
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

Using Amnesia to Detect Credential Database Breaches
Ke Coby Wang, University of North Carolina at Chapel Hill;

Michael K. Reiter, Duke University
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-ke-coby

Using Amnesia to Detect Credential Database Breaches

Ke Coby Wang
University of North Carolina at Chapel Hill

kwang@cs.unc.edu

Michael K. Reiter
Duke University

michael.reiter@duke.edu

Abstract
Known approaches for using decoy passwords (honeywords)
to detect credential database breaches suffer from the need
for a trusted component to recognize decoys when entered
in login attempts, and from an attacker’s ability to test stolen
passwords at other sites to identify user-chosen passwords
based on their reuse at those sites. Amnesia is a framework
that resolves these difficulties. Amnesia requires no secret
state to detect the entry of honeywords and additionally al-
lows a site to monitor for the entry of its decoy passwords
elsewhere. We quantify the benefits of Amnesia using proba-
bilistic model checking and the practicality of this framework
through measurements of a working implementation.

1 Introduction

Credential database breaches have become a widespread se-
curity problem. Verizon confirmed 3950 database breaches
globally between Nov. 2018 and Oct. 2019 inclusive; of those
1665 breaches for which they identified victims, 60% leaked
credentials [43].1 Credential database breaches are the largest
source of compromised passwords used in credential stuffing
campaigns [42], which themselves are the cause of the vast
majority of account takeovers [41]. Unfortunately, there is
usually a significant delay between the breach of a credential
database and the discovery of that breach; estimates of the
average delay range from 7 [23] to 15 [41] months. The result-
ing window of vulnerability gives attackers the opportunity to
crack the passwords offline (if the stolen credential database
stores only password hashes), to determine their value by
probing accounts using them [41], and then to either use them
directly to extract value or sell them through illicit forums for
trafficking stolen credentials [41, 42].

Decoy passwords have been proposed in various forms to
interfere with the attacker’s use of a stolen credential database.
In these proposals (see Sec. 2), a site (the target) stores decoy

1This number excludes 14 breaches of victims in Latin America and the
Caribbean for which the rate of credential leakage was not reported.

passwords alongside real passwords in its credential database,
so that if the attacker breaches the database, the correct pass-
words are hidden among the decoys. The attacker’s entry of
a decoy password can alert the target to its breach; the term
honeywords has been coined for decoys used in this way [25].

While potentially effective, honeywords suffer from two
related shortcomings that, we believe, have limited their use in
practice. First, previous proposals that leverage honeywords
require a trusted component to detect the entry of a honey-
word, i.e., a component that retains secret state even after
the target has been breached. Such a trusted component is a
strong assumption, however, and begs the question of whether
one could have been relied upon to prevent the breach of the
target’s database in the first place. Second, the effectiveness
of honeywords depends on the indistinguishability of the user-
chosen password from the decoys when they are exposed to an
attacker. However, because so many users reuse their chosen
passwords across multiple accounts [11, 36, 44], an attacker
can simply test (or stuff) all passwords for an account leaked
from the target at accounts for the same user at other sites.
Any password that works at another site is almost certainly
the user-chosen password at the target.

In this paper, we resolve both of these difficulties and re-
alize their solutions in a framework called Amnesia. First,
we show that honeywords can be used to detect a target’s
database breach with no persistent secret state at the target,
a surprising result in light of previous work. Specifically,
we consider a threat model in which the target is breached
passively but completely and potentially repeatedly. Without
needing to keep secrets from the attacker, Amnesia neverthe-
less enables the target to detect its own breach probabilis-
tically, with benefits that we quantify through probabilistic
model checking. Our results show, for example, that Amnesia
substantially reduces the time an attacker can use breached
credentials to access accounts without alerting the target to
its breach.

To address credential stuffing elsewhere to distinguish the
user-chosen password from the honeywords, Amnesia enables
the target to monitor for the entry of passwords stolen from it

USENIX Association 30th USENIX Security Symposium 839

at other sites, called monitors. Via this framework, incorrect
passwords entered for the same user at monitors are treated
(for the purposes of breach detection) as if they had been
entered locally at the target. One innovation to accomplish
this is a cryptographic protocol by which a monitor transfers
the password attempted in an unsuccessful login there to
the target, but only if the attempted password is one of the
passwords (honey or user-chosen) for the same account at the
target; otherwise, the target learns nothing. We refer to this
protocol as a private containment retrieval (PCR) protocol,
for which we detail a design and show it secure. Leveraging
this PCR protocol, we show that Amnesia requires no trust in
the monitors for the target to accept a breach notification. In
other words, even if a monitor is malicious, it cannot convince
an unbreached target that it has been breached.

We finally describe the performance of our Amnesia imple-
mentation. Our performance results suggest that the compu-
tation, communication and storage costs of distributed mon-
itoring are minimal. For example, generating a monitoring
response takes constant time and produces a constant-size
result, as a function of the number of honeywords, and is prac-
tical (e.g., no more than 10ms and about 1KB, respectively).

To summarize, our contributions are as follows:
• We develop the first algorithm leveraging honeywords by

which a target site can detect the breach of its password
database, while relying on no secret persistent state. We
evaluate this design using probabilistic model checking to
quantify the security it provides.

• We extend this algorithm with a protocol to monitor ac-
counts at monitors to detect the use of the target’s hon-
eywords there. Our algorithm is the first such proposal to
ensure no false detections of a database breach, despite
even malicious behavior by monitors.

• A core component of this algorithm is a new cryptographic
protocol we term a private containment retrieval protocol,
which we detail and prove correct.
• We describe the performance of our algorithm using an

implementation and show that it is practical.

2 Related Work

Within research on decoy passwords, we are aware of only
two proposals by which a target can detect its own breach
using them. Juels and Rivest [25] coined the term honeywords
for decoy passwords submitted in login attempts to signal to a
site that it was breached by an attacker. In their proposal and
works building on it (e.g., [14]), the target is augmented with a
trusted honeychecker that stores which of the passwords listed
with the account is the user-chosen one; login attempts with
others alert the site to its breach. Almeshekah et al. [2] use
a machine-dependent function (e.g., hardware security mod-
ule) in the password hash at the target site to prevent offline
cracking of its credential database if breached. Of more rele-
vance here, an attacker who is unaware of this defense and so

attempts to crack its database offline will produce plausible de-
coy passwords (ersatzpasswords) that, when submitted, alert
the target site to its breach. The primary distinction between
these proposals and ours is that ours permits a target to detect
its own breach without any secret persistent state. In con-
trast, these proposals require a trusted component—the hon-
eychecker or the machine-dependent function—whose state
is assumed to remain secret even after the attacker breaches
the site. In addition, we reiterate that ersatzpasswords are
effective in alerting the target to its breach only if the at-
tacker is unaware of the use of this scheme, as otherwise the
attacker will know that passwords generated through offline
cracking without access to the machine-dependent function
are ersatzpasswords.

