
This paper is included in the Proceedings of the 
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the 
30th USENIX Security Symposium 

is sponsored by USENIX.

Poseidon: A New Hash Function for 
Zero-Knowledge Proof Systems

Lorenzo Grassi, Radboud University Nijmegen; Dmitry Khovratovich, 
Ethereum Foundation and Dusk Network; Christian Rechberger, IAIK, 

Graz University of Technology; Arnab Roy, University of Klagenfurt; 
Markus Schofnegger, IAIK, Graz University of Technology

https://www.usenix.org/conference/usenixsecurity21/presentation/grassi



POSEIDON: A New Hash Function for Zero-Knowledge Proof Systems

Lorenzo Grassi1, Dmitry Khovratovich2, Christian Rechberger3, Arnab Roy4, and Markus Schofnegger3

1Radboud University Nijmegen
2Ethereum Foundation and Dusk Network

3IAIK, Graz University of Technology
4University of Klagenfurt

l.grassi@cs.ru.nl, khovratovich@gmail.com, firstname.lastname@iaik.tugraz.at, arnab.roy@aau.at

Abstract
The area of practical computational integrity proof systems,
like SNARKs, STARKs, Bulletproofs, is seeing a very dy-
namic development with several constructions having ap-
peared recently with improved properties and relaxed setup
requirements. Many use cases of such systems involve, of-
ten as their most expensive part, proving the knowledge of a
preimage under a certain cryptographic hash function, which
is expressed as a circuit over a large prime field. A notable
example is a zero-knowledge proof of coin ownership in the
Zcash cryptocurrency, where the inadequacy of the SHA-256
hash function for such a circuit caused a huge computational
penalty.

In this paper, we present a modular framework and concrete
instances of cryptographic hash functions which work natively
with GF(p) objects. Our hash function POSEIDON uses up to
8x fewer constraints per message bit than Pedersen Hash.

Our construction is not only expressed compactly as a cir-
cuit, but can also be tailored for various proof systems using
specially crafted polynomials, thus bringing another boost in
performance. We demonstrate this by implementing a 1-out-
of-a-billion membership proof with Merkle trees in less than
a second by using Bulletproofs.

Contents

1 Introduction 1

2 The POSEIDON Hash Function 4
2.1 Sponge Construction for POSEIDONπ . . . . 4
2.2 The HADES Design Strategy for Hashing . . 5
2.3 The Permutation Family POSEIDONπ . . . . . 5

3 Applications 7

4 Concrete Instantiations of POSEIDONπ 7
4.1 Main Instances . . . . . . . . . . . . . . . . 7
4.2 Domain Separation for POSEIDON . . . . . . 8

5 Cryptanalysis Summary of POSEIDON 8
5.1 Definitions . . . . . . . . . . . . . . . . . . . 8
5.2 Security Claims . . . . . . . . . . . . . . . . 8
5.3 Summary of Attacks . . . . . . . . . . . . . 9
5.4 Security Margin . . . . . . . . . . . . . . . . 9
5.5 Attack details . . . . . . . . . . . . . . . . . 9

5.5.1 Statistical Attacks . . . . . . . . . . 9
5.5.2 Algebraic Attacks . . . . . . . . . . . 10

6 POSEIDON in Zero-Knowledge Proof Systems 11
6.1 State of the Art . . . . . . . . . . . . . . . . 11
6.2 SNARKs with POSEIDONπ . . . . . . . . . . 12

6.2.1 Groth16 . . . . . . . . . . . . . . . . 12
6.2.2 Bulletproofs . . . . . . . . . . . . . 13
6.2.3 PLONK . . . . . . . . . . . . . . . . 13
6.2.4 RedShift . . . . . . . . . . . . . . . 14

6.3 Comparison with Other Hash Algorithms . . 14
6.4 STARKs with POSEIDONπ . . . . . . . . . . 14

7 Acknowledgements 15

1 Introduction

The recent advances in computational integrity proof systems
made a number of computational tasks verifiable in short time
and/or in zero knowledge. Several protocols appeared that
require one party to prove the knowledge of a seed-derived
secret, of an element being part of a large set, or their combina-
tion. Whereas accumulator-based solutions [20, 21] and alge-
braic Schnorr proofs exist in the area, they are quite involving
and thus error-prone, require a trusted setup, are limited in
statement language, and are often slow. An alternative is to
express secret derivation using cryptographic hash functions,
and to prove set membership by presenting an opening in a
properly chosen Merkle tree, also built on a cryptographic
hash function. Such hash-based protocols require a compu-
tational integrity proof system, which can be applied to an
arbitrary arithmetic circuit. However, for the protocol to be

USENIX Association 30th USENIX Security Symposium    519

mailto:l.grassi@cs.ru.nl
mailto:khovratovich@gmail.com
mailto:firstname.lastname@iaik.tugraz.at
mailto:arnab.roy@aau.at


efficient, proofs must be generated and verified in reasonable
time, which in turn requires the hash function to be cheap in
a certain metric depending on the proof system.

In the middle of 2020, the most popular proof systems are ZK-
SNARKs (Pinocchio [49], Groth16 [35], PLONK [27], Mar-
lin [23] to name a few), Bulletproofs [19], ZK-STARKs [9],
and MPC-in-the-head systems [7, 22, 29]. The former two
groups have already been applied to a number of real-world
protocols, whereas the latter ones are the most promising from
the perspective of post-quantum security. These systems use
two quite different circuit descriptions so that the proof size
and generation time are computed differently:

• The R1CS format (rank-1 quadratic constraints) de-
scribes the circuit as a set of special quadratic polyno-
mials of the form L1(X) · L2(X) = L3(X), where X is
the tuple of internal and input variables, Li are affine
forms and · is the field multiplication, and (possibly in
an affine-equivalent form) is used in almost all SNARKs
and Bulletproofs. The circuit multiplication and addi-
tion gates are defined over a prime field GF(p). The
proof generation complexity is directly proportional to
the number T of constraints, which often corresponds
to the number of multiplication gates. The prime field
GF(p) is the scalar field of an elliptic curve, where for
ZK-SNARKs the curve should be pairing-friendly and
for Bulletproofs it should just be a secure curve.

• The AET metric is used in ZK-STARKs and (to some
extent) in the PLONK proof system. The computation
is expressed as a set of internal program states related
to each other by polynomial equations of degree d. The
state consists of w field elements and undergoes T trans-
formations. The proof generation is roughly proportional
to the product w ·d ·T . The number and sparsity of poly-
nomial constraints do not play a major role.

Our goal was to design a family of hash functions that are
optimal in the R1CS (as the most widespread) and good in
the AET metric, while also supporting different finite field
sizes. It turned out that the substitution-permutation network
(SPN) design, well-known in symmetric cryptography, al-
lows for a generic hash function framework where the only
security-critical parameter that has to be changed for each
instance is the number of rounds, and we provide an efficient
and transparent strategy for its choice. The S-box is chosen
as the power map x 7→ xd , where d ≥ 3 is usually chosen as
the smallest integer that guarantees invertibility and provides
non-linearity. In particular, the cube function x3 is almost uni-
versally chosen, apart from cases of fields where this function
is not a bijection. Instead, we suggest other S-boxes such as
x5 or 1/x for these cases. Thanks to a succinct representation
of the functions and a low S-box degree, we are able to opti-
mize the circuit significantly for PLONK and RedShift proof
systems, with performance improvements by a factor of up to

40.

Our Contributions. We design and analyze a family of
hash functions over GF(p) named POSEIDON. The internal
permutation is called POSEIDONπ and is based on the HADES
design strategy [31], which is essentially a strategy based on
substitution-permutation networks with t cells, but including
the use of so-called partial rounds, which use non-linear func-
tions only for part of the state. In our specific construction,
only one S-box is used in these partial rounds, while full non-
linear layers (i.e., t S-boxes) are used in all other rounds. This
is done to reduce the R1CS or AET cost.

We aim to support security levels of 80, 128, and 256 bits,
where the security is the same for collision and preimage re-
sistance. For each pair (basic field, security level) we suggest
a concrete instance of POSEIDON. In our hash function, a few
S-box elements are reserved for the capacity (roughly double
the security level in bits), and the rest for the rate. The permu-
tation width is determined by the application: It is set close to
1280 bits for long-message hashing, whereas for Merkle trees
we support various widths to enable 2:1, 4:1, and other arities
and thus higher ZK performance.

We provide an extensive cryptanalysis of POSEIDON with an
accent on algebraic methods as these prove to be the most
effective. We explore different variants of interpolation, Gröb-
ner basis, and higher-order differential attacks. As our per-
mutations are quite wide, we do not aim for them behaving
like randomly chosen permutations. Instead, for a security
level of M bits we require that no attack could exhibit a non-
random (but relevant for collision/preimage search) property
of a permutation faster than in 2M queries. We then calculate
the maximum number of rounds for each field, security level,
and fixed permutation width that can be attacked. Then we
select the number of rounds for concrete instances together
with a security margin.

We have evaluated the number of constraints in POSEIDON
instances for the R1CS metric and the AET metric. Our pri-
mary proposals POSEIDON-80/128/256 are listed in Table 1
(BLS being BLS12-3811, BN being BN254 [52], Ed being
the Ristretto group2) and are compared to similar-purpose
designs. Finally, we refer to [30, Appendix A] for a complete
overview of our auxiliary files, including reference implemen-
tations and scripts to create POSEIDONπ instances.

We also have third-party benchmarks of POSEIDON for reg-
ular hashing3 (Table 1) and in ZK proof systems: PLONK
(Table 6), Groth16 (Table 3), and Bulletproofs (Table 5).

