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Abstract
We present Virtual Secure Platform (VSP), the first com-

prehensive platform that implements a multi-opcode general-
purpose sequential processor over Fully Homomorphic En-
cryption (FHE) for Secure Multi-Party Computation (SMPC).
VSP protects both the data and functions on which the data
are evaluated from the adversary in a secure computation of-
floading situation like cloud computing. We proposed a com-
plete processor architecture with a five-stage pipeline, which
improves the performance of the VSP by providing more par-
allelism in circuit evaluation. In addition, we also designed a
custom Instruction Set Architecture (ISA) to reduce the gate
count of our processor, along with an entire set of toolchains
to ensure that arbitrary C programs can be compiled into our
custom ISA. In order to speed up instruction evaluation over
VSP, CMUX Memory based ROM and RAM constructions
over FHE are also proposed. Our experiments show that both
the pipelined architecture and the CMUX Memory technique
are effective in improving the performance of the proposed
processor. We provide an open-source implementation of VSP
which achieves a per-instruction latency of less than 1 second.
We demonstrate that compared to the best existing processor
over FHE, our implementation runs nearly 1,600× faster.

1 Introduction

In a typical cloud computing scheme, clients want to offload
their computations, that are, the evaluations of some programs
over their private data, to some cloud server. The problem
we try to tackle in this paper is to protect the programs and
data of the clients against the server per se, or some third-
party intruder who has physical access to the server. Since
current mainstream physical processors, like Intel Xeon, can-
not directly run encrypted instructions (i.e., the program to be
offloaded), encrypted functions and data must be decrypted at
run-time. Therefore, current cloud computing schemes suffer
from side channel attacks [1, 2]. In addition, processor ven-
dors may also plant backdoors. As a result, the cloud service

vendors and those who can physically access the servers are,
in theory, able to steal the program along with the input data
from the clients.

The key idea to solve the problem mentioned above is to di-
rectly run encrypted instructions [3]. In other words, the client
of the cloud service sends the encrypted instructions which
represent the function to be evaluated and the encrypted in-
puts to the cloud sever. Meanwhile, the cloud server evaluates
the function using the inputs, without decryption. After the
evaluation, the cloud server sends back the encrypted results
to the client. During the entire evaluation process, the cloud
server does not have access to any plaintext, so the evaluated
function and the data are protected. The above scheme can be
established by representing the processor as Boolean circuits,
and the evaluation of the circuits are conducted through the
use of Secure Multi-Party Computation (SMPC) protocols.
Because Boolean circuits can be represented by a graph con-
taining different types of logic gates as graph nodes (e.g.,
in Figure 1b), if we can perform the logical operations over
encrypted input bits, we can emulate the operation of a pro-
cessor by evaluating the processor circuit with the associated
encrypted inputs.

Currently, we have two well-known SMPC candidates for
evaluating Boolean circuits directly over encrypted inputs,
namely Garbled Circuit (GC) [4] and Fully Homomorphic
Encryption (FHE) [5]. GC implements SMPC operations by
providing a set of encrypted truth tables for the outputs of the
corresponding logic gates. During GC evaluation, the truth ta-
bles are evaluated obliviously to carry out the encrypted func-
tion evaluation. On the other hand, FHE is intrinsically more
of a Secure Computation Offloading (SCO) scheme, where
inputs to some public function are encrypted. The evaluator
directly evaluates the public function over the ciphertexts, and
returns the results to the encryption party. There are two previ-
ous works which propose to run encrypted instructions using
GC: TinyGarble [6] and GarbledCPU [7]. These works imple-
ment a processor with the MIPS Instruction Set Architecture
(ISA). Since most modern compilers support MIPS, both
TinyGarble and GarbledCPU support the evaluation of most
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conventional programs, e.g., programs written in the C lan-
guage. However, in theory, we cannot achieve SCO with GC,
as the generation of the GC truth tables always take more com-
putational resources than locally evaluating the program. In
contrast, as mentioned, FHE is inherently an SCO scheme [5].
Unlike GC, there is no need for tables generation for the eval-
uation of logic gates in FHE. To the best of our knowledge,
FURISC [8] is the only previous work which implements a
processor over the Smart-Vercauteren FHE Cryptosystem [9].
The processor only accepts one Turing-complete instruction,
Subtract Branch if Negative (SBN). This means that it is nec-
essary to modify modern compilers like Clang or GCC to
work with FURISC, which is a highly non-trivial task. In fact,
FURISC does not have any compiler support.

We propose Virtual Secure Platform (VSP), a comprehen-
sive platform that provides a full set of tools for a complete
two-party SCO scheme. Our standalone platform includes
open-sourced designs and implementations of HE libraries,
processor architectures, custom ISA and compiler environ-
ments. Building upon the well-known Torus Fully Homo-
morphic Encryption (TFHE) scheme, VSP allows any user
with an arbitrary C program to execute their codes in an SCO
manner. To the best of our knowledge, VSP is the fastest and
most complete (in terms of the set of tool sets we provide)
open-source processor platform to date.

Contributions: In brief, our contributions are as follows:

• We present VSP, the first comprehensive platform that
implements a multi-opcode general-purpose sequential
processor over TFHE, which enables two-party SCO. We
also provide an open-source Proof of Concept (PoC) im-
plementation of VSP, including our pipelined processor.

• We implemented the entire toolchain including a C com-
piler based on LLVM in order to fully support C lan-
guage in VSP. The toolchain is based on our custom ISA
named CAHPv3.

• We propose CMUX Memory, an optimized memory
structure over TFHE. We fully leverage the Leveled
Homomorphic Encryption (LHE) mode of the TFHE
to ensure fast memory access, which is one of the main
performance bottlenecks of VSP.

• Our open-source PoC implementation can evaluate one
clock cycle of the processor in less than 1 second. This
translates to nearly 1,600× per-instruction latency re-
duction compared to FURISC, the state-of-the-art FHE-
based SCO scheme.

2 Preliminaries

In this section, we define and explain some basic concepts
used throughout this work. We first review the properties and
constructions of HE in Section 2.1. Then, we give an overview

on the security properties of the SMPC protocols focused
in this work in Section 2.2. Finally, we briefly summarize
the general terminologies involved in processor designs in
Section 2.3.

2.1 Homomorphic Encryption
2.1.1 Overview of Homomorphic Encryption

Homomorphic Encryption (HE) is a form of encryption
which permits encrypted data to be evaluated without decryp-
tion [10]. HE can be classified into several categories depend-
ing on the types of functions that are permitted to be evaluated.
A Fully Homomorphic Encryption (FHE) scheme allows one
to evaluate arbitrary functions. Some popular FHE candidates
include Torus Fully Homomorphic Encryption (TFHE) [11],
Smart-Vercauteren Cryptosystem [9] and Brakerski-Gentry-
Vaikuntanathan (BGV) [12]. All of the above mentioned can-
didates can evaluate arbitrary Boolean circuit over encrypted
ciphertexts. Beside FHE, another category of HE is called
Leveled Homomorphic Encryption (LHE). LHE has limita-
tions on the depth of function that can be expressed, but are
much faster than FHE in general. Depth here means the num-
ber of consecutive multiplications to be performed on the
same ciphertext. Lastly, we note that some FHE schemes like
TFHE and BGV have LHE modes.

In VSP, we cannot know a priori how many times we have
to evaluate the circuit of the processor. This is because a gen-
eral solution to the problem of determining how many clock
cycles a program will take written in a Turing-complete lan-
guage solves the famous Halting Problem, which is known
to be undecidable. Therefore, FHE is most suitable for con-
structing processor-like architectures as in VSP.

Bootstrapping: Bootstrapping is one of the most important
idea in the construction of FHE. It is proposed in the sem-
inal work of Gentry [5]. The bootstrapping can be thought
as evaluating a decryption function over HE. Bootstrapping
is needed for FHE schemes, as we can remove the noises
from the ciphertexts generated during the evaluations. Boot-
strapping needs additional keys for evaluation, including an
encrypted secret key.