Other uses of decoy passwords leverage defenses at other,
unbreached sites—either their online guessing defenses gener-
ically [5,28] or their cooperation to check for decoy passwords
specifically [5, 48]—to defend accounts whose credentials
have been stolen, whether by phishing [48], user device com-
promise [5], or the target site’s database breach [28]. While
we extend our design in Sec. 5 to monitor for a target’s hon-
eywords being submitted in login attempts at monitors, to
our knowledge our design is the first to eliminate the need
for the target to trust another site in order to accept that a
detected breach actually occurred. Specifically, in our design
a monitor, even if malicious, cannot convince an unbreached
site that it has been breached.

Various other works have leveraged decoy accounts to de-
tect credential database breaches, i.e., accounts with no owner
that, if ever accessed, reveal the breach of the account’s site or
a site where a replica of the account was created (e.g., [14,21]).
In Tripwire [13], each decoy account is registered with a dis-
tinct email address and password, for which the password at
the email provider is the same. Any login to the email account
(provided that the email provider is itself not compromised)
suggests the breach of the website where that email address
was used to register an account. Like the previously discussed
proposals, this design places trust in the detecting party (the
email provider or, in this case, the researchers working with it)
to be truthful when reporting the breach of a target. Indeed,
DeBlasio et al. report that sites’ unwillingness to trust the
evidence they provided of the sites’ breaches was an obsta-
cle to getting them to act.2 Moreover, the utility of artificial
accounts hinges critically on their indistinguishability from
real ones, and if methods using them became effective in hin-
dering attacker activity, ensuring the indistinguishability of
these accounts would presumably become its own arms race.
Our design is agnostic to whether it is deployed on real or
decoy accounts, sidestepping the need for convincing decoy
accounts but also demanding attention to the risks to real

2The paper concludes, “A major open question, however, is how much
(probative, but not particularly illustrative) evidence produced by an external
monitoring system like Tripwire is needed to convince operators to act, such
as notifying their users and forcing a password reset” [13, Section 8].

840 30th USENIX Security Symposium USENIX Association

accounts that it might introduce.
To be fair, generation of honeywords that are sufficiently

indistinguishable from real ones is itself a topic of active
investigation (e.g., [1, 14, 45]). Here we will simply assume
that a site can generate honeywords in isolation to satisfy
certain properties, detailed in Sec. 3. The development of
methods to achieve these properties is a separate concern.

An alternative to decoy passwords or accounts for defend-
ing against a breach of a site’s credential database is for the
site to instead leverage a breach-hardening service. Even
after having breached the target’s credential database, the at-
tacker must succeed in an online dictionary attack with the
breach-hardening service per stolen credential he wishes to
use, provided that the breach-hardening service is itself not si-
multaneously breached (e.g., [15,30–32,40]). While differing
in their details, these schemes integrate the breach-hardening
service tightly into the target’s operation, in the sense that,
e.g., the benign failure of a breach-hardening service would
interfere with login attempts at the target. In contrast, while
the benign failure of our monitors would render them useless
for helping to detect the target’s breach, the operation of the
target would be otherwise unaffected.

3 Honeywords

We assume the existence of a randomized honeyword genera-
tor HoneyGen that, given an account identifier a, user-chosen
password πa , and integer k, produces a set Πa containing πa
and k other strings and having the following properties. We
use “←” to denote assignment of the result of evaluating the

expression on its right to the variable on its left, and “
$
←” to

denote sampling an element uniformly at random from the set
on its right and assigning the result to the variable on its left.

First, the essential purpose of honeywords is to make it
difficult for an adversary who breaches a credential database
to determine which of the passwords listed for an account
a is the user-chosen one. In other words, for any attacker
algorithm A that is given the account identifier a and its set
of passwords Πa , we assume

P
(
π = πa

∣∣∣∣∣ Πa ← HoneyGen(a,πa ,k)
π← A(a,Πa)

)
≈

1
k + 1

(1)

Second, because honeywords are intended to alert the
target to a breach of its credential database, avoiding false
alarms requires that an adversary be unable to generate a hon-
eyword for an account without having actually breached the
target. In particular, this property would ideally be achieved
even if the user-chosen password πa is known, e.g., because
the user was phished or because she reused πa as her pass-
word at another site that was compromised. While these place
the user’s account at the target at risk, neither equates to
the target’s wholesale breach and so should not suffice to

induce a breach detection at the target. That is, for any at-
tacker algorithm B that knows only the account identifier a
and user-chosen password πa , we assume:

P
(
π ∈ Πa \ {πa }

∣∣∣∣∣ Πa ← HoneyGen(a,πa ,k)
π← B(a,πa)

)
≈ 0 (2)

This assumption implies that any two invocations of
HoneyGen(a,πa ,k) produce sets Πa , Π′a that intersect only
in πa with near certainty. Otherwise, an adversary B(a,πa)
that invokes Π′a ← HoneyGen(a,πa ,k) and returns a random
π ∈ Π′a \ {πa } would violate (2). In other words, (2) implies
that the honeywords generated at two different sites for the
same user’s accounts are distinct, even if the user reuses the
same password for both accounts.

4 Detecting Honeyword Entry Locally

The first contribution of this paper is in demonstrating how the
target site can detect its own breach while relying on no secret
persistent state. We detail the threat model for this section in
Sec. 4.1 and provide the detection algorithm in Sec. 4.2. We
demonstrate the efficacy of this algorithm in Sec. 4.3.

4.1 Threat Model

Our goal is to enable a site, called the target, to detect that its
credential database has been stolen. We assume that the target
uses standard password-based authentication, i.e., in which
the password is submitted to the target under the protection
of a cryptographic protocol such as TLS.