1https://electriccoin.co/blog/new-snark-curve/
2https://ristretto.group
3https://github.com/shamatar/poseidon_hash and https:

//github.com/shamatar/rescue_hash

520    30th USENIX Security Symposium USENIX Association

https://electriccoin.co/blog/new-snark-curve/
https://ristretto.group
https://github.com/shamatar/poseidon_hash
 https://github.com/shamatar/rescue_hash
 https://github.com/shamatar/rescue_hash


Table 1: Our primary proposals and their competitors. “Tree” refers to the Merkle tree arity and is equal to the rate/capacity ratio.
“Curve” denotes the curve (BLS12-381, BN254, Ed25519) whose (subgroup) scalar field determines the prime size. The R1CS/bit
costs are obtained by dividing the R1CS prover costs by the message rate. Timings are from a third-party implementation of
Rescue and POSEIDON on an i9-8950 CPU @2.9 Ghz and 32 GB RAM.

Name S-box Rate SB size Tree RF RP Curve R1CS R1CS Time
bits/perm. (log2 p) arity Scalar field /perm. /bit /perm.

POSEIDON-80 x5 510 255 2:1 8 33 BLS/BN/Ed 171 0.34 0.021 ms
x5 1020 255 4:1 8 35 225 0.22 0.05 ms

x5 510 255 2:1 8 57 243 0.47 0.033 ms
POSEIDON-128 x5 1020 255 4:1 8 60 BLS/BN/Ed 300 0.29 0.08 ms

x5 2040 255 8:1 8 63 405 0.2 0.259 ms

POSEIDON-256 x5 1020 255 2:1 8 120 BLS/BN/Ed 504 0.5 0.216 ms
x5 2040 255 4:1 8 120 600 0.3 0.578 ms

Pedersen Hash - 516 - 2:1 - BLS12-381 869 1.68

510 255 2:1 16 268 0.52 0.525 ms
Rescue x5 & x1/5 1020 255 4:1 10 BLS/BN/Ed 300 0.29 0.555 ms

2040 255 8:1 10 450 0.22 1.03 ms

Comparison to HADES ( [31]). Since the design of PO-
SEIDON follows the same strategy as block ciphers in [31],
we provide an explicit list of new material crafted for this
paper:

• Hash-function specific (CICO, keyless, preimage) al-
gebraic attacks, their analysis, and fixes against recent
hash-only attacks

• Orientation towards various zero-knowledge proof sys-
tems and suggestions how to increase prover perfor-
mance in these systems

• Instances for Merkle trees and variable-length hashing

• Concrete benchmarks for zero-knowledge proofs of ac-
cumulated values in Merkle trees, and a demonstration
that it can be done in 1 second for billion-size trees

Related Work. The Zcash designers introduced a new 256-
bit hash function called Pedersen hash [38, p.134], which
is effectively a vectorized Pedersen commitment in elliptic
curve groups with short vector elements. For the claimed
128-bit security level, it utilizes 869 constraints per 516-bit
message chunk, thus having 1.7 constraints per bit, whereas
our POSEIDON instances use from 0.2 to 0.45 constraints per
bit, depending on the underlying prime field.

For the binary field case, Ashur and Dhooghe [8] have recently
introduced the STARK-friendly block cipher JARVIS and its
derivative hash function FRIDAY with several instances and
security levels. They use a key-alternating structure with a sin-
gle inverse S-box, followed by an affine transformation (with
low degree in the extension field). However, both JARVIS and

FRIDAY were successfully attacked shortly after their publica-
tion [3]. In the response, the authors created a new family of
SNARK/STARK-friendly hash functions with Vision (binary
fields) and Rescue (prime fields) being main instances [6].
The latter two share some similarity with our design with two
important differences: First, all S-box layers are full (there are
no partial rounds). Moreover, every second layer has S-boxes
of the form x1/d for small d. This approach prevents some
algebraic attacks but is also more expensive in software as
the resulting power functions have high Hamming weight and
thus require many squarings.

Structure of the Paper. We introduce POSEIDON as a
HADES-based hash in Section 2 and follow up with real-
world applications in Section 3. Concrete instances with round
numbers and domain constants are given in Section 4. We
summarize the cryptanalysis results in Section 5 and refer
to [30, Appendix] for all the details. Finally, we estimate the
performance of POSEIDON instances in zero-knowledge proof
systems in Section 6 by computing R1CS (SNARK) and AET
(STARK) costs.

Historic Remarks. We started working on the design of
POSEIDON in the fall of 2018. The work was triggered by the
STARK paper [9] where a Rijndael-based hash function was
proposed for zero-knowledge applications, but we identified
that the underlying cipher is not suitable for the hash mode
due to related-key trails. In the design of POSEIDON, we
were inspired by the LowMC cipher [5] with a partial S-box
layer, the block cipher SHARK with its inverse S-box and its
MDS matrix as the linear layer [50], and by MiMC with its

USENIX Association 30th USENIX Security Symposium    521



algebraically simple approach of using the cube S-box [4,33].
We immediately considered a partial S-box layer for most of
the rounds in order to gain performance and safe constraints.
The S-box was initially either the inverse or a power map
(as the cube function), but we later found out that the inverse
function does not provide a sufficiently fast degree growth.

In 2019, we separated the design into two parts due to
diverging analysis and use cases, namely the block ci-
pher HADESMiMC and the hash functions POSEIDON and
STARKAD. The latter was designed for binary fields, as we
thought that they are useful for STARKs. However, it turned
out that they are neither especially useful in this setting nor
equally secure [14, 42], which is why we eventually dropped
STARKAD.4

After the first publications of the design, we got requests from
third parties to add explicit Merkle tree support and encryp-
tion (to be verifiable in zero knowledge). Later we were also
asked to add weaker and stronger versions. Initially we al-
lowed for greater flexibility in the choice of S-boxes, curves,
width, etc., but only a few parameter sets are now given in the
main body of this paper for the matter of user convenience: It
turned out that too many possible parameters confuse users.
Regarding zero-knowledge proof systems, we initially tar-
geted Groth16 [35], Bulletproofs [19] and STARKs [9], and
we later also added PLONK [27] due to its increased popular-
ity.

2 The POSEIDON Hash Function

In the following, we propose the hash function POSEIDON,
which maps strings over Fp (for a prime p ≈ 2n) to fixed-
length strings over Fp, i.e., POSEIDON : F∗p → Fo

p, where
o is the output length measured in Fp elements (usually,
o = 1). It is constructed by instantiating a sponge function
with the POSEIDONπ permutation. POSEIDONπ is a variant
of HADESMiMC proposed in [31], albeit instantiated with a
fixed and known key.

We sometimes use the notation p ≈ 2n and N = n · t ≈
log2(p) · t to denote the approximate size of the texts in bits.

2.1 Sponge Construction for POSEIDONπ

Sponges. A sponge construction [12] builds upon an inter-
nal permutation and can be used to achieve various goals such
as encryption, authentication, or hashing. In addition to the
internal permutation, it is usually defined by two parameters,
namely the rate (or arity in the context of tree hashing) r and
the capacity (or inner part) c. The rate determines the through-
put, whereas the capacity is crucial for the security level. This

4For reference, we recall STARKAD in [30, Appendix J].

I

m1

P

m2

P

m3

P

m4

P

h1

P

h2

Figure 1: A sponge hash function.

means that, when fixing the size of the internal permutation
to N bits, a tradeoff between throughput and security has to
be made.

An example for a sponge hash function is proposed in Fig. 1,
where the construction is used to compute the hash output
h1 || h2 of the 4-block message m1 || m2 || m3 || m4, where mi
and hi are r-bit values. The initial state I contains all zeros,
i.e., I = 0r || 0c for an r-bit rate and a c-bit capacity.

Sponge Security. Depending on the properties of the N-bit
internal permutation, a sponge construction allows to make
strong arguments about the security of the overall design.
Specifically, if this permutation is modeled as a randomly
chosen permutation, the sponge function is indifferentiable
from a random oracle for up to 2c/2 calls (|F|c/2 calls if the
capacity is counted in field elements) [12]. A sponge hash
function with a capacity of c bits can therefore provide 2c/2

bits of collision and 2c/2 bits of (second) preimage resistance.5

In this proposal, we instantiate the sponge function with our
new permutation POSEIDONπ. Given the size N of the permu-
tation and a desired security level s, we can hash r = N−2s
bits per call to the permutation. Following this design strat-
egy, we choose the number of rounds of the inner permutation
POSEIDONπ in order to ensure that such a permutation does
not exhibit non-generic properties up to 2M queries, where M
is the desired security level.6 For this we set the capacity to
2M and denote by POSEIDON-M a hash function that provides
M bits of security against collision and preimage attacks.

Our POSEIDONπ Sponges. We provide several POSEIDON
instances for different use cases, but they all use the sponge
construction in the same way as illustrated in Fig. 1:

1. Depending on the use case (Section 3), determine the
capacity element value and the input padding if needed.

2. Split the input into chunks of size r.

5We present the Sponge construction over a binary field in order to follow
the presentation made in [12]. It can easily be generalized for a prime field
Ft

p by replacing each (N/t)-bit word by a (dlog2(p)e)-bit one.
6In other words, the permutation cannot be distinguished from a randomly

drawn permutation.

522    30th USENIX Security Symposium USENIX Association



3. Apply the permutation POSEIDONπ to the capacity ele-
ment and the first chunk.

4. Until no more chunks are left, add them into the state
and apply the permutation.

5. Output o output elements out of the rate part of the state.
If needed, iterate the permutation more times.

2.2 The HADES Design Strategy for Hashing

Cryptographic permutations usually consist of an efficient
round function which is applied sufficiently many times in
order to make the permutation behave like a randomly drawn
one. In general, the same round function is used throughout
the permutation, in order to destroy all of its possible symme-
tries and structural properties.