Key switching: Key switching is a function that maps a
ciphertext Encs1(m) to Encs2(m) without decryption, where
Encsi(m) means encrypted m with a secret key si. As with
bootstrapping, this function also requires an encrypted secret
key, but its format is different from that required for bootstrap-
ping, because key switching needs Encs2(s1).

In this paper, we call the set of the keys which are required
to evaluate both the bootstrapping and the key switching as
Bootstrapping Key.

2.1.2 TFHE

TFHE [11, 13] is one kind of FHE. TFHE natively supports
one-operand logic operations like NOT, two-operand logical
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operations like NAND, NOR, XNOR, AND, OR and XOR,
and the three-operand MUX. There are two reasons for choos-
ing TFHE as a foundation of VSP. First, bootstrapping of
TFHE only takes 10 milliseconds order. This is the fastest
one to our best knowledge. In contrast, bootstrapping of BGV
takes order of minutes with HElib [14]. Second, TFHE sup-
ports LHE mode which we find to be efficient in constructing
memory units, and a detailed construction of memory units
over the LHE mode of TFHE is explained in Section 8.

In what follows, we describe TFHE briefly. We will strip
away unnecessary generality in order to keep the explanations
straightforward.

Notations: In this work, we adopt a similar notation style
as in [11], which is listed below.

B: The set {1,0} without any structure.

T: The real Torus R/Z, the set of real number modulo 1. In
this work, we define the interval of T to be [−0.5,0.5).

TN [X ], ZN [X ]: The rings of polynomials R[X ]/(XN +
1) mod 1 and Z[X ]/(XN +1).

BN [X ]: The polynomials in ZN [X ] with binary coefficients.

1[X ]: The polynomial in ZN [X ] whose coefficients are all 1.

sgn(a[X ]): The polynomial whose i th coefficient is
sgn(i th coefficient of a[X ]).

E p: The set of vectors of dimension p with entries in E.

Mp,q(E): The set of p×q-size matrices with elements in E.

U(E): The uniform distribution over E.

←: x← D means x itself or its entries or coefficients are
drawn from the distribution D.

n,N, l,α,µ: n,N, l ∈ N, α ∈ R and µ = 1/8.

a,a[X ],b[X ]: a ∈ Tn and a[X ],b[X ] ∈ TN [X ].

Modular Gaussian Distribution: Let k ≥ 1 and σ ∈ R+.
For all x ∈ Rk, we refer to the Gaussian function of center
0 and standard deviation σ as ρRk,σ(x) = exp(−‖x‖2/2σ2).
Meanwhile, DTk,σ(x) defines a (restricted) Gaussian Distri-
bution of center 0 and standard deviation σ over Tk, and is
derived by DTk,σ(x) = ∑l∈Z ρRk,σ(x+ l ·1).

TLWE: TLWE is the Torus version of the learning with
errors (LWE) problem [15]. TLWE can be represented as
(a,b), an n+1 dimensional Torus vector. s ∈ Bn is the secret
key and s← B.

Encryption: Let e←DT,σ(x) and a←U(Tn). m ∈ B is the
plaintext message. Then, b = a · s+µ(2m−1)+ e.

Decryption: Return (1+ sgn(b−a · s))/2.
TRLWE: TRLWE is the Torus version of ring-LWE.

TRLWE can be represented as (a[X ],b[X ]), a two dimensional
Torus polynomial vector. s[X ] ∈ TN [X ] represents the secret
key and s[X ]←U(B).

Encryption: Let e[X ] ∈ TN [X ] ← DTN ,σ(x) and a[X ] ←
U(TN). m[X ] ∈ BN [X ] is the plaintext message. Then, b[X ] =
a[x] · s[X ]+µ(2m[X ]−1[X ])+ e[X ]

Decryption: Return (1[X ]+ sgn(b[X ]−a[X ] · s[X ]))/2.
TRGSW: This is a Torus and ring version of GSW, which

is represented as a vector of TRLWE ciphertexts, or equiva-
lently, a matrix of polynomials. TRGSW ciphertexts are in
M2,2l(TN [X ]).

Encryption: Let l,Bg ∈ N, i ∈ [1,2l]. e[X ] ∈ TN [X ] ←
DTN ,σ(x) and a[X ]← U(TN). m ∈ B is the plaintext mes-
sage. Then, bi[X ] = ai[x] · s[X ]+ ei[X ] and the ciphertext C is
defined as follows:

C =



a1[X ]+ m
Bg b1[X ]

a2[X ]+ m
Bg2 b2[X ]

...
...

al [X ]+ m
Bgl bl [X ]

al+1[X ] bl+1[X ]+ m
Bg

...
...

a2l [X ] b2l [X ]+ m
Bgl


We omit the explanation on the decryption of TRGSW as it is
not needed in this paper.

Sample Extraction and Identity Key Switching: This
operation converts a TRLWE ciphertext into a TLWE cipher-
text. Identity Key Switching (IKS) denotes the special case of
Public Key Switching where the public function is the iden-
tity function [11]. The noise variance of the output TLWE
ciphertext becomes larger than the input TRLWE ciphertext
because IKS adds noises. The construction of Bootstrapping
in TFHE uses this as a fundamental block.

Bootstrapping in TFHE: In TFHE, Bootstrapping can be
defined for TRLWE and TLWE. This can be configured by
Sample Extraction (SE) and IKS at the beginning or end of
the Bootstrapping procedure. The type of output ciphertext is
the same as that of the input but the noise is refreshed to the
level of a freshly encrypted ciphertext.

CMUX: CMUX is short for Controlled MUltipleXer. This
is one of the LHE-mode operations of TFHE and is equivalent
to a homomorphic multiplexer. CMUX takes two TRLWE
ciphertexts as inputs and a TRGSW ciphertext as its selector
input. CMUX outputs a TRLWE cipehrtext. The noise vari-
ance of the output TRLWE ciphertext is bigger than that of
the inputs because additional noise is induced by the CMUX
operation.

Homomorphic Gates: These are FHE-mode operations
of TFHE and they represent logic gates. Their inputs and
outputs are TLWE ciphertexts. All Homomorphic Gates ex-
cept for HomNOT perform bootstrapping in their evaluation.
HomNOT only negates the coefficients of its input TLWE
ciphertext, so the noise variances remain the same for its input
and output ciphertexts.
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HomMUX without SE and IKS: This is MUX of Ho-
momorphic Gates (HomMUX) without SE and IKS in its
Bootstrapping. By definition, HomMUX without SE and IKS
maps three TLWE ciphertexts to a TRLWE ciphertext. Hom-
MUX without SE and IKS is used in the construction of our
CMUX Memory.

Circuit Bootstrapping: This is a function which converts
a TLWE ciphertext into TRGSW ciphertext proposed in [11].
The noise variance is always the same between the input and
output of Circuit Bootstrapping, as bootstrapping is performed
during the process.

Parameters of TFHE: Parameters of TFHE are one of the
most important things in security analysis of VSP since they
determine the security level of TFHE. In our PoC implemen-
tation, we adopt parameters recommended in [13, 16]. The
estimated security of the parameter set is 80-bit [11].

2.2 Terms for Security Analysis
2.2.1 Definitions for Protocols

The main protocol we treat in this paper is two-party Secure
Computation Offloading (SCO). Two-party SCO is a special
case of Private Function Evaluation (PFE) [17]. To clarify
the difference between VSP and GarbledCPU or TinyGarble,
we also explain Private Function Secure Function Evaluation
(PF-SFE).

Definition of Alice and Bob: In this paper, Bob is some-
one who provides most of computational resource, like cloud
vendors, and Alice is someone who is the user of the cloud
service and possesses the secret key. Both of them are inter-
ested in learning as much private information as possible from
the other party.

Two-party SCO: In this protocol, only Alice has private
information, which is a function to be evaluated along with
the inputs. Furthermore, only Alice learns the result of the
evaluation.

Two-party PF-SFE: In this protocol, Bob has a function
to be evaluated and Alice has its input, but only Alice learns
the result of the function.

2.2.2 Security Assumptions

There are two assumptions in our security analysis: the 1-
circular security defined in [18], which relates to security of
the TFHE scheme, and the honest-but-curious model, which
limits the behavior of the adversary.