We allow for an attacker to breach the target passively only,
in which case it captures all persistent storage at the site asso-
ciated with validating or managing account logins. Through-
out this paper, this persistent storage is denoted DB, and in-
formation associated specifically with account a is denoted
DBa . In particular, the information captured includes the pass-
words listed for each of the site’s user accounts (DBa .auths);
if stored as salted hashes, the attacker can crack the pass-
words offline. The attacker also captures any long-term cryp-
tographic keys of the site. As will become relevant below,
we allow the attacker to capture the site’s persistent storage
multiple times, periodically.

We stress that the information captured by the attacker in-
cludes only information stored persistently at the site. Recall
that the principle behind honeywords is to leverage their use
in login attempts to alert the target that its credential database
has been stolen. As such, we must assume that transient in-
formation that arrives in a login attempt but is not stored
persistently at the site is unavailable to the attacker. Other-
wise, the attacker would simply capture the correct password
for an account once the legitimate owner of that account logs
in. Since the site’s breach leaks any long-term secrets, this

USENIX Association 30th USENIX Security Symposium 841

assumption implies that the cryptographic protocol protect-
ing user logins provides perfect forward secrecy [20]3 or that
the attacker simply cannot observe login traffic. Similarly,
we assume that despite breaching the target site, the attacker
cannot predict future randomness generated at the site.

We also highlight that, like in Juels and Rivest’s honeyword
design [25], we do not consider the active compromise of the
target. In particular, the integrity of the target’s persistent
storage is maintained despite the attacker’s breach, and the
site always executes its prescribed algorithms. Without this
assumption, having the target detect its own breach is not
possible. We do, however, permit the attacker to submit login
attempts to the target via its provided login interface.

Finally, while the adversary might steal passwords cho-
sen by some legitimate users of the target (e.g., by phishing,
keylogging, or social engineering) and be a user of the site
himself, Amnesia leverages the activity of other account own-
ers, each of whose chosen password is indistinguishable to the
attacker in the set of passwords listed for her account. As such,
when we refer to account owners below, we generally mean
ones who have not been phished or otherwise compromised.

4.2 Algorithm
In this section we detail our algorithm for a target to leverage
honeywords for each of its accounts to detect its own breach.
Somewhat counterintuitively, in our design the honeywords
the target site creates for each account are indistinguishable
from the correct password, even to itself (and so to an attacker
who breaches it)—hence the name Amnesia. However, the
passwords for an account (i.e., both user-chosen and honey)
are marked probabilistically with binary values. Marking en-
sures that the password last used to access the account is
always marked (i.e., its associated binary value is 1). Specif-
ically, upon each successful login to an account, the set of
passwords is remarked with probability premark, in which case
the entered password is marked (with probability 1.0) and
each of the other passwords is marked independently with
probability pmark. As such, if an attacker accesses the account
using a honeyword, then the user-chosen password becomes
unmarked with probability premark(1− pmark). In that case,
the breach will be detected when the user next accesses the
account, since the password she supplies is unmarked.

More specifically, the algorithm for the target to detect its
own breach works as follows. The algorithm is parameterized
by probabilities pmark and premark, and an integer k > 0. It
leverages a procedure mark shown in Fig. 1, which marks the
given element e with probability 1.0, marks other elements of
DBa .auths for the given account a with probability pmark, and
stores these markings in the credential database for account a
as the function DBa .marks.

3Cohn-Gordon et al. [9] observe that for a passive attacker, perfect forward
secrecy implies protection not only against the future compromise of the
long-term key but also its past compromise.

mark(a,e): /* Assumption: e ∈ DBa .auths */

• X← DBa .auths
• Choose marked : X→ {0,1} subject to:

– marked(e) = 1
– ∀e′ ∈ X\ {e} : marked(e′) ∼ Bernoulli (pmark)

• DBa .marks← marked

Figure 1: Procedure mark, used in Secs. 4–5

Password registration: When the user sets (or resets)
the password for her account a, she provides a user-
chosen password π. The password registration system
generates DBa .auths← HoneyGen(a,π,k) and then in-
vokes mark(a,π).
Login: When a login is attempted to account a with
password π, the outcome is determined as follows:
• If π < DBa .auths, then the login attempt is unsuccess-

ful.
• If π ∈ DBa .auths and DBa .marks(π) = 0, then the lo-

gin attempt is unsuccessful and a credential database
breach is detected.

• Otherwise (i.e., π ∈ DBa .auths and DBa .marks(π) =

1) the login attempt is successful.4 In this case,
mark(a,π) is executed with probability premark.

This algorithm requires that a number of considerations
be balanced if an attacker can breach the site repeatedly to
capture its credential database many times. Consider that:
• Repeatedly observing the passwords left marked by user

logins permits the attacker to narrow in on the user-chosen
password as the one that is always marked. This suggests
that legitimate logins should remark the passwords as rarely
as possible (i.e., premark should be small) or that, when
remarking occurs, doing so results in passwords already
marked staying that way (i.e., pmark should be large).

• If the attacker accesses an account between two logins by
the user, a remarking must occur between the legitimate
logins if there is to be any hope of the second legitimate
login triggering a detection (i.e., premark should be large).

• If the attacker is permitted to trigger remarkings many times
between consecutive legitimate logins, however, then it can
do so repeatedly until markings are restored on most of
the passwords that were marked when it first accessed the
account. The attacker could thereby reduce the likelihood
that the next legitimate login detects the breach. This sug-
gests that it must be difficult for the attacker to trigger many
remarkings on an account (i.e., premark should be small) or
that when remarkings occur, significantly many passwords

4Or more precisely, the stage of the login pipeline dealing with the pass-
word is deemed successful. Additional steps, such as a second-factor authen-
tication challenge, could still be required for the login to succeed.

842 30th USENIX Security Symposium USENIX Association

are left unmarked (i.e., pmark should be small).
All of this is complicated by the fact that the target site can-
not distinguish between legitimate and attacker logins, of
course. While an anomaly detection system (ADS) using fea-
tures of each login attempt other than the password entered
(e.g., [18]) could provide a noisy indication, unfortunately
our threat model permits the attacker to learn all persistent
state that the target site uses to manage logins; this would
presumably include the ADS model for each account, thereby
enabling the adversary to potentially evade it. For this reason,
we eschew this possibility, instead settling for a probability
premark of remarking passwords on a successful login and, if
so, a probability pmark with which each password is marked
(independently), that together balance the above concerns. We
explore such settings in Sec. 4.3.