In HADES we consider different round functions within the
same construction. More precisely, we mix rounds with full
S-box layers and rounds with partial S-box layers. The mo-
tivation to have different types of rounds is that full S-box
layers are expensive in software and ZK proof systems but are
a good protection against statistical attacks, whereas partial
layers are relatively cheap but are, in some cases, similarly
good as full ones against algebraic attacks.

Details on the HADES Strategy. The HADES design strat-
egy consists of R f rounds in the beginning, in which S-boxes
are applied to the full state. After these rounds, RP rounds in
the middle contain only a single S-box in each round, and the
rest of the state goes through the non-linear layer unchanged
(i.e., identity functions are used instead of the missing S-
boxes). Finally, R f rounds at the end are applied by again
using S-boxes for the full state.

The idea of this approach is to provide arguments for the
security against statistical attacks using the RF = 2R f rounds
with full S-box layers in the beginning and in the end together
with the wide trail strategy [25], which is also used in, e.g.,
the AES [26]. On the other hand, the RP rounds with partial
S-box layers are a more efficient way to increase the degree
of the overall function, and are mainly used for arguments
against algebraic attacks.

A detailed overview of this approach is shown in Fig. 2.

The Round Function. Each round function of our POSEI-
DON permutation consists of the following three components.

1. AddRoundConstants, denoted by ARC(·)

2. SubWords, denoted by S-box(·) or by SB(·)

3. MixLayer, denoted by M(·)

ARC(·)

S S S S S S . . . S

M(·)

...

ARC(·)

. . . S

M(·)

...

ARC(·)

S S S S S S . . . S

M(·)

R f rounds

RP rounds

R f rounds

R f rounds

RP rounds

R f rounds

Figure 2: Construction of the HADES-based POSEIDONπ per-
mutation.

The MixLayer operation is the linear layer of our construction,
and it consists in multiplying the state with a t×t MDS matrix
in order to apply the wide trail strategy.

In total we get:

ARC→ SB→M︸ ︷︷ ︸
First round

→ ·· · → ARC→ SB→M︸ ︷︷ ︸
(R−1)-th round

→ ARC→ SB→M︸ ︷︷ ︸
R-th round

While ARC(·) and M(·) are the same in each round, the
number of S-boxes is not the same, namely

• R f +R f = RF rounds have full S-box layers, i.e., t S-box
functions, and

• RP rounds have partial S-box layers, i.e., 1 S-box and
(t−1) identity functions.

We refer to [31] for more details about the HADES design
strategy.

Interaction Between Full and Partial Rounds. Note that
the same number of full rounds can be used instead of the
partial rounds without decreasing the security, but this leads to
substantially higher costs in our target applications. However,
replacing t partial rounds with one full round may keep the
costs in our target applications similar, but the security may
be severely decreased due to a significantly lower degree of 1
full round compared to t partial rounds.

2.3 The Permutation Family POSEIDONπ

The HADES design strategy provides a good starting point for
our new hash function. Indeed, the combination of full and
partial rounds allows us to make strong arguments about the
security, while also exploiting the smaller number of S-boxes

USENIX Association 30th USENIX Security Symposium    523



in the partial rounds in order to gain efficiency in the target
applications.

The primary application of our design is hashing in large
prime fields, hence POSEIDONπ takes inputs of t ≥ 2 words
in Fp, where p is a prime of size p≈ 2n (i.e., dlog2(p)e= n).
We will now describe the components of each POSEIDONπ

round in detail.

The S-Box Layer. For the applications we have in mind,
we focus on two S-boxes.

• First, we consider the α-power S-box, defined by
S-box(x) = xα, where α is the smallest positive integer
s.t. gcd(α, p−1) = 1. In the following, these permuta-
tions are called “xα-POSEIDONπ”. Examples are given
by α = 3 (x3-POSEIDONπ) if p 6= 1 mod 3 or α = 5
(x5-POSEIDONπ) if p 6= 1 mod 5.

• Secondly, we consider the inverse S-box(x)= x−1 (under
the assumption S-box(0) = 0). In the following, these
permutations are called “x−1-POSEIDONπ”.

It turns out that the S-box x5 is suitable for two of the most
popular prime fields in ZK applications, concretely the prime
subfields of the scalar field of the BLS12-381 and BN254
curves, so we mainly consider this S-box, but try to present
generic cryptanalytic results for other cases whenever possi-
ble.

The Linear Layer. A t× t MDS matrix7 with elements in
Fp exists if the condition (see [45] for details)

2t +1≤ p

is satisfied.

Given p and t, there are several ways to construct an MDS
matrix. One of them is using a Cauchy matrix [53], which we
recall here briefly. For xi,yi ∈ Fp, where i ∈ [1, t], the entries
of the matrix M are defined by

Mi, j =
1

xi + y j
,

where the entries of {xi}1≤i≤t and {yi}1≤i≤t are pairwise dis-
tinct and xi + y j 6= 0, where i ∈ {1, . . . , t} and j ∈ {1, . . . , t}.

Avoiding Insecure Matrices. We emphasize that not every
MDS matrix provides the same level of security. In particular,
the matrix M must prevent the possibility to set up

7A matrix M ∈ Ft×t is called maximum distance separable (MDS) iff
it has a branch number B(M) equal to B(M) = t + 1. The branch number
of M is defined as B(M) = minx∈Ft {wt(x)+wt(M(x))}, where wt is the
Hamming weight in wide trail terminology. Equivalently, a matrix M is MDS
iff every submatrix of M is non-singular.

(1) invariant (or iterative) subspace trails [32] (or equiva-
lently, truncated differentials) with prob. 1 with inactive
S-boxes over more than t−1 rounds8 (more details are
given in the following), or

(2) invariant (or iterative) subspace trails with prob. 1 and
with active S-boxes for any number of rounds.

Regarding the first point, let S i be the subspace s.t. no S-box
is active in the first i consecutive rounds, that is,

S (i) :=
{

v ∈ Ft ∣∣ [M j · v]0 = 0 ∈ F, j < i
}
, (1)

where [x]0 denotes the first word of x ∈ Ft , S (0) = Ft , and
dim

(
S (i)
)
≥ t− i. For each pair of texts (x,y) in the same

coset of S i, no S-boxes are active in the first i consecutive
rounds. Hence, a truncated differential with prob. 1 (or equiv-
alently, a subspace trail) can be set up for the first i ≤ t−1
rounds. The matrix M must be chosen s.t. no subspace trail
with inactive/active S-boxes can be set up for more than t−1
rounds.

A detailed analysis of matrix properties related to this attack
vector can be found in [34]. With these results in mind, we
suggest the following method to generate matrices:

1. Randomly select pairwise distinct {xi}1≤i≤t and
{yi}1≤i≤t , where xi + y j 6= 0 and where i ∈ {1, . . . , t}
and j ∈ {1, . . . , t}.

2. Determine if the matrix is secure using Algorithm 1,
Algorithm 2, and Algorithm 3 provided9 in [34]. For a
secure matrix, no infinitely long (invariant and/or itera-
tive) subspace trail (with or without active S-boxes) can
be set up for all rounds with partial S-box layers.

3. Repeat this procedure until a secure matrix is found.

We used this method to generate the matrices for the instan-
tiations given in Section 4. For [34, Algorithm 3], we used
a search period of l = 4t, and we additionally made sure
that no invariant subspace trails with active S-boxes exist
for M,M2, . . . ,Ml . In our experiments, we observed that only
a few trials are needed in order to find a secure matrix for
sufficiently large fields.

To summarize, this approach allows us to make sure that our
MDS matrices do not exhibit the vulnerabilities discussed
in [34], and our instantiations are thus secure against this
specific type of attack.

Efficient Implementation. We refer to [30, Appendix B]
for details about efficient POSEIDONπ implementations. The

8This fixes a weakness in the previous version of POSEIDON, where
specific choices of M over (Fp)

t could have resulted in vulnerable instances.
We refer to [14, 42] for more details.

9https://extgit.iaik.tugraz.at/krypto/linear-layer-tool

524    30th USENIX Security Symposium USENIX Association

https://extgit.iaik.tugraz.at/krypto/linear-layer-tool


main advantage of these strategies consists of reducing the
number of constant multiplications in each round with a par-
tial S-box layer from t2 to 2t, which is particularly useful for
large t and RP. For example, we implemented x3-POSEIDONπ

with (n, t,RF ,RP) = (64,24,8,42) in Sage, and we could ob-
serve that the performance improves by a factor of about 5,
with the average computation time being 4 ms for the opti-
mized version.

3 Applications

We suggest POSEIDON for all applications of zero-knowledge-
friendly hashing, concretely:

• Using POSEIDON for commitments in various proto-
cols, where the knowledge of the committed value is
proven in zero knowledge: For this we suggest a single-
call permutation-based hashing with POSEIDON-128 and
widths from 2 to 5 field elements. The advantage over
the Pedersen hash, for example, is that POSEIDON is
faster and can also be used in signature schemes which
allows for a smaller code footprint.

• Hashing multi-element objects with certain fields en-
coded as field elements, so that statements about these
fields are proven in zero knowledge: We suggest variable-
length sponge-based hashing with POSEIDON-128 or
POSEIDON-80 with width 5 (and rate 4).

• Using POSEIDON in Merkle trees to enable zero-
knowledge proofs of knowledge of a leaf in the tree
with optional statements about the leaf content: We rec-
ommend Merkle trees of arity 4 (i.e., width 5) with PO-
SEIDON-128 as the most performant, but trees of more
conventional arities can be used as well.