1-circular security: Circular security is classified into Key-
Dependent-Message (KDM) security [18, 19]. 1-circular se-
curity means that encryption of a secret key using the secret
key itself is secure. This is assumed in [11] to simplify the
implementation.

Honest-but-curious model: A honest-but-curious adver-
sary is a legitimate participant in a communication protocol
who will not deviate from the defined protocol but will attempt
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(a) Circuit representation
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INPUT
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INPUT
(B)
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NAND
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(C)

(b) Graph representation

Figure 1: The (a) circuit and (b) graph representation of a
half adder.

to learn all possible information from legitimately received
messages [20].

2.3 Terms for Processor Design
We use a half adder as an example for explaining circuit-
related vocabulary in this paper. A half-adder can be repre-
sented as Figure 1a. To simplify the explanation, we only use
NAND and NOT gates here. We denote its input bits by A
and B, and its output bits by S and C. A half adder computes a
1-bit addition. For example, if A = B = 1, then S = 0,C = 1,
which calculates one plus one equals two. Let e,d, f denote
intermediate outputs of the gates. If we represent a NAND
gate by function NAND(·, ·) and NOT gate by NOT(·), we
can interpret this circuit as a series of equations like the fol-
lowing: 

d = NAND(A,B)
e = NAND(A,d)
f = NAND(d,B)
S = NAND(e, f )
C = NOT(d)

(1)

Boolean Circuits over TFHE: The main idea for evaluat-
ing Boolean circuits over TFHE is replacing each logic gate
in the Boolean circuit by a Homomorphic Gate from TFHE.
In the half-adder circuit shown in Figure 1a, this means re-
placing NAND(·, ·) and NOT(·) in Equation (1) by equivalent
TFHE operations, that is, HomNAND(·, ·) and HomNOT(·).
Let Enc(·) denote encryption function of TFHE. Then, we
can reinterpret Figure 1a by using the idea as follows:

Enc(d) = HomNAND(Enc(A),Enc(B))
Enc(e) = HomNAND(Enc(A),Enc(d))
Enc( f ) = HomNAND(Enc(d),Enc(B))
Enc(S) = HomNAND(Enc(e),Enc( f ))
Enc(C) = HomNOT(Enc(d))

This interpretation enables us to evaluate single-bit addition
over TFHE with encrypted inputs and outputs. We can formu-
late, in a similar way, an entire processor circuit over TFHE.

Pipeline: Pipeline is a mechanism to increase the number
of gates that can be evaluated in parallel (g) by dividing the
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Figure 2: Examples of (a) unpipelined and (b) pipelined cir-
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circuit into several stages with registers. The registers hold
the inputs to and outputs from the stages for synchronization.

Figure 2 shows the unpiplined and pipelined circuits. In
the unpipelined circuit, g= 2 because only NAND(A,B) and
NAND(C,D) can be evaluated simultaneously. Meanwhile,
in the pipelined circuit, g= 3 because the register feeds the
value to the NAND gate, such that NAND(Reg(e),Reg( f )),
NAND(A,B) and NAND(C,D) can be evaluated in parallel.
That is how the pipelining increases the parallelism of the pro-
cessor. Lastly, we emphasize an important point that pipelin-
ing adds considerable costs to physical processor designs as
physical registers need to be added to the processor circuit to
enable pipelining. However, for FHE-based processors, we
do not need to implement these pipeline registers using Ho-
momorphic Gates. The intermediate ciphertexts can simply
be stored into the physical memory, acting as a “pipeline reg-
ister.” This reasoning holds true for all sequential elements
(e.g., flip-flops) in the VSP processor architecture.

3 Related Works

There are some previous works which enable one to run en-
crypted programs by implementing a Boolean circuit of a
processor over SMPC protocols. We only provide a brief sum-
mary on the most relevant works, and more works can be
found in Appendix A.

3.1 Processor over HE
There have been a few works that have attempted to imple-
ment processors over HE to run encrypted instructions [21–
24]. However, only FURISC [8, 25] represents the processor
as a Boolean circuit. FURISC uses Smart-Vercauteren Cryp-
tosystem [9, 26] to represent its processor. Smart-Vercauteren
Cryptosystem is an FHE which supports XOR and AND
over the ciphertexts. FURISC theoretically can be solutions
for two-party SCO although it is not discussed in their pa-
per [8]. FURISC implements an One Instruction Set Com-
puter (OISC) processor which supports only one instruction,
SBN. This means modifying modern compilers like Clang or
GCC to work for it is not an easy task because it is far dif-
ferent from current mainstream instruction sets. In fact, there
is no high-level language compiler available for FURISC. In

the experiments in Section 9, we show that VSP runs nearly
1,600× faster than the estimated runtime of FURISC.

3.2 Garbled Processor
Garbled Processor is the name for the processor over Garbled
Circuit (GC). There are three works, ARM2GC [27], TinyGar-
ble [6], and GarbledCPU [7]. ARM2GC emulates an ARM
processor, but it assumes the function to be evaluated as pub-
lic. TinyGable and GarbledCPU emulate a MIPS processor
and enable to use conventional programming representation
for two-party PF-SFE [6, 7]. The most critical weakness of
Garbled Processors is that, in theory, such constructions can-
not achieve two-party SCO. If Garbled Processor is used in
SCO, Alice needs to generate a table of ciphertexts for all
of the outputs of each gate for each clock cycle. This means
Alice has to do more computationally intensive tasks than
directly evaluating the function with the inputs.

4 Abstract Protocol Flow in Two-party SCO

In this section, we explain how VSP works in the two-
party SCO protocol. Two-party PF-SFE can be theoretically
achieved by modifying two-party SCO. See Appendix B.

Public/Private Data: The parameters of TFHE, Bootstrap-
ping Key, the circuit of the processor, the upper-bound of the
number of processor evaluation, the ciphertexts of ROM and
RAM, and the sizes of ROM and RAM are public to all par-
ties. The plaintext data of ROM and RAM data, the result of
the evaluated function and the secret key are private for Alice.

4.1 Abstract Protocol Flow
The protocol flow of VSP can be divided into seven phases,
and a visual depiction is shown in Figure 3. The phases are
discussed as follows.

1. Key Generation: Alice generates a secret key.

2. Registration: Alice generates a Bootstrapping Key from
the secret key and sends the Bootstrapping Key to Bob.

3. Compilation: Alice compiles the source code of the
function to be evaluated into executable (instructions)
for the processor using an ordinary compiler.

4. Encryption: Alice combines the executable with inputs,
and encrypts them as ROM and RAM. The executable
has a RAM part because of the initialization of global
variables. In this phase, Alice also decides how many
clock cycles Bob has to evaluate.

5. Evaluation: Bob evaluates the encrypted ROM and
RAM by repeatedly evaluating the processor circuit us-
ing the TFHE ciphertexts from Alice for the designated
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Figure 3: The proposed protocol flow of two-party SCO.

number of clock cycles. In this phase, what we refer to
as the snapshot is also generated. A snapshot contains
all necessary information for the Resumption phase, in-
cluding ciphertexts of current register values, ROM and
RAM.

6. Decryption: Alice decrypts the encrypted result using
her secret key.

7. Resumption: Alice checks the termination flag which
is included in the result. If the flag indicates that the
evaluation of the function has finished, the protocol is
terminated. If not, Alice re-generates the number of clock
cycles Bob needs to additionally evaluate the processor
circuits. Then, Bob executes the evaluation for the des-
ignated clock cycles using the information contained in
the snapshot and returns to Decryption phase.

In the above procedures, 1. and 2. are needed only once.
If Alice wants to evaluate multiple sets of functions and (or)
inputs, the secret key and the Bootstrapping Key can be reused.
Therefore, the computational and communication costs for
them are negligible.