4.3 Security

Methodology: To evaluate the security of our algorithm, we
model an attack as a Markov decision process (MDP) con-
sisting of a set of states and possible transitions among them.
When the MDP is in a particular state, the attacker can choose
from a set of available actions, which determines a probability
distribution over the possible next states as a function of the
current state and the action chosen. Using probabilistic model
checking, we can evaluate the success of the adversary in
achieving a certain goal (see below) under his best possible
strategy for doing so. In our evaluations below, we use the
Prism model checker [29].

The basic distributions for modeling our algorithm for a
single account are straightforward. Let�` denote the number
of passwords that the attacker always observes as marked
in ` breaches of the target, with each pair of breaches sep-
arated by at least one remarking in a legitimate-user login.
(Breaches with no remarking between them will observe the
same marks.) Then, �` ∼ binomial

(
k, (pmark)`

)
+ 1, where

the “+ 1” represents the user-chosen password, which re-
mains marked across these ` remarkings. Now, letting �n
denote the number of these passwords that are marked after
an adversary-induced remarking, conditioned on �` = n + 1,
we know �n ∼ binomial (n, pmark) + 1, where the “+ 1” rep-
resents the marked password that the adversary submitted to
log into the account, which remains marked with certainty. If
�n = α+ 1 after the adversary’s login, then the probability of
the target detecting its own breach upon the legitimate user’s
next login to this account is 1− α+1

n+1 .
To turn these distributions into a meaningful MDP, however,

we need to specify some additional limits.
• The number of attacker breaches until it achieves ` that

each follows a distinct remarking induced by a legitimate
user login is dependent not only on premark, but also the rate
of user logins. In our experiments, we model user logins
as Poisson arrivals with an expected number λ = 1 login

per time unit. We permit the attacker to breach the site and
capture all stored state at the end of each time unit.

• Even with this limit on the rate of legitimate user logins, an
attacker that breaches the site arbitrarily many times will
eventually achieve �` = 1 and so will know the legitimate
user’s password. In practice, however, the attacker cannot
wait arbitrarily long to access an account, since there is a
risk that his breaches will be detected by other means (i.e.,
not by our algorithm). To model this limited window of
vulnerability, we assume that the time unit in which the
breach is discovered by other means (at the end of the time
unit), and so the experiment stops, is represented as a ran-
dom variable � distributed normally with mean µstop and
relative standard deviation χstop = 0.2. For example, assum-
ing a seven-month average breach discovery delay [23], an
account whose user accesses it once per week on average,
would have µstop ≈ 30 time units (weeks).
• Once the attacker logs into the account with one of the

n + 1 passwords that it observed as always marked in its
breaches, it can log in repeatedly (i.e., resample �n) to
leave the account with marks that minimize its probability
of detection on the next legitimate user login. If allowed
an unbounded number of logins, it can drive its probability
of detection to zero. Therefore, we assume that the site
monitors accounts for an unusually high rate of successful
logins, limiting the adversary to at most Λ per time unit.
Let random variable � denote the time unit at which the

attacker logs into the account for the first time, and let random
variable � ≤ � denote the time unit at which the attacker is
detected. That is,� < �means that our algorithm detected the
attacker before he was detected by other means. Moreover,
note that � <�, since our algorithm can detect the attacker
only after he logs into the account. We define the benefit of
our algorithm to be the expected number of time units that
our algorithm deprives the attacker of undetectably accessing
the account, expressed as a fraction of the number of time
units it could have done so in the absence of our algorithm.
In symbols:

benefit =
E (�−�)−E (�−�)

E (�−�)
= 1−

E (�−�)
E (�−�)

(3)

When computing benefit, we do so for an attacker strategy
maximizing E (�−�), i.e., against an attacker that maximizes
the time for which it accesses the account before it is detected.
Results: The computational cost of model-checking this MDP
is such that we could complete it for only relatively small
(but still meaningful) parameters. The results we achieved
are reported in Figs. 2–4. To explore how increasing each
of k, Λ, and µstop affects benefit, each of the tables in Fig. 2
corresponds to modifying one parameter from the baseline
table shown in Fig. 2a, where k = 48, Λ = 4, and µstop = 8.
Each number in each table is the benefit of a corresponding
〈premark, pmark〉 parameter pair, where higher numbers are bet-
ter. When k is increased from 48 to 64 (Fig. 2b), we can see

USENIX Association 30th USENIX Security Symposium 843

pmark
premark .10 .20 .30 .40 .50 .60 .70 .80 .90

.10 .06 .06 .05 .04 .04 .03 .02 .02 .01

.20 .11 .11 .10 .09 .07 .06 .04 .03 .02

.30 .16 .15 .14 .12 .10 .08 .06 .04 .02

.40 .21 .21 .19 .16 .14 .11 .08 .05 .02

.50 .27 .26 .24 .20 .17 .13 .10 .07 .03

.60 .31 .30 .27 .23 .19 .15 .11 .07 .03

.70 .34 .35 .32 .27 .23 .18 .13 .09 .04

.80 .32 .38 .35 .30 .25 .19 .14 .09 .04

.90 .32 .41 .40 .34 .28 .22 .15 .11 .05
1.0 .33 .40 .42 .38 .31 .24 .17 .12 .05

(a) Baseline

pmark
.10 .20 .30 .40 .50 .60 .70 .80 .90
.06 .06 .05 .04 .04 .03 .02 .02 .01
.12 .11 .10 .09 .07 .06 .04 .03 .02
.17 .16 .15 .12 .10 .08 .06 .04 .02
.23 .22 .19 .16 .14 .11 .08 .05 .03
.29 .27 .24 .21 .17 .14 .10 .07 .03
.33 .31 .28 .24 .20 .16 .11 .08 .03
.37 .36 .33 .28 .23 .19 .13 .09 .04
.35 .40 .36 .31 .26 .21 .15 .10 .04
.34 .43 .41 .35 .29 .23 .16 .11 .05
.34 .42 .45 .38 .32 .26 .18 .12 .05