• Verifiable encryption with POSEIDON within Integrated
Encryption Scheme [28]: Put POSEIDON inside the Du-
plexSponge authenticated encryption framework [13]
and initialize it with a session key based on the recipi-
ent’s public key. Then one can prove that the recipient
can decrypt the ciphertext into a plaintext with certain
properties.

There exist several third-party protocols that already use PO-
SEIDON in these use cases:

• Filecoin employs POSEIDON for Merkle tree proofs with
different arities and for two-value commitments.10

• Dusk Network uses POSEIDON to build a Zcash-like
protocol for securities trading.11 It also uses POSEIDON
for encryption as described above.

10https://github.com/filecoin-project/neptune
11https://github.com/dusk-network/Poseidon252

• Sovrin uses POSEIDON for Merkle-tree based revoca-
tion [2].

• Loopring uses POSEIDON for private trading on
Ethereum.12

4 Concrete Instantiations of POSEIDONπ

As of mid-2020, many protocols that employ zero-knowledge
proofs use (or plan to use) pairing-based proof systems [23,
27, 35, 49] or Bulletproofs [19]. The elliptic curves used by
these systems are predominantly BLS12-381, BN254, and
Ed25519. A hash function friendly for such a system would
operate in the scalar prime field of the curve, and they all have
a size of around 2255.

4.1 Main Instances

We present POSEIDONπ permutations for such prime fields,
and leave the other cases to [30, Appendix]. The S-box func-
tion can be chosen as x5 in all cases, i.e., we use x5-POSEIDON
for hashing in all such protocols, though the concrete fields
are slightly different (this affects only constants and matrices,
but not the number of rounds).

The security levels M of 80 and 128 bits correspond to a
255-bit capacity, i.e., one field element. We focus on two
possible widths, namely t = 3 and t = 5, as they correspond
to popular cases of 2-to-1 and 4-to-1 compression functions.
In the Merkle tree case, this corresponds to trees of arity 2
and 4, respectively. The round numbers for 80- and 128-bit
security levels are given in Table 2, and a more extensive set is
given in [30, Appendix G]. For M = 256 we select a capacity
and an output of 2 255-bit elements (one 510-bit element is
possible too).

All our MDS matrices are Cauchy matrices, and the method
to construct them is further described in Section 2.3. We use
sequences of integers for the construction.

The round constants and matrices are generated using the
Grain LFSR [37] in a self-shrinking mode, and the detailed
initialization and generation are described in [30, Appendix
F]. Using this method, the generation of round constants and
matrices depends on the specific instance, and thus different
round constants are used even if some of the chosen parame-
ters (e.g., n and t) are the same. Note that by using the Grain
LFSR and instance-specific seed values, this approach is rem-
iniscent of nothing-up-my-sleeve (NUMS) numbers. Indeed,
letting the attacker freely choose round constants and/or ma-
trices can lead to attacks.

12https://tinyurl.com/y7tl537o

USENIX Association 30th USENIX Security Symposium    525

https://github.com/filecoin-project/neptune
https://github.com/dusk-network/Poseidon252
https://tinyurl.com/y7tl537o


Table 2: Concrete instantiations of POSEIDONπ (with security
margin) over BLS12-381, BN254, Ed25519 scalar fields.

Instance (S-box: f (x) = x5) t RF RP

POSEIDONπ-128 3 8 57
5 8 60

POSEIDONπ-80 3 8 33
5 8 35

POSEIDONπ-256 6 8 120
10 8 120

We provide the round constants, the matrices, and test vectors
in auxiliary files for four primary instantiations. We also make
reference implementations for these instantiations and scripts
to calculate the round numbers, the round constants, and the
MDS matrices available online.13 We refer to [30, Appendix
A] for a more detailed overview of the auxiliary files.

4.2 Domain Separation for POSEIDON

POSEIDON can be used in a number of applications, and hav-
ing the same instance for all of them is suboptimal. Also,
some protocols explicitly require several different hash func-
tions. We suggest using domain separation for this, concretely
encoding the use case in the capacity element (which is fine
as it is 256 bits large and has a lot of bits to fill) and using
some padding to distiguish inputs of different lengths if they
may happen. Although a concrete form of domain separa-
tion constants is not security critical, we suggest a common
methodology to unify potential implementations.

Concretely, we propose:

• Merkle Tree (all leafs are present, up to arity 32). The
capacity is 2arity−1. A generic case is considered in [30,
Appendix I]. We use no padding here.

• Merkle Tree (some leafs may be empty). The capacity
value equals the bitmask of which leafs are present. We
use no padding here.

• Variable-Input-Length Hashing. The capacity value
is 264 +(o−1) where o the output length. The padding
consists of one field element being 1, and the remaining
elements being 0.

• Constant-Input-Length Hashing. The capacity value
is length · (264)+(o−1) where o the output length. The
padding consists of the field elements being 0.

• Encryption. The capacity value is 232. The padding
consists of the field elements being 0.

13 https://extgit.iaik.tugraz.at/krypto/hadeshash

• Future Uses. The capacity value is identifier ·(232). The
padding depends on the application.

5 Cryptanalysis Summary of POSEIDON

As for any new design, it is paramount to present a concrete
security analysis. In the following, we provide an in-depth
analysis of the security of our construction. Due to a lack of
any method to ensure that a hash function based on a sponge
construction is secure against all possible attacks, we base
our argumentation on the following consideration. As we just
recalled in the previous section, when the internal permuta-
tion P of an (N = c+ r)-bit sponge function is modeled as a
randomly chosen permutation, the sponge hash function is in-
differentiable from a random oracle up to 2c/2 calls to P . Thus,
we choose the number of rounds of the inner permutation case
in order to provide security against distinguishers relevant to
collision/preimage attacks. Equivalently, this means that such
a number of rounds guarantees that P does not exhibit any
relevant non-random/structural properties (among the ones
known in the literature).

5.1 Definitions

Definition 5.1. The function F is T -secure against collisions
if there is no algorithm with expected complexity smaller than
T that finds x1,x2 such that F(x1) = F(x2).
Definition 5.2. The function F is T -secure against preimages
if there is no algorithm with expected complexity smaller than
T that for given y finds x such that F(x) = y.
Definition 5.3. The function F is T -secure against second
preimages if there is no algorithm with expected complexity
smaller than T that for given x1 finds x2 such that F(x1) =
F(x2).
Definition 5.4. The invertible function P is T -secure against
the CICO (m1,m2)-problem if there is no algorithm with
expected complexity smaller than T that for given m1-bit I1
and m2-bit O1 finds I2,O2 such that P(I1||I2) = P(O1||O2).

5.2 Security Claims

In terms of concrete security, we claim that POSEIDON-M
is 2M-secure against collisions and (second) preimages. To
help increase confidence in our design and simplify external
cryptanalysis, we also explicitly state another claim about
our internal permutation: POSEIDONπ is 2min(M,m1,m2)-secure
against the CICO (m1,m2)-problem.

Even though an attack below these thresholds may not affect
any concrete applications of our hash functions, we would
still consider it an important cryptanalytic result.

526    30th USENIX Security Symposium USENIX Association

https://extgit.iaik.tugraz.at/krypto/hadeshash


5.3 Summary of Attacks

Here we list the main points of our cryptanalysis results. The
number of rounds R = RP +RF we can break depends on
the security level M and the number of S-boxes t, which we
specify for each concrete hash function instance in the next
section.

Before going on, we point out that for all attacks that are in
common to the ones proposed for the cipher HadesMiMC
[31], here we limit ourselves to report the main idea and re-
sult. For all other cases (namely, higher-order differentials,
zero-sum partitions, Gröbner basis attacks, and preimage at-
tacks), we present here more details. In any case, all details
are provided in [30, Appendix].

We highlight that the following cryptanalysis is not equiva-
lent to the one presented for the block cipher HADESMiMC.
Indeed, the scenarios are different (in one case the goal is to
guarantee the impossibility to find the secret key, while here
there is no secret key material and the goal is to guarantee that
the internal permutation looks like a pseudo-random permuta-
tion). This means that certain attacks that we consider here
are not valid in the case of a block cipher and vice-versa. Just
to give some examples, the rebound attack [44,48] holds only
in the context studied here, while a MitM scenario (crucial in
the case of an SPN cipher) does not work in the context of
a sponge function, since the attacker does not know the full
output. More details are given in the following.
Proposition 5.1 (Informal). The following number of rounds
for x5-POSEIDON-128 over Fp with ≈ 256-bit p protects
against statistical and algebraic attacks:

RF = 6, R = RF +RP = 56+ dlog5(t)e.

Proof. We substitute α = 5,M = 128 and log2(p) = 255 to
Equations (2),(3),(5) and see that no one is satisfied, i.e., the
attacks do not work.

Proposition 5.2 (Informal). The following number of rounds
for x5-POSEIDON-80 over Fp with ≈ 256-bit p protects
against statistical and algebraic attacks:

RF = 6, R = RF +RP = 35+ dlog5(t)e.

Proposition 5.3 (Informal). The following number of rounds
for x5-POSEIDON-256 over Fp with ≈ 256-bit p protects
against statistical and algebraic attacks:

RF = 6, R = RF +RP = 111+ dlog5(t)e.

5.4 Security Margin

Given the minimum number of rounds necessary to provide
security against all attacks known in the literature, we arbi-
trarily decided to add

(1) two more rounds with full S-box layers, and

(2) 7.5% more rounds with partial S-box layers,

i.e., +2 RF and +7.5% RP. The resulting number of rounds
for our primary instances is given in Table 2.