Client-Side Computation and Outsourcing: Here, we
briefly show why VSP is able to provide a meaningful com-
putation outsourcing scheme. To outsource a program in a
meaningful way, the cost of client-side (i.e., Alice-side) com-
putations for setting up the outsourcing protocol must be less
than that of locally evaluating the program to be outsourced.
In VSP, the client-side costs almost entirely depend on the se-
curity parameter and the size of the memory m, but not on the
number of clock cycles n required to evaluate the compiled
program. Therefore, for any program where k ·m≤ o(n) for
some constant k (k only depends on the security parameter),
it holds that the client-side computation costs are a less than
that of directly evaluating the program.

5 Security Analysis

In this section, we analyze security of VSP. We also describe
the termination problem, which is one of the reasons why we
assume honest-but-curious adversary model. In this paper, we
also assume 1-circular security as assumed in TFHE.

5.1 Security Analysis in Two-party SCO
In this paper, we assume that Bob has physical access to
the computational resource. More precisely, the assumption
is that Bob can read even electric signals in the CPU dies
between transistors. Therefore, any private information which
is decrypted in the computational resource leaks to Bob.

Bob tries to guess Bootstrapping Key, ROM, RAM, regis-
ters, wires, etc. However, since we assume honest-but-curious
adversary model, this can be reduced to the hardness of de-
cryption of ciphertexts of TFHE in Chosen-plaintext Attack
(CPA) setting. As LWE-based FHE schemes are generally
based on well-established hardness assumptions, the security
of VSP can be easily guaranteed.

5.2 The Termination Problem
In VSP, it is obvious that Bob cannot know if the evaluated
program is halted or not, without run-time communication
with Alice, as the state of the processor is entirely encrypted.
The termination problem is also discussed in FURISC pa-
per [8]. The protocol which is claimed to be a solution for
the problem in the paper can be interpreted as the following
procedures in VSP:

1. Bob sends to Alice a TLWE ciphertext of the termination
flag. Here, the termination flag indicates if the function
evaluation is finished or not.

2. Alice decrypts the termination flag and tells Bob to ter-
minate or continue the evaluation.

3. If Alice decided to terminate the evaluation in step 2,
Bob sends back the evaluation results of the function to
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Alice. If Alice decided to continue, Alice re-generates
the number of clock cycles and sends it to Bob. Then,
Bob performs the evaluation and goes back to step 1.

This protocol is included in step 5 to 7 of the protocol flow
of two-party SCO, since the ciphertext of the termination flag
is included in the encrypted result. In our PoC implementation
of VSP, the termination flag is (homomorphically) generated
by the Instruction Decode stage of the processor.

Note that if the adversary model is not honest, Bob can try
to send the Bootstrapping Key, which includes the encrypted
secret key, or arbitrary ciphertexts to Alice for decryption,
pretending that the TLWE ciphertext is encrypting the termi-
nation flag. As a result, to extend the threat model of VSP
into a malicious setting, we need to ensure the existence of a
decryption oracle and the malleability of the underlying FHE
schemes are overcame. We point out that adopting IND-CCA1
FHE [28, 29] in combined with Verifiable Computation [30]
can be a candidate solution for VSP in a malicious setting,
and is one of our future works.

6 Design and Implementation of VSP

In this section, we explain how we designed and implemented
VSP [31].

6.1 Design Goals
The following three design goals are prioritized during the
design of VSP.
(i) C compatibility

Since it is obviously difficult to actually adopt a secure
framework if the framework is inconvenient to use, we de-
cided to support high-level program representations so that
users can use VSP with ease. There are two reasons why we
chose the C language as our high-level representation. First,
C is one of the most widely used programming languages.
Second, the C language is designed to be fast, where extensive
optimizations have been devoted into the optimization of C-
based programs, e.g., the LLVM framework [32]. Therefore,
with C support, users of VSP can have easy access to efficient
programs.
(ii) ISA Optimization

Due to the high computational demand, the number of
logic gates that can be evaluated in parallel (g) over TFHE is
limited by the number of parallel processing capacity of the
physical machine. In VSP, the evaluation time of the circuit
is proportional to the total number of gate count (t), as g of a
processor generally exceeds the parallel processing capacity
of an ordinary desktop computer. Since the ISA plays a key
role in determining t of the processor, we decided to design
our custom ISA in such a way that the circuit of the processor
can be minimized, while retaining C compatibility.
(iii) Maximizing Parallelism
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Figure 4: The VSP architecture and the main procedural flow.

As mentioned, the amount of parallelism in VSP (and gen-
erally in lattice-based cryptography) exceeds the parallel pro-
cessing capability of conventional desktop computers. How-
ever, we point out that cloud vendors may have much more
computational resources available than a home computer. To
fully leverage the computational resources available in data
centers, we designed the processor architecture in VSP to have
a pipelined structure, where the processor circuit is divided
into different pipeline stages that can be evaluated simulta-
neously. We assert that the pipeline technique does affect
the execution time when the physical machine does not have
much parallel processing capability. However, the runtime of
VSP can be significantly reduced by the pipeline technique
when there are enough physical processor cores.

6.2 The Architecture of VSP

Notation: In this paper, physical machine is the actual pro-
cessing unit that runs VSP. CPU and GPU refers the physical
CPU or GPU in the physical machine. In contrast, we use
processor to refer to the virtual processor constructed over
TFHE in VSP.

The visual overview of the implemented protocol flow of
the proposed VSP framework is given in Figure 4, which
details the abstract protocol flow in Figure 3. Table 1 shows

USENIX Association 30th USENIX Security Symposium    4013



Table 1: The Phases of VSP and the Associated Subcommands of the Command-Line Interface kvsp

Phase Key Generation Registration Compilation Encryption Evaluation Decryption Resumption

Subcommand kvsp-gen kvsp-genbkey kvsp-cc kvsp-enc kvsp-run kvsp-dec kvsp-resume
Modules (a) (a) (b), (c) (c) (a), (d) (a) (a), (d)

which phase each subcommand of kvsp [31] (a command-line
user interface for VSP) corresponds to and by which module
is called. Each subcommand of kvsp takes its inputs as a file,
and outputs its results to a file. Therefore, the communication
between the parties can be done via files transferring through
public channels.

We first describe how the modules (a)-(f) are used here.
Then, we explain each module. In this work, we name our
proposed processor circuits as (e) CAHP-Ruby and CAHP-
Pearl, and the details on the circuits are explained in Section 7.
It is assumed that Alice and Bob agree on which processor ar-
chitecture will be used in advance. (f) sbt [33] and Yosys [34]
are used to convert the Chisel code for the processor into a
JSON netlist. Here, the netlist is a graph of nodes, where each
node corresponds to a logic gate. The netlist is provided to
Bob before the start of the protocol. In Key Generation phase,
Alice uses (a) TFHEpp, a C++ implementation of TFHE on
CPU, to generate a secret key. In Registration phase, Alice
uses (a) TFHEpp one more times to generate the Bootstrap-
ping Key from the secret key and sends the Bootstrapping
Key to Bob. In Compilation phase, Alice uses (b) llvm-cahp,
our C compiler for our custom ISA called (c) CAHPv3, to
generate executable binaries. In Encryption phase, Alice uses
(a) TFHEpp to encrypt the executable binaries and the input
into encrypted ROM and RAM. Then, Alice sends the ROM
and RAM to Bob. In Evaluation phase, Bob uses (d) Iyokan to
evaluate the processor circuit netlist over TFHE with the given
encrypted ROM and RAM data. (a) TFHEpp and cuFHE,
the CUDA implementation of TFHE on GPU, are used in
(d) Iyokan to perform homomorphic computations. Then,
Bob sends back the encrypted result to Alice. In Decryption
phase, (a) TFHEpp is used to decrypt the encrypted result. In
Resumption phase, Alice checks the termination flag in the
result. If it is 1, she terminates the protocol. Otherwise, Alice
tells Bob to resume evaluation. Bob again runs (d) Iyokan for
the new round of homomorphic evaluation.

(a) TFHEpp and cuFHE: The TFHE libraries

TFHEpp is our fully-scratch C++17 implementation of TFHE
on the CPU, while cuFHE is a TFHE library on the GPU (we
optimized the original TFHE library from [35, 36]).