(b) k = 64

pmark
premark .10 .20 .30 .40 .50 .60 .70 .80 .90

.10 .06 .06 .05 .04 .04 .03 .02 .02 .01

.20 .11 .10 .10 .08 .07 .05 .04 .03 .01

.30 .15 .15 .14 .12 .10 .08 .05 .04 .02

.40 .20 .19 .18 .15 .12 .10 .07 .05 .02

.50 .25 .24 .22 .19 .15 .12 .08 .06 .03

.60 .29 .28 .26 .22 .18 .14 .10 .07 .03

.70 .29 .32 .30 .25 .21 .16 .11 .08 .03

.80 .29 .35 .33 .28 .23 .18 .12 .08 .03

.90 .28 .38 .37 .31 .25 .19 .13 .09 .04
1.0 .28 .36 .41 .35 .28 .22 .15 .10 .04

(c) Λ = 8

pmark
.10 .20 .30 .40 .50 .60 .70 .80 .90
.06 .06 .06 .05 .04 .03 .02 .02 .01
.12 .12 .11 .10 .08 .06 .05 .03 .02
.17 .17 .15 .13 .11 .09 .06 .04 .02
.23 .22 .21 .18 .15 .11 .08 .06 .03
.29 .28 .26 .22 .18 .14 .10 .07 .03
.31 .32 .30 .25 .21 .16 .12 .08 .04
.30 .36 .35 .30 .24 .19 .14 .09 .04
.28 .34 .38 .33 .27 .21 .15 .10 .04
.28 .34 .39 .37 .30 .23 .16 .11 .05
.31 .38 .40 .40 .33 .26 .18 .13 .05

(d) µstop = 12

Figure 2: benefit of local detection, as k (b), Λ (c), and µstop
(d) are increased individually from the “baseline” (a) of k = 48,
Λ = 4, and µstop = 8

1 4 7 10 13 16
0

0.2

0.4

0.6

be
ne

fit

premark = 0.9
premark = 0.7
premark = 0.5
premark = 0.3

1 4 7 10 13 16

pmark = 0.2
pmark = 0.3
pmark = 0.4
pmark = 0.5

(a) pmark = 0.2 (b) premark = 0.9
µstop

Figure 3: benefit as a function of µstop with varying premark
and varying pmark (k = 32,Λ = 4)

a slight boost to the benefit. However, increasing Λ or µstop,
shown in Fig. 2c and Fig. 2d respectively, causes benefit to
drop slightly. The reasons behind these drops are that larger
Λ (i.e., more repeated logins by the attacker) give him a bet-
ter chance to leave with a reduced probability of detection,
and a larger µstop allows the attacker to observe more user
logins and so more remarkings (to minimize �`) before he is
detected by other means.

This latter effect is illustrated in Fig. 3, which shows
benefit as a function of µstop. When µstop ≤ 7, the settings
pmark = 0.2, premark = 0.9 yield the best benefit among the
combinations pictured in Fig. 3. However, as µstop grows, the

longer time (i.e., larger `) the attacker can wait to access the
account affords him a lower �` and so a lower probability
of being detected when the legitimate user subsequently logs
in. This effect can be offset by decreasing premark (Fig. 3a),
increasing pmark (Fig. 3b), or both.

0 64 128 192 256
0

0.2

0.4

0.6

0.8

1

k

be
ne

fit

Λ = 1
Λ = 4
Λ = 7
Λ = 10

Figure 4: benefit as a func-
tion of k with varying Λ

(pmark = 0.3, premark = 1.0,
µstop = 8)

The impact of Λ is
shown in Fig. 4, which
plots benefit as a function
of k for various Λ. Fig. 4
shows that even when the
attacker logs in more fre-
quently than the user by
a factor of Λ = 10, our al-
gorithm still remains effec-
tive with benefit ≈ 0.5 for
moderately large k. That
said, while Fig. 4 suggests
that increasing k into the
hundreds should suffice, we
will see in Sec. 5 that an
even larger k might be
warranted when credential
stuffing is considered.

Interpreting benefit: As we define it, benefit is a conserva-
tive measure, in two senses. First, benefit is calculated (via
probabilistic model checking) against the strongest attacker
possible in our threat model. Second, benefit is computed
only for one account, but detection on any account is enough
to inform the target of its breach. For an attacker whose goal
is to assume control of a large number of accounts at the
target (vs. one account specifically), the detection power of
our algorithm will be much higher.

That said, quantifying that detection power holistically for
the target is not straightforward. Recall that benefit is defined
in terms of time units wherein the legitimate user is expected
to login λ = 1 time. As such, the real-time length of this unit
for a frequently accessed account will be different than for
an infrequently accessed one. And, since µstop is expressed
in this time unit, µstop will be larger for a frequently accessed
account than for an infrequently accessed one, even though
the real-time interval that passes before a site detects its own
breach by means other than Amnesia might be independent of
the legitimate login rates to accounts. Thus, extrapolating the
per-account benefit to the security improvement for a target
holistically requires knowledge of the legitimate login rates
across all the sites’ accounts as a function of real time, adjust-
ing µstop (and χstop) accordingly per account, and translating
the per-account benefits back into a real-time measure.

5 Detecting Remotely Stuffed Honeywords

When a credential database is breached, it is common for at-
tackers to submit the login credentials therein (i.e., usernames

844 30th USENIX Security Symposium USENIX Association

and passwords) to other sites, in an effort to access accounts
whose user set the same password as she did at the breached
site. These attacks, called credential stuffing, are already the
primary attack yielding account takeovers today [41]. But
even worse for our purposes here, credential stuffing enables
an attacker to circumvent the honeywords at a breached target
site: If a user reused her password at another site, then stuff-
ing the breached passwords there will reveal which is the
user-chosen password, i.e., as the one that gains access. The
attacker can then return to the target site with the correct
password to access the user’s account at the target.

The design in this section mitigates credential stuffing as a
method to identify the user’s chosen password, by ensuring
that stuffing honeywords at other sites probabilistically still
alerts the target site to its breach. At a high level, the target
maintains a set of monitor sites and can choose to monitor an
account at any of those monitors. To monitor the account at a
monitor, the target sends the monitor a private containment
retrieval (PCR) query for this account identifier, to which the
monitor responds after any unsuccessful login attempt to this
account (potentially even if the account does not exist at the
monitor). In the abstract, a PCR query is a private (encrypted)
representation of a set X of elements known to the target,
and a response computed with element e reveals to the target
the element e if e ∈ X and nothing otherwise. In this case,
the target’s set X contains the local password hashes for the
user’s account. If a monitor then sends a response computed
using some e ∈ X, the target can treat e as if it were attempted
locally, permitting the detection of a breach just as in Sec. 4.

5.1 Threat Model

As in Sec. 4.1, we allow the adversary to breach the target
passively, thereby learning all information persistently stored
by the site for the purpose of determining the success of its
users’ login attempts. We highlight that in this section, the
breached information includes a private key that is part of
the target’s stored state for managing login attempts in our
algorithm. So, if the target is breached, then this private key
is included in the data that the attacker learns.