5.5 Attack details

All the attacks below are applied to the internal permutation
POSEIDONπ. The sponge framework dictates that all the at-
tacks on the hash function with complexity below 2c/2 must
result from attacks on the permutation. Thus we show that no
such attack on the permutation should exist.

5.5.1 Statistical Attacks

Differential/Linear Distinguishers. As shown in the ap-
pendix, at least 6 rounds with full S-box layers are necessary
to provide security against the statistical attacks we consider.
In more detail, for

RF <

{
6 if M ≤ (blog2 pc−C ) · (t +1)
10 otherwise

(2)

linear [47] and differential [16, 17] attacks may be possible,
where C = 2 for S(x) = 1/x and C = log2(α−1) for S(x) =
xα (where remember that α is an odd integer number), e.g.,
C = 1 for S(x) = x3 and C = 2 for S(x) = x5.

Before going on, we highlight that we exploit only rounds
with full S-box layers in order to prevent statistical attacks
(as done in [31]). As explained in [42], under the assumption
made for the linear layer in Section 2.3, it is possible to exploit
both the rounds with partial and full S-box layers in order
to guarantee security against some statistical attacks, like
differential and linear attacks. Our decision to consider only
rounds with full S-box layers has been made since a similar
condition on the rounds with full S-box layers (e.g., RF ≥ 6)
is necessary for the security against some algebraic attacks
(e.g., Gröbner basis attacks – see in the following) and in
order to provide simple security arguments for all statistical
attacks (including e.g. the rebound one).

(Invariant) Subspace Trails. We emphasize that the
choice of the matrix that defines the linear layer, made in
Section 2.3, prevents the existence of subspaces S that gener-
ate infinitely long subspace trails, namely a finite collection of
subspaces {S0, . . . ,Sr−1} s.t. each coset of Si is mapped into
a coset of Si+1 with probability 1 (where the index is taken
modulo r) an arbitrary number of times. This allows to fix the
weakness of the previous version of POSEIDON.

USENIX Association 30th USENIX Security Symposium    527



Other Attacks. Finally, we briefly mention that the same
number of rounds given before for the case of differen-
tial/linear attacks guarantees security against other attacks
as truncated differentials [43], impossible differentials [15],
rebound attacks [44, 48], and so on. More details are given
in [30, Appendix].

5.5.2 Algebraic Attacks

In order to estimate the security against algebraic attacks, we
evaluate the degree of the reduced-round permutations and
their inverses. Roughly speaking, our results can be summa-
rized as follows, where n' log2(p).

Interpolation Attack. The interpolation attack [39] de-
pends on the number of different monomials in the inter-
polation polynomial, where (an upper/lower bound of) the
number of different monomials can be estimated given the de-
gree of the function. The idea of such an attack is to construct
an interpolation polynomial that describes the function. If the
number of unknown monomials is sufficiently large, then this
cannot be done faster than via a brute-force attack.

For a security level of M bits, the number of rounds that can
be attacked is

• for S(x) = xα:

R≤ dlogα(2) ·min{M, log2(p)}e+ dlogα te (3)

• for S(x) = 1/x:

bRF log2(t)c+RP≤dlog2(t)e+d0.5 ·min{M, log2(p)}e
(4)

In general, the number of unknown monomials does not de-
crease when increasing the number of rounds. Hence, a higher
number of rounds likely leads to a higher (or equal) security
against this attack. We also consider various approaches of
the attack (such as the MitM one) in [30, Appendix C.2.1].

Gröbner Basis Attack. In a Gröbner basis attack [24], one
tries to solve a system of non-linear equations that describe
the function. The cost of such an attack depends on the degree
of the equations, but also on the number of equations and
on the number of variables. Since there are several ways for
describing the studied permutation, there are several ways to
set up such a system of equations and so the attack. Here, we
focus on two extreme cases:

1. In the first case, the attacker derives equations, one for
each word, for the entire r-round permutation. Assuming
S(x) = xα (analogous for the others), we show that the
attack complexity is about α2t (see below), therefore for

a security level of M bits the attack works at most on
logα 2min{n/2,M/2} rounds.

2. In the second case, since a partial S-box layer is used,
it may be more efficient to consider degree-α equations
for single S-boxes. In this case, more rounds can be
necessary to guarantee security against this attack.

In both cases, it is possible to make use of the existence of
the subspace S (r) defined as in Eq. (1) in order to improve the
attack. As shown in [14], such a subspace can be exploited in
order to replace some non-linear equations of the system that
we are trying to solve with linear equations. Indeed, given
a text in a coset of the subspace S (r), the output of such a
text after r rounds with partial S-box layers is simply the
result of an affine map applied to the input (i.e., no S-box is
involved). As explained in detail in [30, Appendix C.2.2], this
issue can easily be fixed both by a careful choice of the matrix
that defines the linear layer (see Section 2.3 for details) and,
if necessary, by adjusting the number of rounds with partial
S-box layers.

With optimistic (for the adversary) complexity of the Gaussian
elimination, we obtain for each S-box two attacks which are
faster than 2M if either condition is satisfied:

• if S(x) = xα:R≤ logα(2) ·min
{

M
3 ,

log2(p)
2

}
,

R≤ t−1+min
{

logα(2)·M
t+1 ,

logα(2)·log2(p)
2

} (5)

• if S(x) = 1/x:
bRF log2(t)c+RP ≤ d0.5 ·min{M, log2(p)}e+ dlog2(t)e
bRF log2(t)c+RP ≤ t−1+ dlog2(t)e+

+min
{⌈ M

t+1

⌉
,d0.5 · log2(p)e

}
(6)

Higher-Order Differential Attack. Working over F2n t ≡
Fn·t

2 , the higher-order differential attack [43] depends on the al-
gebraic degree of the polynomial function that defines the per-
mutation, where the algebraic degree δ of a function f (x)= xd

of degree d over F2n is defined as δ = hw(d) (where hw(·)
is the Hamming weight). The idea of such an attack is based
on the property that given a function f (·) of algebraic degree
δ,

⊕
x∈V⊕φ f (x) = 0 if the dimension of the subspace V sat-

isfies dim(V )≥ δ+1. If the algebraic degree is sufficiently
high, the attack does not work.

At first thought, one may think that this attack does not apply
(or is much less powerful) in Ft

p (due to the fact that the only
subspaces of Fp are {0} and Fp itself). Recently, it has been
shown in [14] how to set up an higher-order differential over
Ft

p. Given f over Fp of degree d ≤ p− 2, ∑x∈Fp f (x) = 0.

528    30th USENIX Security Symposium USENIX Association



Since this result is related to the degree of the polynomial
that describes the permutation, we claim that the number of
rounds necessary to provide security against the interpolation
attack provides security against this attack as well.

(We Do Not Care About) Zero-Sum Partitions. Another
property that can be demonstrated for some inner primitive
in a hash function (with a relatively low degree) is based
on the zero-sum partition. This direction has been investi-
gated e.g. in [18] for two SHA-3 candidates, Luffa and KEC-
CAK. More generally, a zero-sum structure for a function f (·)
is defined as a set Z of inputs zi that sum to zero, and for
which the corresponding outputs f (zi) also sum to zero, i.e.,
∑i zi = ∑i f (zi) = 0. For an iterated function, the existence
of zero sums is usually due to the particular structure of the
round function or to a low degree. Since it is expected that a
randomly chosen function does not have many zero sums, the
existence of several such sets can be seen as a distinguishing
property of the internal function.
Definition 5.5 (Zero-Sum Partition [18]). Let P be a permu-
tation over Ft

q for a prime q≥ 2. A zero-sum partition for P
of size K < t is a collection of K disjoint sets {X1, . . . ,XK}
with the following properties:

• Xi ⊂ Ft for each i = 1, . . . ,k and
⋃k

i=1 Xi = Ft ,

• ∀i = 1, . . . ,K : the set Xi satisfies the zero-sum property
∑x∈Xi x = ∑x∈Xi P(x) = 0.

Here we explicitly state that we do not make claims about
the security of POSEIDONπ against zero-sum partitions. This
choice is motivated by the gap present in the literature be-
tween the number of rounds of the internal permutation that
can be covered by a zero-sum partition and by the number of
rounds in the corresponding sponge hash function that can be
broken e.g. via a preimage or a collision attack. As a concrete
example, consider the case of KECCAK: While 24 rounds
of KECCAK- f can be distinguished from a random permuta-
tion using a zero-sum partition [18] (that is, full KECCAK- f ),
preimage/collision attacks on KECCAK can only be set up for
up to 6 rounds of KECCAK- f [36]. This hints that zero-sum
partitions should be largely ignored for practical applications.

For completeness, we mention that a zero-sum partition on
(a previous version of) reduced-round POSEIDONπ has been
proposed in [14]. Such a property can cover up to RF = 6
rounds (i.e., 2 rounds at the beginning and 4 rounds at the
end) by exploiting the inside-out approach and by choosing
a subspace of texts after the first R f rounds with full S-box
layers and before the RP rounds with partial S-box layers.
Since the number of rounds of this new version is not smaller
than the number of rounds of the previous one, and since
RF ≥ 8 (see Section 5.4), it seems that a zero-sum partition
cannot be set up for full POSEIDONπ.

6 POSEIDON in Zero-Knowledge Proof Sys-
tems

Our hash functions have been designed to be friendly to zero-
knowledge applications. Specifically, we aim to minimize the
proof generation time, the proof size, and the verification time
(when it varies). Before presenting concrete results, we give a
small overview of ZK proof systems to date.

6.1 State of the Art

Let P be a circuit over some finite field F where gates are
some (low-degree) polynomials over F with I and O being
input and output variables, respectively: P (I) = O. The com-
putational integrity problem consists of proving that some
given O0 is the result of the execution of P over some I0:
P (I0) = O0. It is not difficult to show that any limited-time
program on a modern CPU can be converted to such a cir-
cuit [10], and making the proof zero-knowledge is often pos-
sible with little overhead.