In general, cuFHE is faster than TFHEpp, especially when
multiple logic gates are run in parallel, as the throughput of
GPU is higher than that of CPU. We describe how we use
these libraries in (d) Iyokan.

While TFHEpp supports Circuit Bootstrapping, which is a

necessary component of CMUX Memory, cuFHE does not.
cuFHE uses Number Theoretic Transform (NTT) to perform
fast polynomial multiplication, where the ciphertext modulus
is kept to be 264−232 +1. This bit width constraint is to en-
sure that the operands involved in NTT fit into the multiply
instructions on the GPUs. Unfortunately, due to this bit width
constraint, cuFHE cannot directly perform Circuit Bootstrap-
ping, as the moduli required by Circuit Bootstrapping needs
to be larger than 64-bit. While we can simply increase the
size of modulus to be compatible with Circuit Boostrapping,
the performance of cuFHE in practice will be significantly re-
duced as more multiplication instructions (on the GPUs) and
memory accesses are required to perform a single polynomial
multiplication operation. The efficient implementation of Cir-
cuit Bootstrapping on GPUs currently remain as an open field
of study.

(b) llvm-cahp: The C Compiler

We implemented a new C compiler llvm-cahp for our ISA,
CAHPv3, using LLVM9.

The LLVM compiler infrastructure project is an assemblage
of compiler and toolchain technologies [32], which serves as
a good foundation for our custom processor architecture and
ISA. LLVM is widely used in both open and closed projects as
well as used in academia [37]. In particular, LLVM surpasses
GCC to win the ACM Software System Award in 2012 [38].
LLVM includes four parts. First, we have language-dependent
frontends that compile the program source code into the in-
termediate representation named LLVM IR. Second, LLVM
has a target-independent optimizer that operates on LLVM IR.
Third, the LLVM target-specific backends are used to gener-
ate the object code of each target from LLVM IR. Finally, the
LLVM linker turns multiple object codes into one executable.
Since we defined a custom ISA, we implemented a new back-
end for CAHPv3. We also added support for CAHPv3 to the
frontend of the C language (i.e., Clang), and to the LLVM
linker (i.e., LLD). By putting them together, we can directly
compile C program into a CAHPv3 executable binary file.

Our compiler supports almost all features of C such as
basic arithmetic operations, control expressions, function calls
including recursion, structures, and so on. Furthermore, since
LLVM has the target-independent optimizer as mentioned
above, llvm-cahp can output fast and small executables by
using the -O3 or -Oz compiler options.

Since the proposed processor is a virtual one, our modified
compiler does not provide functions in standard libraries that
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require physical processor components (e.g., the print func-
tion). There are also some minor limitations (e.g., jump over
1kiB) in our compiler.

(c) CAHPv3: Instruction Set Architecture

CAHPv31 is our RISC ISA based on RISC-V 32-bit integer
and 16-bit compressed instructions (RV32IC). CAHPv3 has
16-bit datapath and sixteen 16-bit registers. However, the in-
struction bit width is a mixture of 24 bits and 16 bits, since
we want to minimize the size of the machine code.

CAHPv3 has two important features from the perspectives
of our design goals. First, it is relatively easy to implement the
LLVM backend for CAHPv3, due to its similarities to main-
stream ISAs such as x86 and RISC-V. We note that this is one
of the main reasons why the OISC used in FURISC is consid-
ered impractical. Second, CAHPv3 reduces the complexity
of the processor circuitry because it is a RISC ISA, and the
datapath is only of 16-bit wide. Unlike RV32IC, CAHPv3
does not include instructions that are not necessary in VSP,
such as privileged instructions and synchronization instruc-
tions, further reducing the total gate count. The specification
is here [39].

(d) Iyokan: The Gate Evaluation Engine

Iyokan is our main software written in C++17 to run the pro-
cessor over TFHE. The fundamental features of Iyokan are to
receive an arbitrary Boolean circuit along with the encrypted
input data, evaluate the circuits according to the inputs over
TFHE, and return encrypted results of the evaluation. There-
fore, we can execute encrypted programs without decryption
by feeding Iyokan with the processor as a logical circuit and
the associated inputs.

Iyokan works in the following way:

1. Split the input sequential logical circuit into two parts:
combinational circuits and flip-flops to represent general
Boolean circuits.

2. Convert the combinational circuits into a directed acyclic
graph (DAG), where the logical gates are represented
as graph nodes, and wires as directed edges. Figure 1b
shows an example graph representation of the half adder
circuit in Figure 1a.

3. Evaluate the DAG by using the converted circuit along
with its inputs and the outputs of the flip-flops. Since ev-
ery node in the DAG has to be evaluated, Iyokan uses the
list scheduling algorithm to assign the tasks to workers
which are physical CPU and GPU processing units. Note
here that the scheduling algorithm also needs to resolve
the dependency relations between nodes represented as

1CAHP is short for “CAHP Ain’t for Hardware Processors,” and v3 means
this is our third version ISA for VSP (the former two did not work well).

edges in the DAG. Almost all the tasks are executed on
GPUs via cuFHE, and the rest of the tasks which can-
not be run on GPUs, such as Circuit Bootstrapping, are
executed on CPUs via TFHEpp.

This step gives us the output of the combinational circuit
in the current cycle, which is used as the inputs to the
flip-flops.

4. Save the inputs the previous step provides to the flip-
flops (physical memories).

5. Output the stored values in the flip-flops.

6. Exit if the number of clock cycles exceeds the threshold
which is specified by the user through command-line
option. Otherwise, go to step 3.

Each evaluation from step 3 to 6 corresponds to one clock
cycle. As mentioned in Section 4.1, Alice has to decide a
threshold, that is, how many times the steps between step 3
and 6 should be repeated.

There are two important features of Iyokan. First, Iyokan
can handle not only normal logic gates but also CMUX Mem-
ory. CMUX Memory can be represented as a scheduled graph,
so it can also be embedded in the DAG. Second, Iyokan can
run more than one worker on CPUs and GPUs in parallel.

(e) CAHP-Ruby, CAHP-Pearl: Processor

We developed two processors, CAHP-Ruby and CAHP-Pearl,
for VSP:

CAHP-Ruby CAHP-Ruby is a 5-stage pipeline processor
that implements CAHPv3 ISA. We will explain its de-
tails in Section 7.

CAHP-Pearl CAHP-Pearl is a single cycle processor that
also implements CAHPv3 ISA. We made it by just re-
moving pipeline registers from CHAP-Ruby.

(f) sbt and Yosys: Logic Synthesis

We chose Chisel [40], a particular Hardware Description Lan-
guage (HDL), to instantiate our processors for VSP, as Chisel
is widely adopted in the industry [41]. The sbt program com-
piles Chisel to the Verilog HDL. Then, Yosys [34] is utilized
to compile Verilog codes into JSON netlists.

7 The Proposed Processor Architecture

Figure 5 conceptually illustrates CAHP-Ruby, the proposed
custom processor architecture. CAHP-Ruby has a five-stage
pipeline structure consisting of an Instruction Fetch, an In-
struction Decode, an Execution, a Memory Access, and a Write
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Figure 5: The architecture of the five-stage pipelined CAHP-
Ruby processor.

Back stage. We chose a five-stage construction, as this struc-
ture is widely used in physical processor designs [42–45]. De-
termining the optimal number of pipeline is actually platform-
dependent, i.e., it depends on the physical resources available
to VSP. A framework that automatically optimizes the number
of pipeline stage is one of our main future works.

CAHP-Ruby has two different memory areas: ROM and
RAM, as shown in Figure 5. This structure greatly simplifies
the processor circuitry and enables each memory area to have
different and optimized implementations, further discussed in
Section 8. Here, ROM is a read-only memory area, designated
for the compiled instructions. RAM permits both read and
write operations, and is mainly for program data handling.
We note that CAHP-Ruby does not support any peripheral
devices nor interruption because they are not needed in a
virtual processor. Through such design decisions, we are able
to reduce the complexity of the CAHP-Ruby circuitry.

In what follows, we detail the operational behavior of each
of our custom processor stages.