We permit the attacker that breaches the target to also ac-
tively compromise monitors, in which case these monitors
can behave arbitrarily maliciously. Malicious monitors can
refuse to help the target detect its own breach via our design,
e.g., by simply refusing to respond. However, our scheme
must ensure that even malicious monitors cannot convince a
target that it has been breached when it has not. Moreover,
malicious monitors should not be able to leverage their par-
ticipation in this protocol to attack passwords at a target that
is never breached.

We do not permit the attacker to interfere with commu-
nication between a (breached or unbreached) target and an
uncompromised monitor. Otherwise, the attacker could pre-
vent the target from discovering its breach by simply refusing

to let it communicate with uncompromised monitors.
Our design assumes that different sites can ascertain a com-

mon identifier a for the same user’s accounts at their sites, at
least as well as an attacker could. In practice, this would typi-
cally be the email address (or some canonical version thereof,
see [46]) registered by the user for account identification or
password-reset purposes.

5.2 Private Containment Retrieval
The main building block for our design is a private contain-
ment retrieval (PCR) protocol with the following algorithms.
• pcrQueryGen is an algorithm that, on input a pub-

lic key pk and a set X, generates a PCR query Y ←
pcrQueryGenpk(X).

• pcrRespGen is an algorithm that, on input a public key pk,
an element e, and a query Y← pcrQueryGenpk(X), outputs
a PCR response Z← pcrRespGenpk(e,Y).

• pcrReveal is an algorithm that on input the private key
sk corresponding to pk, an element e′ ∈ X, and a response
Z← pcrRespGenpk(e,Y) where Y ← pcrQueryGenpk(X),
outputs a Boolean z← pcrRevealsk(e′,Z) where z = true
iff e′ = e.

Informally, this protocol ensures that Y reveals nothing about
X (except its size) to anyone not holding sk; that Z computed
on e < X reveals nothing about e (except e < X); and that
if pcrRevealsk(e′,Z) = true, then the party that computed Z
knows e′. We make these properties more precise and provide
an implementation in Sec. 6.

5.3 Algorithm
We first provide greater detail about how the target maintains
its credential database. Whereas in Sec. 4 we left hashing of
the honey and user-chosen passwords in DBa .auths implicit,
in this section we need to expose this hashing explicitly for
functional purposes. Consistent with current best practices,
the target represents DBa .auths as a set of hashes salted with
a random κ-bit salt DBa .salt, including one hash f (s,π) of the
user-chosen password π where s←DBa .salt and a salted hash
f (s,π′) for each of k honeywords π′. Then, testing whether
π is either a honey or user-chosen password amounts to test-
ing f (s,π) ∈ DBa .auths. In addition to these refinements,
for this algorithm the target is also initialized with a public-
key/private-key pair 〈pk,sk〉 for use in the PCR protocol, and a
setS of possible monitors (URLs). If the target R is breached,
then all of DB, S, and 〈pk,sk〉 are captured by the attacker.

The algorithm below treats local logins at the target R sim-
ilar to how they were treated in Sec. 4, with the exception
of exposing the hashing explicitly. In addition, the algorithm
permits R to ask monitor S to monitor a. To do so, R sends
a PCR query Y to S computed on DBa .auths. Upon receiv-
ing this request, S simply saves it for use on each incorrect
login to a at S , to generate a PCR response to R. The hash

USENIX Association 30th USENIX Security Symposium 845

encoded in this response is then treated at R (for the purposes
of detecting a breach) as if it has been entered in a local login
attempt. In sum, the protocol works as described below.

Password registration at R: When the user (re)sets the
password for her account a at the target site R, she pro-
vides her chosen password π. The password registration
system at R executes:
• Πa ← HoneyGen(a,π,k)

• DBa .salt
$
← {0,1}κ

• DBa .auths← { f (DBa .salt,π′)}π′∈Πa

• mark(a, f (DBa .salt,π))
Login attempt at R: For a login attempted to account
a with password π at R, the outcome is determined as
follows, where h← f (DBa .salt,π):
• If h < DBa .auths, the login attempt is unsuccessful.
• If h ∈ DBa .auths and DBa .marks = 0, then the lo-

gin attempt is unsuccessful and a credential database
breach is detected.

• Otherwise (i.e., h ∈ DBa .auths and DBa .marks =

1), the login attempt is successful and R executes
mark(a,h) with probability premark.

R monitors a at S : At an arbitrary time, R can
ask S ∈ S to monitor account a by generating Y ←
pcrQueryGenpk(DBa .auths) and sending 〈a, DBa .salt,
pk, Y〉 to S .
S receives a monitoring request 〈a, s,pk,Y〉 from R: S
saves 〈R,a, s,pk,Y〉 locally.
Login attempt at S : For an unsuccessful login attempt
to an account a using (incorrect) password π, if S holds a
monitoring request 〈R,a, s,pk,Y〉, then it computes Z←
pcrRespGenpk(f (s,π),Y) and sends 〈a,Z〉 to R.
R receives a monitoring response 〈a,Z〉: If
pcrRevealsk(h,Z) is false for all h ∈ DBa .auths, then R
discards 〈a,Z〉 and returns. Otherwise, let h ∈DBa .auths
be some hash for which pcrRevealsk(h,Z) is true. R
detects a breach if DBa .marks(h) = 0 and otherwise
executes mark(a,h) with probability premark.

In the above protocol, the only items received by the
monitor S in 〈a, s,pk,Y〉 are all available to an attacker who
breaches R. In this sense, a malicious S gains nothing that an
attacker who breaches the target R does not also gain, and
in fact gains less, since it learns none of sk, DBa .auths, or S.
Indeed, the only advantage an attacker gains by compromising
S in attacking passwords at R is learning the salt s = DBa .salt,
with which it can precompute information (e.g., rainbow ta-
bles [35]) to accelerate its offline attack on DBa .auths if it
eventually breaches R. If this possibility is deemed too risky,
R can refuse to send s to S in its request but instead permit S
to compute f (s,π′) when needed by interacting with R, i.e.,

with f being implemented as an oblivious pseudo-random
function (OPRF) [17] keyed with s, for which there are effi-
cient implementations (e.g., the DH-OPRF implementation
leveraged by OPAQUE [24]). This approach would require ex-
tra interaction between S and R per response from S , however,
and so we do not consider this alternative further here.