The seminal PCP series of papers states that for any pro-
gram P it is possible to construct a proof of computational
integrity, which can be verified in time sublinear in the size
of P . However, for a long time the prover algorithms were so
inefficient that this result remained merely theoretical. Only
recently, proof systems where the prover costs are polynomial
in |P | were constructed, but they required a trusted setup: a
verifier or someone else (not the prover) must process the
circuit with some secret s and output a reference string S,
used both by the prover and the verifier. In this setting, the
prover’s work can even be made linear in |P |, and the verifier’s
costs are constant. These systems were called SNARKs for
proof succinctness. The first generation of SNARKs, known
as Pinocchio and Groth16 [35, 49], require a separate trusted
setup for each circuit. The next generation, which includes
Sonic [46], PLONK [27], and Marlin [23], can use one ref-
erence string of size d for all circuits with at most d gates,
thus simplifying the setup and its reuse. Later on, proof sys-
tems without trusted setups appeared, of which we consider
Bulletproofs [19], STARKs [9], and RedShift [41] the most
interesting, though all of them come with deficiencies: Bul-
letproofs have linear verifier times (but rather short proofs),
STARKs work with iterative programs, and RedShift has large
proofs (up to 1 MB for millions of gates).

Current benchmarks demonstrate that programs with mil-
lions of gates can be processed within a few seconds with
the fastest proof systems, which solves the computational in-
tegrity problem for some practical programs. Among them,
privacy-preserving cryptocurrencies, mixers, and private vot-
ing are prominent examples. In short, such applications work
as follows:

USENIX Association 30th USENIX Security Symposium    529



1. Various users add publicly hashes of some secret and
public values to some set V , which is implemented as a
Merkle tree. Hashes can be currency transaction digests,
public keys, or other credentials.

2. Only those who know a secret behind some hash are
declared eligible for an action (e.g., to vote or to spend
money).

3. A user who wants to perform the action proves that they
know a tree leaf L and a secret K such that L is both the
hash of K and a leaf in V . If the proof passes, the user is
allowed to perform an action (e.g., to vote). If an action
must be done only once, a deterministic hash of the secret
and leaf position can be computed and published.

This paradigm is behind the cryptocurrency Zcash and
Ethereum mixers.

The bottleneck of such a system is usually the proof creation
time, which took 42 seconds in the early version of Zcash,
and sometimes the verifier’s time. Both are determined by the
size of the circuit that describes a Merkle proof and are thus
dependent on the hash function that constitutes the tree.

Unfortunately, a single hash function cannot be optimal for all
ZK proof systems, because they use different arithmetizations:
STARKs can use prime and binary fields, Bulletproofs uses
any prime field, whereas most SNARKs use a prime field
based on a scalar field of a pairing-friendly elliptic curve.
Therefore, for each proof system a new instance of POSEIDON
may be needed. In the following we describe how this is done
and how to optimize a circuit for some proof systems.

6.2 SNARKs with POSEIDONπ

In SNARKs, the prime field is typically the scalar field
of some pairing-friendly elliptic curve. The primitive
POSEIDONπ can be represented as such a circuit with rea-
sonably few gates, but the parameters of POSEIDONπ must
have been determined first by p. Concretely, after p is fixed,
we first check if xα is invertible in GF(p), which is true if
p mod α 6= 1. If this inequality is not satisfied for a small α,
we use the inverse S-box or consider another prime power for
the S-box.

6.2.1 Groth16

Groth16 [35] is an optimization of the Pinocchio proof sys-
tem and currently the fastest SNARK with the smallest proofs.
The Groth16 prover complexity is O(s), where s is the num-
ber of rank-1 constraints – quadratic equations of the form
(∑i uiXi)(∑i viXi) = ∑i wiXi, where ui,vi,wi are field elements
and Xi are program variables. It is easy to see that the S-box x3

is represented by 2 constraints, the S-box x5 by 3 constraints,

and the S-box 1/x by 3 constraints (1 for the non-zero case,
and two more for the zero case). Thus, in total we have

2tRF +2RP constraints for x3-POSEIDONπ,

3tRF +3RP constraints for x5-POSEIDONπ,

3tRF +3RP constraints for x−1-POSEIDONπ.

It requires a bit more effort to see that we do not need more
constraints as the linear layers and round constants can be
incorporated into these ones. However, it is necessary to do
some preprocessing. For example, in the POSEIDONπ setting,
the full S-box layers are followed by a linear transformation
M. Each round with a full S-box layer can be represented by
the following constraints in the SNARK setting:(

∑
j

Mi, jxi, j

)
·
(

∑
j

Mi, jxi, j

)
= yi 1≤ i≤ t,

yi ·
(

∑
j

Mi, jzi, j

)
= zi,

where M = It×t for the first round. However, in a round with a
partial S-box layer, we will have only one such constraint for
j = 1. For the rest of the t−1 variables we will have linear
constraints of the form

∑
j

Mi, jxi, j = ui ,where 2≤ i≤ t.

Since the linear constraints have little complexity effect in
Groth16, in the partial S-box rounds they can be composed
with the ones from the previous round(s) using

∑
k

Mi,k

(
∑

j
Mi, jxi, j

)
= vk 2≤ k ≤ t.

We can now calculate the number of constraints for the sponge
mode of operation and for Merkle trees. In sponges, the 2M
bits are reserved for the capacity, so N−2M bits are fed with
the message. Therefore, we get

• 2tRF+2RP
N−2M constraints per bit for x3-POSEIDONπ,

• 3tRF+3RP
N−2M constraints per bit for x5-POSEIDONπ,

• 3tRF+3RP
N−2M constraints per bit for x−1-POSEIDONπ.

For the Merkle tree, we suggest a 1-call sponge where all
branches must fit into the rate. Then a Merkle tree has arity
N

2M −1. Based on that we can calculate how many constraints
we need to prove the opening in a Merkle tree of, for example,
232 elements (the recent ZCash setting). The tree will have

32
log2[N/(2M)−1] levels with the number of constraints in each
according to the above. The libsnark performance of the
POSEIDON preimage prover (proof that for given y you know
x such that H(x) = y) is given in Table 3. These experiments

530    30th USENIX Security Symposium USENIX Association



Table 3: libsnark [1] performance of the POSEIDON preim-
age prover (one permutation call). Here t denotes the width.

Field Arity (t)
libsnark ZK proof time R1CS

constraintsfor one hash
Prove Verify

POSEIDON-128

BN254 2:1 (3) 43.1ms 1.2ms 276
4:1 (5) 57.9ms 1.1ms 440

POSEIDON-80

BN254 2:1 (3) 32.8ms 1.2ms 180
4:1 (5) 46.9ms 1.1ms 290

were performed on a desktop with an Intel Core i7-8700 CPU
(@3.2GHz) and 32 GiB of memory.

As an example, we calculate the concrete number of con-
straints for a Merkle tree proof, where the tree has 230 ele-
ments, assuming a security level of 128 bits and a prime field
of size close to 2256. We take the S-box equal to x5 as it fits
many prime fields: Ristretto (the prime group based on the
scalar field of Ed25519), BN254, and BLS12-381 scalar fields.
The results are in Table 4.

6.2.2 Bulletproofs

Bulletproofs [19] is a proof system that does not require a
trusted setup. It is notable for short proofs which are loga-
rithmic in the program size, and also for the shortest range
proofs that do not require a trusted setup. However, its verifier
is linear in the program size. For the use cases where the
trusted setup is not an option, the Bulletproofs library “dalek”
is among the most popular ZK primitives. We have imple-
mented14 a Merkle tree prover for POSEIDON in Bulletproofs
using the same constraint system as for Groth16 with results
outlined in Table 5. The performance varies since the under-
lying curves are based on prime fields of different size and
weight: BN254 uses a 254-bit prime whereas BLS12-381 uses
a 381-bit one (the reason for that is the recent reevaluation
of discrete logarithm algorithms specific to pairing-friendly
curves).

6.2.3 PLONK

PLONK [27] is a novel but popular SNARK using a universal
trusted setup, where a structured reference string of size d
can be used for any circuit of d gates or less. The setup is
pretty simple as for the secret k the values {ki ·B}i≤d are

14https://github.com/lovesh/bulletproofs-r1cs-gadgets/bl
ob/master/src/gadget_poseidon.rs

Table 4: Number of R1CS constraints for a circuit proving a
leaf knowledge in the Merkle tree of 230 elements.

POSEIDON-128

Arity Width RF RP Total constraints

2:1 3 8 57 7290

4:1 5 8 60 4500

8:1 9 8 63 4050

Rescue-x5

2:1 3 16 - 8640

4:1 5 10 - 4500

8:1 9 10 - 5400

Pedersen hash

510 171 - - 41400

SHA-256

510 171 - - 826020

Blake2s

510 171 - - 630180

MiMC-2p/p (Feistel)

1:1 2 324 - 19440

stored, where B is an elliptic curve point and · denotes scalar
multiplication. A PLONK proof is a combination of KZG
polynomial commitments [40] and their openings, both using
the SRS.

The standard version of PLONK works with the same con-
straint system as we have described, plus it uses special ma-
chinery to lay out wires in the circuit. A prover first crafts
three polynomials of degree equal to the number of gates,
which are responsible for the left input, the right input, and
the output, respectively. Then they allocate several supple-
mentary polynomials to describe the wire layout. The prover
complexity for a POSEIDONπ permutation with the S-box x5

of width w and R rounds is 11(w(w+ 6)+ 3)R point multi-
plications, and the proof has 7 group elements and 7 field
elements. A third-party non-optimized implementation of a
PLONK prover in Rust (Intel(R) Core(TM) i5-7300HQ CPU
@ 2.50GHz) gives us benchmarks, which we provide in Ta-
ble 6.