Instruction Fetch (IF): IF is responsible for producing
an instruction. First, IF fetches a 32-bit block from ROM.
However, the block may not contain any complete instructions
due to the fact that our custom ISA contains both 16-bit and
24-bit instructions. Therefore, IF includes a 32-bit instruction
cache to resolve this 24/16-bit boundary alignment problem.
The cache contains ROM output value of the previous clock
cycle. If the currently fetched 32-bit ROM block does not
contain a complete instruction, data from the instruction cache
can be read, and it is guaranteed that there will always be a
complete instruction in a 64-bit ROM block. Therefore, IF
constructs a complete instruction with the assistance of the
instruction cache and the current ROM output value.

Instruction Decode (ID): ID decodes the instruction to
provide operands for the execution stage. This stage also
reads the data from the registers specified by the instruction
in the main register file. ID is also responsible for generating
the termination flag. In this work, we indicate a program
termination by inserting a jump instruction which jumps to
the same its own memory address, creating an infinite loop.
Once the ID stage detects such loop, the termination flag is
set, and can be read from the dedicated port.

Execution (Ex): This stage consists of an arithmetic and
logical unit (ALU) and a branch controller. ALU performs

(homomorphic) arithmetic operations such as addition and
subtraction, and logical operations such as logical summation,
and shift. In the case of a jump instruction or a branch instruc-
tion, the branch controller generates a flag indicating whether
to jump or not according to the result of the ALU operation.
We assert that all the computations and branches are over FHE
ciphertexts, guaranteeing that the processor circuit evaluator
does not observe any private information.

Memory Access (Mem): This stage consists of two parts:
memory controller and RAM. We defer a detailed presentation
of the RAM in Section 8. The memory controller takes write
data from the execution stage as its input. When the write
data is 8-bit wide, the controller converts the write data to be
of 16-bit wide, for the RAM only accepts 16-bit data. The
memory controller also reads the data from the read port of
RAM and format when the output value to be of 8-bit wide.
Finally, the memory controller passes the read data from the
RAM to the write back stage.

Write Back (WB): This stage simply writes data into the
main register files.

8 CMUX Memory

In this section, we present CMUX Memory, a new construc-
tion of memory unit over HE that leverages the LHE mode of
TFHE for optimization. As mentioned, there are two types of
memories: RAM and ROM.

8.1 Theoretical Speed Predictions
Informally, the reason why CMUX Memory is fast can be
explained by the fact that the evaluation of Circuit Bootstrap-
ping takes about 10 times as long as it takes to evaluate any
two-input homomorphic gate. Let v,w ∈ N be the number of
bits of the address and the data bus, respectively. Assuming
that we ignore the time it takes to process CMUX, because
CMUX is several hundred times faster than any two-input ho-
momorphic gate, the time it requires to evaluate the ROM of
the CMUX Memory is roughly equivalent to 10v+w Homo-
morphic Gates. Meanwhile, the time it takes to evaluate the
RAM is roughly equivalent to 10v+w(2v+1) Homomorphic
Gates. The w term comes from HomMUX without SE and
IKS and the w · 2v term comes from the noise refreshment.
The construction of the ROM and RAM by logic gates takes at
least w ·2(2v−1) two-input Homomorphic Gates each to con-
struct the tree for data fetching. Therefore, in theory, CMUX
Memory can be expected to be faster than constructing the
memory by logic gates.

8.2 RAM
In this paper, we only treat one cycle, single port RAM since it
requires the minimum amount of Bootstrapping to implement.
The RAM has following characteristics: (i) Read and write
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Figure 6: The architecture of the one-cycle single-port RAM.

are exclusive. (ii) Both read and write are done in one cycle.
(iii) Read and write use the same address.

The visual overview of the RAM architecture is given in
Figure 6. There are three inputs for RAM: address, write flag,
and write data. The address is the memory address for write or
read. The write flag is one bit data which selects the operation
mode of RAM. The write data is the data which will be wrote
in the address if the RAM is write mode. The RAM has one
output port, where the data presented at the input address are
retrieved. In VSP, the data bus in the processor uses TLWE
as ciphertexts for memory elements, since TLWE ciphertexts
are also used by the Homomorphic Gates in other parts of the
processor circuit.

As shown in Figure 6, RAM consists of the read unit, the
control unit, and the write unit. In what follows, we provide
a comprehensive explanation on each of the unit. Note that
addresses in the write and the read units are in TRGSW cipher-
text, but the memory controller in Memory Access stage of
the processor feeds the address as TLWE ciphertexts. There-
fore, Circuit Bootstrapping is applied to TLWE ciphertexts to
get TRGSW ciphertexts representations of the addresses.

Read Unit

The read unit reads the data at a given address. The visual
overview of its architecture is given in Figure 7 and 8. The
data of RAM are represented as w · 2v TRLWE ciphertexts,
where each TRLWE ciphertext contains one bit of plaintext in-
formation. The TRLWE ciphertexts are divided into w blocks,
where the ith block contains the ith bit of each word. A CMUX
tree is used to fetch the ith bit of the word from the ith block.
We note that, although the message space of TRLWE is ca-
pable of holding a vector of N binary values, i.e., BN [X ], we
only fill one entry with an actual plaintext value. If we pack
multiple bits into a single TRLWE ciphertext for read, we
also have to write in a packed manner. The problem for pack
writing is that every instruction might have a chance to write
only a small amount (e.g,. a 16-bit register) of data to RAM,
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and the amount of computations it takes to pack and unpack
bits can be a significant overhead.

The task of the CMUX tree is to compare each bit of the
address with that of RAM data by a tree of multiplexers imple-
mented by CMUX, such that data at the designated memory
address can be read.

Control Unit

The control unit is the interface between main processor cir-
cuit and CMUX Memory. We show an architectural illus-
tration of the control unit and module in Figure 9 and 10,
respectively. The control unit consists of w control modules,
each of which processes a single bit of the write data. Since
the processor only accepts TLWE ciphertexts, SE and IKS
are inserted to convert the read data from the read unit into
TLWE ciphertexts. The control module performs multiplex-
ing between the read and the write data, depending on the
write flag. The multiplexed result is sent to the write unit as
the controlled data.

Write Unit

From the view of the main processor circuit, each word of
the current cycle data is the multiplexed result between the
word of the previous cycle data and the write data depend-
ing on the write flag and the address matching. Since the
multiplexed result depends on the write flag that is fed as
the controlled data, the write unit only needs to take care of
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the address matching part of the computation. The write unit
also performs Bootstrapping over the entire contents of the
RAM. An visual overview of the write unit is given in Fig-
ure 11, 12, and 13. The write unit consists of w write blocks,
each handles a single word. Each write block is composed of
2v write bars which handles a single bit. Therefore, the write
unit consists of w ·2v write bars arranged in parallel.

The working principle of the write bar is comparing each bit
of the input address with the addresses in the RAM, through
an array of CMUX gates. If all bits in the input address match
a particular entry in the RAM, the controlled data is selected
and becomes current cycle data. Here, when the write flag is
false, the controlled data is same as the previous cycle data
in the address, so current cycle data is same as previous one.
On the other hand, if the write flag is true, the controlled
data and current cycle data both become the write data, and
the data are written into the memory. If the addresses do not
match, previous cycle data is selected, and data in memory
are not modified. The write bar refreshes the noise added by
the CMUX array by bootstrapping the data at the end.

Remark: The implementation of the comparison between
an input address bit and a constant address bit is, in fact, quite
simple. More specifically, the comparison result between an
input bit with a constant value of 1 is the bit itself. Meanwhile,
the comparison with 0 can be implemented by a subtraction
of a constant TRGSW ciphertext encrypting the constant 1
followed by a sign inversion of all coefficients in the resulting
TRGSW ciphertext.

0x00 Write Bar
0x00 data

at previous cycle
(TRLWE)

0x00 data
at current cycle

(TRLWE)

Address
(2 TRGSW)

0x11 Write Bar
0x11 data

at previous cycle
(TRLWE)

0x11 data
at current cycle

(TRLWE)

・
・
・

Figure 12: An example of the write block (v = 2).
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8.3 ROM
The construction of ROM with LHE mode of TFHE is trivial
by using Look Up Table (LUT), which is described in [11].
We applied both optimization techniques mentioned in [11],
namely Vertical Packing and Horizontal Packing.