S should authenticate a request 〈a, s,pk,Y〉 as coming from
R, e.g., by requiring that R digitally sign it. Presuming that
this digital signing key (different from sk) is vulnerable to
capture when R is breached, S should echo each monitoring
request back to R upon receiving it. If R receives an echoed
request bearing its own signature but that it did not create, it
can again detect its own breach. (Recall that we cannot permit
the attacker to interfere with communications between R and
an uncompromised S and still have R detect its breach.)

In practice, a monitor will not retain a monitoring record
forever, as its list of monitoring records—and the resulting
cost incurred due to generating responses to them—would
only grow. Moreover, it cannot count on R to withdraw its
monitoring requests, since R does not retain records of where
it has deposited what requests, lest these records be captured
when it is breached and the attacker simply avoid monitored
accounts. Therefore, presumably a monitor should unilater-
ally expire each monitoring record after a period of time or
in a randomized fashion. We do not investigate specific expi-
ration strategies here, nor do we explore particular strategies
for a target to issue monitoring requests over time.

5.4 Security

Several security properties are supported directly by the PCR
protocol, which will be detailed in Sec. 6. Here we leverage
those properties to argue the security of our design.

No breach detected by unbreached target: If the target
R has not been breached, then the PCR protocol will en-
sure that S must know h for it to generate a Z for which
pcrRevealsk(h,Z) returns true at R. Assuming S cannot guess
a h ∈ DBa .auths without guessing a password π such that
h = f (s,π) and that (ignoring collisions in f) guessing such
a π is infeasible (see (2)), generating such a Z is infeasible
for S unless the user provides such a π to S herself. Since
the only such π she knows is the one she chose during pass-
word registration at R, π is the user-chosen password at a.
And, since R has not been breached, the hash of π will still
be marked there. As such, R will not detect its own breach.

No risk to security of account at unbreached target: If
the target R has not been breached, then the PCR request
Y reveals nothing about DBa .auths (except its size) to S .
As such, sending a monitoring request poses no risk to the
target’s account.

No risk to security of account at uncompromised monitor:
We now consider the security of the password π for account
a at the monitor S (if this account exists at S). First recall

846 30th USENIX Security Symposium USENIX Association

that S generates PCR responses only for incorrect passwords
attempted in local login attempts for account a; the correct
password at S will not be used to generate a response. More-
over, S could even refuse to generate responses for passwords
very close to the correct password for a, e.g., the correct pass-
word with typos [7]. Second, the PCR protocol ensures that
the target R learns nothing about the attempted (and again,
incorrect) password π if S is not compromised, unless R in-
cluded h = f (s,π) in the set from which it generated its PCR
query Y . In this case, pcrRevealsk(h,Z) returns true but, again,
R already guessed it.

Detection of the target’s breach: We now consider the abil-
ity of R to detect its own breach by monitoring an account a
at an uncompromised monitor S , which is the most nuanced
aspect of our protocol’s security. Specifically, an attacker who
can both repeatedly breach R and simultaneously submit login
attempts at an uncompromised S poses the following chal-
lenge: Because this attacker can see what hashes for a are
presently marked at R, it can be sure to submit to S a pass-
word for one of the marked hashes at R, so that the induced
PCR response Z will not cause R to detect its own breach.
Moreover, if the user reused her password at both R and S ,
then the attacker will know when it submits this password to
S , since S will accept the login attempt.

As such, for R to detect its own breach in these (admittedly
extreme) circumstances, the attacker must be unable to submit
enough stolen passwords for a to S to submit the user-chosen
one with high probability, in the time during which it can
repeatedly breach R and before the next legitimate login to a at
R or S . To slow the attacker somewhat, R can reduce pmark and
premark to limit the pace of remarkings and, when remarkings
occur, the number of hashes that are marked (which are the
ones that the attacker can then submit to S).

Two other defenses will likely be necessary, however. First,
R can greatly increase the attacker’s workload by increasing
the number of honeywords per account, say to the thousands
or tens of thousands (cf., [28]). Second, since honeywords
from R submitted to S will be incorrect for the account a at S ,
online guessing defenses (account lockout or rate limiting) at
S can (and should) be used to slow the attacker’s submissions
at S . In particular, NIST recommends that a site “limit consec-
utive failed authentication attempts on a single account to no
more than 100” [19, Section 5.2.2], in which case an attacker
would be able to eliminate, say, at most 2% of the honeywords
for an account with 5000 honeywords stolen from R by sub-
mitting them in login attempts at S . Our design shares the
need for these defenses with most other methods for using
decoy passwords [5, 14, 25, 28, 48]. In particular, if the user
reused her password at other sites that permit the attacker to
submit passwords stolen from the target without limitation,
then the attacker discovering the user’s reuse of that pass-
word is simply a matter of time, after which the attacker can
undetectably take over the account.

5.5 Alternative Designs

The algorithm presented above is the result of numerous iter-
ations, in which we considered and discarded other algorithm
variants for remote detection of stuffed honeywords. Here we
briefly describe several variants and why we rejected them.
• The target could exclude the known (entered at pass-

word reset) or likely (entered in a successful login) user-
chosen password π from the monitor request, i.e., Y ←
pcrQueryGenpk(DBa .auths \ { f (s,π)}). In this case, any
“non-empty” PCR response Z (i.e., pcrRevealsk(h,Z) re-
turns true for some h ∈DBa .auths) would indicate a breach.
However, combining the data breached at the target with
Y at a malicious monitor would reveal the password not
included in Y as the likely user-chosen one.

• Since a monitor returns a PCR response only for an incor-
rect password attempted locally, the target could plausibly
treat any non-empty PCR response as indicating its breach.
That is, if the user reused her password, it would not be
used to generate a response anyway, and so the response
would seemingly have to represent a honeyword attempt.
However, if the user did not reuse her target password at
the monitor, then her mistakenly entering it at the monitor
would cause the target to falsely detect its own breach.
• The monitor could return a PCR response for any login

attempt, correct or not, potentially hastening the target de-
tecting its own breach. However, a PCR request would then
present an opportunity for a malicious target to guess k + 1
passwords for the account at the monitor, and be informed
if the user enters one there.

• Any two PCR responses for which pcrRevealsk returns true
with distinct h,h′ ∈DBa .auths is a reliable breach indicator;
one must represent a honeyword. This suggests processing
responses in batches, batched either at the monitor or target.
However, ensuring that the attacker cannot artificially “fill”
batches with repeated password attempts can be complex;
batching can delay detection; and batching risks disclosure
of a user-chosen password if one might be included in a
response and responses are saved in persistent storage (to
implement batching).