As we have almost identical rounds, the PLONK compiler can
be heavily optimized. Concretely, we suggest the following.

• Define a separate polynomial for each S-box line.

• Get rid of wire layout polynomials.

• Express round transitions as a system of affine equations

USENIX Association 30th USENIX Security Symposium    531

https://github.com/lovesh/bulletproofs-r1cs-gadgets/blob/master/src/gadget_poseidon.rs
https://github.com/lovesh/bulletproofs-r1cs-gadgets/blob/master/src/gadget_poseidon.rs


Table 5: Bulletproofs performance to prove 1 out of 230-
Merkle tree.

Field Arity
Merkle 230-tree ZK proof R1CS

constraintsBulletproofs time
Prove Verify

POSEIDON-128

2:1 16.8s 1.5s 7290
BLS12-381 4:1 13.8s 1.65s 4500

8:1 11s 1.4s 4050

2:1 11.2s 1.1s 7290
BN254 4:1 9.6s 1.15s 4500

8:1 7.4s 1s 4050

2:1 8.4s 0.78s 7290
Ristretto 4:1 6.45s 0.72s 4500

8:1 5.25s 0.76s 4050

SHA-256 [19]

GF(2256) 2:1 582s 21s 762000

Table 6: PLONK performance to prove a 1-out-of-2n-Merkle
tree of arity 4.

Field Set size
Merkle 2n-tree ZK proof R1CS

constraintsPLONK time
Prove Verify

POSEIDON-128

216 3.59s 0.7ms 2400
BLS12-381 234 6.3s 1.55ms 5100

268 9.9s 2.7ms 10200

over polynomial values at adjacent points.

As a result, our optimized PLONK compiler makes only
(w+11)R point multiplications for a single permutation call,
whereas the proof consists of (w+ 3) group elements and
2w field elements. This might bring a 25-40x increase in
performance depending on w.

6.2.4 RedShift

RedShift [41] is a STARK-inspired proof system which works
with an arbitrary set of constraints. It can be viewed as
PLONK with pairing-based polynomial commitments with
the trusted setup being replaced by Reed-Solomon trust-
less commitments. The RedShift proof is cλ logd2 KB large,
where d is the degree of the circuit polynomials and cλ ≈ 2.5
for a 120-bit security. Due to similarity, we can make the
same optimizations as in PLONK, so that the entire Merkle
tree proof requires polynomials of degree 4800 for width 5,
resulting in the entire proof being around 12 KB in size. Un-
fortunately, no RedShift library is publicly available so far,

and hence we could not measure the actual performance.

6.3 Comparison with Other Hash Algorithms

Unfortunately, no zero-knowledge system implementation
contains all the primitives we want to compare with. How-
ever, for all systems we are interested it, the prover perfor-
mance increases monotonically (and in practice, almost lin-
early) with the number of multiplications or, equivalently,
with the number of R1CS constraints. We thus provide a sum-
mary of constraint counts for various hash functions in the
concrete case of a Merkle tree with 230 elements in Table 4.
We take Blake2s and Pedersen hash estimates from [38], the
SHA-256 count from Hopwood’s notes15, whereas for MiMC
and Rescue we calculated them ourselves based on the round
numbers provided in [4, 6]. The table implies that POSEIDON
and Rescue should have the fastest provers, which is also
confirmed for the STARK case [11]. However, Rescue has a
slower performance in the non-ZK case (Table 1).

6.4 STARKs with POSEIDONπ

ZK-STARKs [9] is a proof system for the computational
integrity, which is not vulnerable to quantum computers and
does not use a trusted setup. STARKs operate with programs
whose internal state can be represented as a set of w registers,
each belonging to a binary field GF(2n) or to a 2n-subgroup G
of a prime-order group (this is our primary case, as the scalar
fields of BLS12-381 and BN254 have such a big subgroup).

The program execution is then represented as a set of T inter-
nal states. The computational integrity is defined as the set
of all wT registers satisfying certain s polynomial equations
(constraints) of degree d.

STARK Costs. According to [51], the number of con-
straints does not play a major role in the prover, verifier, or
communication complexity, which are estimated as follows:

• 8w ·T ·d · log(wT ) operations in G for the prover,

• a prover memory in Ω(w ·T ·n), and

• a communication (verifier time) of n · (m+ log2(8T d)),

where m is the maximum number of variables in a constraint
polynomial.

The primitive POSEIDONπ can be represented as such a pro-
gram with few registers, a small number of steps, and low

15https://www.zfnd.org/zcon/0/workshop-notes/Zcon0%20Cir
cuit%20Optimisation%20handout.pdf

532    30th USENIX Security Symposium USENIX Association

https://www.zfnd.org/zcon/0/workshop-notes/Zcon0%20Circuit%20Optimisation%20handout.pdf
https://www.zfnd.org/zcon/0/workshop-notes/Zcon0%20Circuit%20Optimisation%20handout.pdf


degree. Following the same approach as for SNARKs in Sec-
tion 6.2, we keep in registers only S-box inputs and the per-
mutation outputs. Setting w = t, we get T = RF +dRP/te and
wT = tRF +RP. Thus, the complexity is as follows:

• 24(tRF +RP) · log2(tRF +RP) operations in G for the
prover,

• a prover memory in Ω(63 · (tRF +RP)), and

• a communication (verifier time) of 63 · (t +
log2

2(24(tRF +RP))).

We suggest t ∈ {3,5} in order to support the same Merkle tree
cases as before. Thus, for our primary instance POSEIDON-
128, we get an AET cost of 20540 for each permutation call
for a width of 3. As we process 510 bits per call, we obtain
a prover complexity of 40 operations per bit. For a width
of 5 we get an AET cost of 38214, which translates to 38
operations per bit in G.

7 Acknowledgements

This work is partially supported by the Ethereum founda-
tion, Starkware Ltd, and IOV42 Ltd. We thank Alexander
Vlasov, Lovesh Harshandani, and Carlos Perez for bench-
marking POSEIDON in various environments. This work
was also supported by the EUH2020 European Union’s
Horizon 2020 research and innovation programme (https:
//ec.europa.eu/programmes/horizon2020/en) under
grant agreement 871473 (KRAKEN).

References

[1] C++ library for zkSNARK. https://github.com/s
cipr-lab/libsnark.

[2] 2019. Mike Lodder, Sovrin’s principal cryptographer
www.sovrin.org, private communication.

[3] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry
Khovratovich, Reinhard Lüftenegger, Christian Rech-
berger, and Markus Schofnegger. Algebraic Cryptanaly-
sis of STARK-Friendly Designs: Application to MAR-
VELlous and MiMC. In ASIACRYPT 2019, volume
11923 of LNCS, pages 371–397, 2019.

[4] Martin R. Albrecht, Lorenzo Grassi, Christian Rech-
berger, Arnab Roy, and Tyge Tiessen. MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal
Multiplicative Complexity. In ASIACRYPT 2016, vol-
ume 10031 of LNCS, pages 191–219, 2016.

[5] Martin R. Albrecht, Christian Rechberger, Thomas
Schneider, Tyge Tiessen, and Michael Zohner. Ciphers

for MPC and FHE. In EUROCRYPT 2015, volume 9056
of LNCS, pages 430–454, 2015.

[6] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson,
Siemen Dhooghe, and Alan Szepieniec. Design of
symmetric-key primitives for advanced cryptographic
protocols. Cryptology ePrint Archive, Report 2019/426,
2019. https://eprint.iacr.org/2019/426.

[7] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthura-
makrishnan Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In CCS,
pages 2087–2104. ACM, 2017.

[8] Tomer Ashur and Siemen Dhooghe. Marvellous: a stark-
friendly family of cryptographic primitives. Cryptology
ePrint Archive, Report 2018/1098, 2018. https://ep
rint.iacr.org/2018/1098.

[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable zero knowledge with no
trusted setup. In CRYPTO (3), volume 11694 of LNCS,
pages 701–732. Springer, 2019.

[10] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowl-
edge for a von neumann architecture. In USENIX Secu-
rity Symposium, pages 781–796. USENIX Association,
2014.

[11] Eli Ben-Sasson, Lior Goldberg, and David Levit. Stark
friendly hash – survey and recommendation. Cryptology
ePrint Archive, Report 2020/948, 2020. https://epri
nt.iacr.org/2020/948.

[12] Guido Bertoni, Joan Daemen, Michaël Peeters, and
Gilles Van Assche. On the Indifferentiability of the
Sponge Construction. In EUROCRYPT 2008, volume
4965 of LNCS, pages 181–197, 2008.

[13] Guido Bertoni, Joan Daemen, Michaël Peeters, and
Gilles Van Assche. Duplexing the sponge: Single-pass
authenticated encryption and other applications. In Se-
lected Areas in Cryptography, volume 7118 of LNCS,
pages 320–337. Springer, 2011.

[14] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder,
Gregor Leander, Gaëtan Leurent, María Naya-Plasencia,
Léo Perrin, Yu Sasaki, Yosuke Todo, and Friedrich
Wiemer. Out of Oddity – New Cryptanalytic Techniques
against Symmetric Primitives Optimized for Integrity
Proof Systems. In Advances in Cryptology - CRYPTO
2020, volume 12172 of LNCS, pages 299–328. Springer,
2020.

[15] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanaly-
sis of Skipjack Reduced to 31 Rounds Using Impossible
Differentials. In EUROCRYPT 1999, volume 1592 of
LNCS, pages 12–23, 1999.