9 Evaluation

In this section, we perform thorough experiments on VSP to
demonstrate its performance. We will first characterize VSP
over a set of benchmarks in Section 9.1, and then deliver the
overall performance statistics in Section 9.2

9.1 Benchmarks
Benchmark environments

In our implementation, ROM and RAM are 512 bytes, that is,
v = 8 and w = 16 when using the CMUX Memory for RAM.
We also experimented 1 KiB ones. See Appendix C for the
details.

The main benchmark program used in our evaluation is
Hamming. Hamming takes two 8-digit hexadecimal numbers
a and b as its arguments, and finds the Hamming distance
between them. The programs are compiled into CAHPv3 exe-
cutable by llvm-cahp with -Oz optimization flag, which mini-
mizes the size of machine code. Then, the compiled programs
are encrypted and executed on Iyokan with CAHP-Ruby (with
pipeline) and CAHP-Pearl (without pipeline). The scripts to
reproduce the runtime performance evaluation is available
at [48].

We used four types of machines to evaluate VSP:

AWS c5.metal An HPC server hosted by Amazon Web Ser-
vice equipped with Intel Xeon Platinum 8275CL CPU
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Table 2: Processor Size Evaluation

Processor MUX NOT Others

CAHP-Ruby 996 15 2422
CAHP-Pearl 877 22 2054

Lite MIPS [46] 1276 39 6241
PicoRV32 [47] 2732 11 5162

Table 3: Size of Keys and Ciphertexts

Type Size[MiB]

Secret Key 0.023
Bootstrapping Key 2563.047

ROM 0.033
RAM 33.55

(96 vCPUs), 92GiB RAM, and no GPUs.

Sakura Koukaryoku An HPC server hosted by Sakura in-
ternet Inc. equipped with Intel Xeon CPU E5-2623 v3
(16 vCPUs), 128GB RAM, and single NVIDIA Tesla
V100.

AWS p3.8xlarge An HPC server hosted by Amazon Web
Service equipped with Intel Xeon CPU E5-2686 v4 (32
vCPUs), 244GB RAM, and 4 NVIDIA Tesla V100.

AWS p3.16xlarge An HPC server hosted by Amazon Web
Service equipped with Intel Xeon CPU E5-2686 v4 (64
vCPUs), 488GB RAM, and 8 NVIDIA Tesla V100.

Runtime Performance Evaluation

Table 5 shows the run-time statistics required to evaluate the
encrypted program of Hamming. Here, sec./cycle stands for
seconds per clock cycle, which is the amount of program
run-time divided by the number of required clock cycles.

While pipelining increases the number of gates of the pro-
cessors, the technique enables more gates to be run in parallel.
Therefore, when the physical machine has enough parallel
processing units, pipelining reduces per-clock-cycle run-time
of VSP, and eventually results in decreased total run-time
(Compared between Cases #4 and 6, 7 and 8, 9 and 11, and
10 and 12). On the other hand, when the physical machine is
not so powerful (Cases #1 and 2), the runtime ends up being
slower due to the increased number of clock cycles. In addi-
tion, in Cases #3 and 5, the CMUX Memory is turned off and
the machine does not have enough parallel processing units to
fully parallelize the gates in ROM and RAM. Consequently,
the physical processors do not have more machine resources
for evaluating the pipelined core processor circuit.

Finally, we observe that while AWS p3.8xlarge (4 V100)
is much faster than Sakura Koukaryoku (single V100), there

Table 4: Machine Code Size

Program RV32IC [B] CAHPv3 [B]

Fibonacci 36 31
Hamming 354 264
Brainf*ck 226 229

is almost no difference between AWS p3.16xlarge (8 V100)
and p3.8xlarge. This is most likely caused by the fact that the
parallel processing capabilities of both machines well exceed
the number of logic gates that can be evaluated in parallel in
our processor. Therefore, further pipelining may be conducted
on such powerful computing platforms.

Besides pipelining, we also experiment on the performance
impact of the proposed CMUX Memory. As shown in Table 5,
CMUX Memory reduces runtime across all cases we tested.
When CMUX Memory is not used, ROM and RAM need to be
implemented by the Homomorphic Gates in the FHE mode of
TFHE, which results in significant performance degradations.

The fastest instance we tested is Case #12, that is, AWS
p3.16xlarge with pipelining and CMUX Memory applied,
which is shown in bold in Table 5. We achieved a performance
of about 0.8 sec./cycle, or equivalently, 1.25 Hz. From the
results of the benchmark, we conclude that both pipelining and
CMUX Memory are effective in improving the performance
of VSP.

Processor Size Evaluation

In general, fewer logic gates means fewer computational com-
plexity, so the total gate count of the processors is one of the
most important factors which determine the performance of
VSP. Table 2 shows the size of CAHP-Ruby and CAHP-Pearl.
In the table MUX and NOT are counted separately because
their performance characteristics are different from a normal
homomorphic gate. In particular, MUX is twice as slow as
other homomorphic gates, even with the cryptographic opti-
mization proposed in [11]. Meanwhile, NOT can be evaluated
much faster than other gates, as the only operations in a NOT
gate are sign inversions. We compare the gate count of our
processor to that of Lite MIPS [46] and PicoRV32 [47]. Lite
MIPS is the processor which is implemented in TinyGar-
ble [6]. PicoRV32 is one of open-source implementations
of RISC V, where the design goal is to implement a small
(in terms of gate count) processor. As shown in Table 2, our
processors are smaller than both of the existing designs.

Data size Evaluation

We used two more programs except Hamming: Fibonacci
and Brainf*ck here. Fibonacci takes a decimal digit n as its
command-line argument, and calculates nth Fibonacci number.
Here we used n = 5. Brainf*ck interprets code of brainf*ck,
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Table 5: Performance Evaluation Using Hamming

Case # Machine
# of

V100
Pipelining? CMUX Memory?

# of
cycles

Runtime [s] sec./cycle
# of
tries

1
AWS c5.metal 0

No Yes 936 2342.0±13.3 2.502±0.014 3
2 Yes Yes 1216 2773.0±2.8 2.280±0.002 3
3

Sakura Koukaryoku 1

No No 936 5919.0±33.1 6.324±0.035 5
4 No Yes 936 2232.1±1.7 2.385±0.002 5
5 Yes No 1216 7809.0±45.8 6.422±0.038 4
6 Yes Yes 1216 2045.0±4.6 1.682±0.004 5
7

AWS p3.8xlarge 4
No Yes 936 1455.7±0.3 1.555±0.000 3

8 Yes Yes 1216 979.0±12.5 0.805±0.010 3
9

AWS p3.16xlarge 8

No No 936 1627.0±4.2 1.739±0.004 3
10 No Yes 936 1440.0±2.5 1.538±0.003 3
11 Yes No 1216 1566.0±9.7 1.288±0.008 3
12 Yes Yes 1216 965.9±3.4 0.794±0.003 3

which is a esoteric programming language, and returns the re-
sult. We inputted ++++[>++++++++++<-]>++ to it, the result
of which is 42.

Table 3 shows the size of keys and ciphertexts. We can
see Bootstrapping Key is significantly bigger than other parts,
so reusing Bootstrapping Key can reduce communication
cost greatly. The reason why RAM is about 1024 times big-
ger than ROM is that Vertical Packing [11] is not applied to
RAM. Table 4 shows the machine code size of the programs
in CAHPv3. We also show RV32IC version for reference.
RV32IC has more registers than CAHPv3 does, so register
spills more often occurs in CAHPv3, which made code of
Brainf*ck larger.

