, Santa
Clara, CA, Aug. 2019. USENIX Association.

A. Quach, A. Prakash, and L. Yan. Debloating software
through piece-wise compilation and loading. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 869-886, 2018.

D. Rosenberg. Anatomy of a remote kernel exploit,
2011.

H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM conference on
Computer and communications security, pages 552-561,
2007.

USENIX Association

30th USENIX Security Symposium 2451

https://googleprojectzero.blogspot.com/
https://googleprojectzero.blogspot.com/

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar. Trim-
mer: application specialization for code debloating. In
Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, pages 329—
339, 2018.

L. Szekeres, M. Payer, L. T. Wei, and R. Sekar. Eternal
war in memory. In Proceedings of the IEEE Symposium
on Security & Privacy (S&P), 2014.

R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces:
Making trust between applications and operating sys-
tems configurable. In Proceedings of the 7th sympo-
sium on Operating Systems Design and Implementation

(0SDI), 2006.

R. Tartler, A. Kurmus, B. Heinloth, V. Rothberg,
A. Ruprecht, D. Dorneanu, R. Kapitza, W. Schroder-
Preikschat, and D. Lohmann. Automatic OS kernel
TCB reduction by leveraging compile-time configurabil-
ity. In Proceedings of the 8th Workshop on Hot Topics
in System Dependability, (HotDep), 2012.

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
U. Erlingsson, L. Lozano, and G. Pike. Enforcing
forward-edge control-flow integrity in GCC & LLVM.
In 23rd USENIX Security Symposium (USENIX Security
14), pages 941-955, 2014.

W. Wang, K. Lu, and P.-C. Yew. Check it again: Detect-
ing lacking-recheck bugs in os kernels. In Proceedings
of the ACM Conference on Computer and Communica-
tions Security (CCS), 2018.

Z. Wang and X. Jiang. Hypersafe: A lightweight ap-
proach to provide lifetime hypervisor control-flow in-
tegrity. In Proceedings of the IEEE Symposium on Se-
curity and Privacy (S&P), 2010.

Z. Wang, C. Wu, M. Xie, Y. Zhang, K. Lu, X. Zhang,
Y. Lai, Y. Kang, and M. Yang. Seimi: Efficient and
secure smap-enabled intra-process memory isolation. In

(58]

[59]

[60]

[61]

[62]

[63]

[64]

2020 IEEE Symposium on Security and Privacy (SP),
pages 592-607, 2020.

W. Wu, Y. Chen, X. Xing, and W. Zou. KEPLER: Fa-
cilitating control-flow hijacking primitive evaluation for
linux kernel vulnerabilities. In Proceedings of the 28th
USENIX Security Symposium (Security), 2019.

W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou.
FUZE: Towards facilitating exploit generation for ker-
nel use-after-free vulnerabilities. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), pages 781-797,
2018.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
client: A sandbox for portable, untrusted x86 native code.
In Proceedings of the 30th IEEE Symposium on Security
and Privacy (S&P), 2009.

T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, and
R. Wang. Pex: A permission check analysis framework
for linux kernel. In Proceedings of the 28th USENIX
Security Symposium (Security), 2019.

Z. Zhang, Y. Cheng, S. Nepal, D. Liu, Q. Shen, and
F. A. Rabhi. KASR: A reliable and practical approach
to attack surface reduction of commodity OS kernels.
In Proceedings of the 21st International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID),
2018.

Z. Zhou, M. K. Reiter, and Y. Zhang. A software ap-
proach to defeating side channels in last-level caches. In
Proceedings of the 23rd ACM Conference on Computer
and Communications Security (CCS), 2016.

P. Zieris and J. Horsch. A leak-resilient dual stack
scheme for backward-edge control-flow integrity. In
Proceedings of the 2018 on Asia Conference on Com-
puter and Communications Security, pages 369-380,
2018.

2452 30th USENIX Security Symposium

USENIX Association

	Introduction
	Background on Kernel Specialization
	Limitations of Existing Approaches

	Fine-grained System Call Specialization
	Context-aware Hardening
	System Model
	Threat Model
	Design of Shard
	Overview
	Offline Analysis
	Offline Kernel Instrumentation
	Run-time Monitor

	Implementation
	Security Evaluation
	Attack Surface Reduction
	ROP and JOP Gadget Analysis
	Attack Evaluation and Analysis

	Evaluation
	Experimental Setup
	Micro-benchmarks
	Real World Applications
	Impact of Profiling Accuracy

	Limitations and Discussion
	Related Work
	Conclusion