USENIX Association 30th USENIX Security Symposium    533

https://ec.europa.eu/programmes/horizon2020/en
https://ec.europa.eu/programmes/horizon2020/en
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
www.sovrin.org
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2020/948
https://eprint.iacr.org/2020/948


[16] Eli Biham and Adi Shamir. Differential Cryptanalysis
of DES-like Cryptosystems. Journal of Cryptology,
4(1):3–72, 1991.

[17] Eli Biham and Adi Shamir. Differential Cryptanalysis
of the Data Encryption Standard. Springer, 1993.

[18] Christina Boura, Anne Canteaut, and Christophe De
Cannière. Higher-Order Differential Properties of Kec-
cak and Luffa. In FSE 2011, volume 6733 of LNCS,
pages 252–269, 2011.

[19] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Gregory Maxwell. Bullet-
proofs: Short proofs for confidential transactions and
more. In IEEE Symposium on Security and Privacy,
pages 315–334. IEEE Computer Society, 2018.

[20] Jan Camenisch, Markulf Kohlweiss, and Claudio Sori-
ente. An accumulator based on bilinear maps and effi-
cient revocation for anonymous credentials. In Public
Key Cryptography, volume 5443 of LNCS, pages 481–
500. Springer, 2009.

[21] Jan Camenisch and Anna Lysyanskaya. Dynamic Ac-
cumulators and Application to Efficient Revocation of
Anonymous Credentials. In CRYPTO 2002, volume
2442 of LNCS, pages 61–76. Springer, 2002.

[22] Melissa Chase, David Derler, Steven Goldfeder, Clau-
dio Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, and Greg Zaverucha. Post-quantum
zero-knowledge and signatures from symmetric-key
primitives. In CCS, pages 1825–1842. ACM, 2017.

[23] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush
Mishra, Noah Vesely, and Nicholas Ward. Marlin: Pre-
processing zksnarks with universal and updatable srs.
In Anne Canteaut and Yuval Ishai, editors, Advances
in Cryptology – EUROCRYPT 2020, pages 738–768,
Cham, 2020. Springer International Publishing.

[24] David A. Cox, John Little, and Donal O’Shea. Ideals,
varieties, and algorithms - an introduction to compu-
tational algebraic geometry and commutative algebra
(2. ed.). Undergraduate texts in mathematics. Springer,
1997.

[25] Joan Daemen and Vincent Rijmen. The wide trail design
strategy. In IMACC, volume 2260 of LNCS, pages 222–
238. Springer, 2001.

[26] Joan Daemen and Vincent Rijmen. The Design of Rijn-
dael: AES - The Advanced Encryption Standard. Infor-
mation Security and Cryptography. Springer, 2002.

[27] Ariel Gabizon, Zachary J. Williamson, and Oana Ciob-
otaru. PLONK: permutations over lagrange-bases for

oecumenical noninteractive arguments of knowledge.
IACR Cryptology ePrint Archive, 2019:953, 2019.

[28] Víctor Gayoso Martínez, Luis Hernández Encinas, and
Carmen Sánchez Ávila. A survey of the elliptic curve
integrated encryption scheme. 2010. available at https:
//core.ac.uk/download/pdf/36042967.pdf.

[29] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.
ZKBoo: Faster Zero-Knowledge for Boolean Circuits.
In USENIX Security Symposium, pages 1069–1083.
USENIX Association, 2016.

[30] Lorenzo Grassi, Dmitry Khovratovich, Arnab Roy,
Christian Rechberger, and Markus Schofnegger. Posei-
don: A New Hash Function for Zero-Knowledge Proof
Systems. IACR Cryptol. ePrint Arch., 2019:458, 2019.

[31] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rech-
berger, Dragos Rotaru, and Markus Schofnegger. On a
Generalization of Substitution-Permutation Networks:
The HADES Design Strategy. In EUROCRYPT 2020,
volume 12106 of LNCS, pages 674–704, 2020.

[32] Lorenzo Grassi, Christian Rechberger, and Sondre Røn-
jom. Subspace Trail Cryptanalysis and its Applications
to AES. IACR Trans. Symmetric Cryptol., 2016(2):192–
225, 2016.

[33] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru,
Peter Scholl, and Nigel P Smart. MPC-friendly sym-
metric key primitives. In CCS, pages 430–443. ACM,
2016.

[34] Lorenzo Grassi, Christian Rechberger, and Markus
Schofnegger. Weak Linear Layers in Word-Oriented
Partial SPN and HADES-Like Schemes. Cryptology
ePrint Archive, Report 2020/500, 2020. https://epri
nt.iacr.org/2020/500.

[35] Jens Groth. On the size of pairing-based non-interactive
arguments. In EUROCRYPT 2016, volume 9666 of
LNCS, pages 305–326. Springer, 2016.

[36] Jian Guo, Guohong Liao, Guozhen Liu, Meicheng Liu,
Kexin Qiao, and Ling Song. Practical Collision Attacks
against Round-Reduced SHA-3. Journal of Cryptology,
33(1):228–270, 2020.

[37] Martin Hell, Thomas Johansson, Alexander Maximov,
and Willi Meier. The Grain Family of Stream Ci-
phers. In The eSTREAM Finalists, volume 4986 of
LNCS, pages 179–190. Springer, 2008.

[38] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan
Wilcox. Zcash protocol specification: Version 2020.1.14
[overwinter+sapling+blossom+heartwood+canopy].
Technical report, Zerocoin Electric Coin Company,

534    30th USENIX Security Symposium USENIX Association

https://core.ac.uk/download/pdf/36042967.pdf
https://core.ac.uk/download/pdf/36042967.pdf
https://eprint.iacr.org/2020/500
https://eprint.iacr.org/2020/500


2019. available at https://github.com/zcash/zip
s/blob/master/protocol/protocol.pdf.

[39] Thomas Jakobsen and Lars R. Knudsen. The Interpo-
lation Attack on Block Ciphers. In FSE 1997, volume
1267 of LNCS, pages 28–40, 1997.

[40] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In ASIACRYPT, volume 6477 of LNCS,
pages 177–194. Springer, 2010.

[41] Assimakis Kattis, Konstantin Panarin, and Alexander
Vlasov. Redshift: Transparent snarks from list poly-
nomial commitment iops. Cryptology ePrint Archive,
Report 2019/1400, 2019. https://eprint.iacr.or
g/2019/1400.

[42] Nathan Keller and Asaf Rosemarin. Mind the Middle
Layer: The HADES Design Strategy Revisited. Cryp-
tology ePrint Archive, Report 2020/179, 2020. https:
//eprint.iacr.org/2020/179.

[43] Lars R. Knudsen. Truncated and Higher Order Differ-
entials. In FSE 1994, volume 1008 of LNCS, pages
196–211, 1994.

[44] Mario Lamberger, Florian Mendel, Christian Rech-
berger, Vincent Rijmen, and Martin Schläffer. Rebound
Distinguishers: Results on the Full Whirlpool Compres-
sion Function. In ASIACRYPT 2009, volume 5912 of
LNCS, pages 126–143, 2009.

[45] F. J. MacWilliams and N. J. A. Sloane. The Theory
of Error-Correcting Codes. North-holland Publishing
Company, 1978.

[46] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah
Meiklejohn. Sonic: Zero-knowledge snarks from
linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, Proceedings
of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, pages 2111–2128. ACM, 2019.
URL: https://doi.org/10.1145/3319535.333981
7, doi:10.1145/3319535.3339817.

[47] Mitsuru Matsui. Linear Cryptanalysis Method for DES
Cipher. In EUROCRYPT 1993, volume 765 of LNCS,
pages 386–397, 1993.

[48] Florian Mendel, Christian Rechberger, Martin Schläffer,
and Søren S. Thomsen. The Rebound Attack: Crypt-
analysis of Reduced Whirlpool and Grøstl. In FSE 2009,
volume 5665 of LNCS, pages 260–276, 2009.

[49] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable com-

putation. In IEEE Symposium on Security and Privacy,
pages 238–252. IEEE Computer Society, 2013.

[50] Vincent Rijmen, Joan Daemen, Bart Preneel, Antoon
Bosselaers, and Erik De Win. The cipher SHARK. In
Fast Software Encryption – FSE 1996, volume 1039 of
LNCS, pages 99–111. Springer, 1996.

[51] StarkWare Industries Ltd. The complexity of STARK-
friendly cryptographic primitives. Private communica-
tion, 2018.

[52] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. ethereum project yellow
paper.(2014), 2014.

[53] A. M. Youssef, S. Mister, and S. E. Tavares. On the
Design of Linear Transformations for Substitution Per-
mutation Encryption Networks. In School of Computer
Science, Carleton University, pages 40–48, 1997.

USENIX Association 30th USENIX Security Symposium    535

https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2020/179
https://eprint.iacr.org/2020/179
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817
http://dx.doi.org/10.1145/3319535.3339817

	Introduction
	The Poseidon Hash Function
	Sponge Construction for Poseidon
	The Hades Design Strategy for Hashing
	The Permutation Family Poseidon

	Applications
	Concrete Instantiations of Poseidon
	Main Instances
	Domain Separation for Poseidon

	Cryptanalysis Summary of Poseidon
	Definitions
	Security Claims
	Summary of Attacks
	Security Margin
	Attack details
	Statistical Attacks
	Algebraic Attacks


	Poseidon in Zero-Knowledge Proof Systems
	State of the Art
	SNARKs with Poseidon
	Groth16
	Bulletproofs
	PLONK
	RedShift

	Comparison with Other Hash Algorithms
	STARKs with Poseidon

	Acknowledgements