Client-side Cost Evaluation

It is noted that, on p3.8xlarge, it takes Alice (i.e., the client)
about 57 seconds to complete the generation of the Boot-
strapping Key, encryption of the memory, compilation of the
program and the decryption of the evaluation results. Among
these, the generation of Bootstrapping Key is the most time
consuming procedure, where it takes about 55 seconds to
finish. For simple programs like Hamming, evaluating the
program locally by the client only takes around 0.5 microsec-
onds on a conventional CPU, and program outsourcing in
such case provides no practical merit. However, as discussed
in Section 4.1, for programs that potentially contain infinite
loops, VSP can obviously reduce the amount of client-side
computations. Therefore, exploring practical applications of
VSP is one of our main future works.

9.2 Overall Performance and Comparison to
Existing Works

Because FURISC [8, 25] is the only previous work which
represents the processor as a Boolean circuit and evaluates it
over FHE, we compare FURISC as the-state-of-the-art to VSP

Table 6: Comparison between VSP and FURISC

Name sec./cycle # of instructions Implementation

VSP 0.8 Small Public [31]
FURISC 1278 (est.) Large Private

in Table 6. FURISC gives the FPGA-accelerated evaluation
time for Subtraction, in Table 6.5 in [8]. Because SBN is
the only instruction FURISC supports, the evaluation time of
Subtraction corresponds to one clock cycle in the FURISC
processor. Therefore, the estimated time for evaluating one
clock cycle of FURISC is 21.3 minutes, over 1000 seconds.
In contrast, our VSP implementation can evaluate one clock
cycle in 0.8 seconds, as shown in Case #12 in Table 5.

The number of instructions for representing (almost all)
programs in FURISC are larger than that of VSP, for that FU-
RISC has an OISC ISA. Therefore, we can see that compiling
the same program on VSP results in a smaller number of in-
structions, and that each instruction runs nearly 1600× faster
than FURISC. Hence, we are confident that the open-source
VSP is the fastest FHE-based SCO platform to date.

10 Conclusion

In this work, we presented VSP, the first comprehensive plat-
form that implements a multi-opcode general-purpose sequen-
tial processor over TFHE for two-party Secure Computation
Offloading (SCO). We proposed a complete SCO scheme
and designed a custom five-stage pipelined processor along
with a custom ISA CAHPv3. We also proposed CMUX Mem-
ory, the optimized structure of ROM and RAM over TFHE
to speed up instruction evaluation. We thoroughly evaluated
VSP on benchmarks to show that both pipelining and CMUX
Memory are effective in speeding up VSP. Our open-source
implementation is nearly 1600× faster than the-state-of-the-
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art implementation while accepting conventional C language
programs.
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A Related Work

Although FURISC is the most similar existing study to our
proposed method, we will discuss other studies here. There are
some previous works which uses Paillier Cryptosystem [49]
to evaluate encrypted binaries. HEROIC [50] is the first one.
Paillier cryptosystem is one kind of Partial Homomorphic En-
cryption (PHE). Paillier Cryptosystem only permits addition
of integers. Therefore, HEROIC uses some tables to provide
enough functionality to implement a processor as Arithmetic
circuit. HEROIC implements an OISC processor which only
supports SUBtract and branch if Less-than or EQual to zero
(SUBLEQ) instruction. Unlike to FURSIC, there is a C like
language compiler for SUBLEQ, HIGHER SUBLEQ, though
its last update is in March 2011 [51]. The use of the tables

Alice Bob

3. Compilation

RAM

4. Encryption

Source Code

Input

ROM

Executable

Figure 14: Protocol flow of PF-SFE

leads the ciphertexts becomes deterministic. This means the
public key cannot be public. Therefore HEROIC theoretically
cannot achieve two-party PF-SFE. In addition, the method
of using the table has not been proven to be secure. The au-
thors of HEROIC also proposed Cryptoleq in 2016 [24]. It
also uses Paillier Cryptosystem with some tables and OISC.
They also proposed assembly-like Domain Specific Language
(DSL) in it. Cryptoleq depends on the random number gen-
eration of the server. This is not suitable characteristic for
SMPC since it needs the verification of the random number
generator. Cryptoleq also depends on heuristic code-based
obfuscation. There is a Open RISC implementation based on
idea of HEROIC [52], but this is suffered from too much mem-
ory consumption because of big tables. The authors estimated
it to be between hundreds of gigabytes to terabytes.

B Abstract Protocol Flow in two-party PF-
SFE

In this section, we explain how the protocol flow of VSP can
be theoretically modified to do two-party PF-SFE.

Public/Private Data: In this protocol, the function to be
evaluated is provided by Bob and the input data is provided
by Alice. The most important fact for understanding how
VSP works in this protocol is that TFHE supports “trivial”
ciphertexts. “Trivial” here means the generation of them does
not need any secret key nor random number generation. For
example, trivial TLWE of 1 is (0,µ). In such a way, Bob can
provide ROM and RAM data without the input of Alice.

ROM data and RAM data except for the input of Alice are
private of Bob and the input is private of Alice.

B.1 Abstract protocol workflow
The visual image is shown in Figure 14. This shows only
difference from two-party SCO case.

3. Compilation: Bob compiles the source code of the de-
sired function into the executable for the processor.
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Table 7: Runtime performance evaluation in 1 KiB ROM and RAM setting

Machine # of V100 Pipelining? CMUX Memory? # of cycles Runtime [s] sec./cycle # of tries

AWS p3.8xlarge 4 No No 937 3306.0±12.9 3.528±0.014 2
AWS p3.8xlarge 4 No Yes 937 1733.4±1.1 1.850±0.001 3
AWS p3.8xlarge 4 Yes No 1217 3804.0±18.6 3.126±0.015 3
AWS p3.8xlarge 4 Yes Yes 1217 1217.0±2.4 1.000±0.002 5

AWS c5.metal 0 No Yes 937 3230.0±40.6 3.443±0.043 3
AWS c5.metal 0 Yes Yes 1217 3940.0±68.4 3.238±0.056 3

Table 8: Resource requirements of CAHP-Ruby.

Gate IF ID+WB Ex Mem Total

AND 193 270 301 92 651
ANDNOT 59 110 44 0 223

MUX 54 683 256 116 996
NAND 300 336 356 10 1025
NOR 4 77 31 0 90
NOT 3 4 11 1 15
OR 77 56 95 8 215

ORNOT 39 142 40 8 195
XNOR 3 9 40 0 51
XOR 4 5 21 0 36

Table 9: The number of CMUXs in CMUX Memory

Component # of CMUXs

RAM Read Unit 4,080
RAM Write Unit 32,768

ROM 8

Total 36,856

4. Encryption: Alice encrypts the input and sends it to Bob.
Bob encrypts the executable using trivial ciphertexts and
combines it with the encrypted input to generate the
encrypted ROM and RAM.

B.2 Security Analysis in Two-party PF-SFE
Bob tries to reveal plaintexts of Bootstrapping Key, RAM,
registers and each ciphertext of each wire, etc. ROM (the
function to be evaluated) is not a target since it is provided
by Bob. However, like two-party SCO case, this can be re-
duced to the hardness of decryption of ciphertexts of TFHE.

Alice tries to reveal ROM, RAM, registers and ciphertexts
of each wire, etc. Though they will not be provided to Alice,
Alice knows the result of the function, so if Bob uses always
the same function and input, Alice can try to get the results
for all possible inputs. Therefore, the protection of private
information of Bob from Alice needs another method like
indistinguishable obfuscation. This is beyond the scope of our
proposed method.

We note that PF-SFE protocol does have the FHE malleabil-
ity problem, since the program is provided by Bob. However,
PF-SFE is still vulnerable to the termination problem men-
tioned in Section 4.1.

C Additional Evaluations

Runtime Performance Evaluation

Table 7 shows additional results in 1 KiB ROM and RAM
setting.

Gate count evaluation

Table 8 shows the gate requirements of each stage of CAHP-
Ruby. Note that these values are calculated by synthesising
the components separately. Due to global optimizations in the
synthesis software, the numbers do not add up to the size of
the entire processor circuit (the column “Total”).

Also, Table 9 shows the number of CMUXs in CMUX
Memory components.

Memory consumption evaluation

On p3.8xlarge, running our implementation consumes about
3.7 GB of main memory and about 0.6 GB per GPU. The
most of memory consumption seems to be caused by holding
Bootstrapping Key.
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