6 Private Containment Retrieval

Recall that in the algorithm of Sec. 5, upon receiving a moni-
toring request for an account a from a target, a monitor stores
the request locally and uses it to generate a PCR response
per failed login attempt to a. Since a response is generated
per failed login attempt, it is essential that pcrRespGen be
efficient and that the response Z be small. Moreover, con-
sidering that a database breach is an uncommon event for a
site, we expect that most of the time, the response would be
generated using a password that is not in the set used by the
target to generate the monitoring request. (Indeed, barring a
database breach at the target, this should never happen unless

USENIX Association 30th USENIX Security Symposium 847

the user enters at the monitor her password for her account at
the target.) So, in designing a PCR, we place a premium on
ensuring that pcrReveal is very efficient in this case.

6.1 Comparison to Related Protocols

Since the monitor’s input to pcrRespGen is a singleton set
(i.e., a hash), a natural way to achieve the functionality of a
private containment retrieval is to leverage existing private
set intersection (PSI) protocols, especially unbalanced PSIs
that are designed for the use case where two parties have sets
of significantly different sizes [8, 26, 27, 39, 42]. Among these
protocols, those based on oblivious pseudo-random functions
(OPRFs) [26, 27, 39, 42] require both parties to obliviously
agree on a privacy-preserving but deterministic way of rep-
resenting their input sets so at least one party can compare
and output elements in the intersection, if any. To achieve
this, both parties participate in at least one round of interac-
tion (each of at least two messages) during an online phase,
and so would require more interaction in our context than our
framework as defined in Sec. 5. Chen et al. [8] proposed a PSI
protocol with reduced communication, but at the expense of
leveraging fully homomorphic encryption. And, interestingly,
these unbalanced PSI protocols, as well as private member-
ship tests (e.g., [34, 38, 46, 47]), are all designed for the case
where the target has the smaller set and the monitor has the
larger one, which is the opposite of our use case.

Among other PSI protocols that require no more than one
round of interaction, that of Davidson and Cid [12] almost
meets the requirements of our framework on the monitor side:
its monitor’s computation complexity and response message
size are manageable and, more importantly, constant in the
target’s set size. However, in their design, the query message
size depends on the false-positive probability (of the contain-
ment test) due to their use of Bloom filters and bit-by-bit
encryption, while ours is also constant in the false-positive
probability. If applied in our context, their design would gen-
erate a significantly larger query and so significantly greater
storage overhead at the monitor than ours, especially when a
relatively low false-positive probability is enforced. For ex-
ample, to achieve a 2−96 false-positive probability, their query
message would include ≈ 131× more ciphertexts than ours.

Our PCR protocol, on the other hand, is designed specif-
ically for the needs of our framework, where the target has
a relatively large set and the monitor’s set is smaller (in fact,
of size 1) that keeps changing over time. Our protocol re-
quires only one message from the monitor to the target. In
addition, the response message computation time and output
size is constant in the target’s set size. We also constructed
our algorithm so that determining that pcrRevealsk(h,Z) is
false for all h ∈ DBa .auths, which should be the common
case, costs much less time than finding the h ∈ DBa .auths for
which pcrRevealsk(h,Z) is true. We demonstrate these prop-
erties empirically in Sec. 6.5. While our protocol leverages

tools (e.g., partially homomorphic encryption, cuckoo filters)
utilized in other protocols (e.g., [47]), ours does so in a novel
way and with an eye toward our specific goals here.

6.2 Building Blocks

Partially homomorphic encryption: Our protocol builds on
a partially homomorphic encryption scheme E consisting of
algorithms Gen, Enc, isEq, and +[·].
• Gen is a randomized algorithm that on input 1κ outputs a

public-key/private-key pair 〈pk,sk〉 ←Gen(1κ). The value
of pk determines a prime r for which the plaintext space
for encrypting with pk is the finite field 〈Zr,+,×〉 where
+ and × are addition and multiplication modulo r, respec-
tively. For clarity below, we denote the additive identity
by 0, the multiplicative identity by 1, and the additive in-
verse of m ∈ Zr by −m. The value of pk also determines a
ciphertext space Cpk =

⋃
m Cpk(m), where Cpk(m) denotes

the ciphertexts for plaintext m.
• Enc is a randomized algorithm that on input public key

pk and a plaintext m, outputs a ciphertext c ← Encpk(m)
chosen uniformly at random from Cpk(m).

• isEq is a deterministic algorithm that on input a private key
sk, plaintext m, and ciphertext c ∈Cpk, outputs a Boolean
z← isEqsk(m,c) where z = true iff c ∈Cpk(m).

• +[·] is a randomized algorithm that, on input a public key
pk and ciphertexts c1 ∈Cpk(m1) and c2 ∈Cpk(m2), outputs a
ciphertext c← c1 +pk c2 chosen uniformly at random from
Cpk(m1 + m2).

Note that our protocol does not require an efficient decryption
capability. Nor does the encryption scheme on which we base
our empirical evaluation in Sec. 6.5, namely “exponential
ElGamal” (e.g., [10]), support one. It does, however, support
an efficient isEq calculation.

Given this functionality, it will be convenient to define a few
additional operators involving ciphertexts. Below, “� d

= �′”
denotes that random variables � and �′ are distributed iden-
tically; “Z ∈ (X)α×α

′

” means that Z is an α-row, α′-column
matrix of elements in the setX; and “(Z)i, j” denotes the row-i,
column- j element of the matrix Z.
•

∑
pk denotes summing a sequence using +pk, i.e.,

z∑
pk

k=1
ck

d
= c1 +pk c2 +pk . . .+pk cz

• If C ∈ (Cpk)α×α
′

and C′ ∈ (Cpk)α×α
′

, then C +pk C′ ∈
(Cpk)α×α

′

is the result of component-wise addition using
+pk, i.e., so that(

C +pk C′
)
i, j

d
= (C)i, j +pk

(
C′

)
i, j

• If M ∈ (Zr)α×α
′

and C ∈ (Cpk)α×α
′

, then M◦pk C ∈ (Cpk)α×α
′

is the result of Hadamard (i.e., component-wise) “scalar

848 30th USENIX Security Symposium USENIX Association

multiplication” using repeated application of +pk, i.e., so
that (

M◦pk C
)
i, j

d
=

(M)i, j∑
pk

k=1
(C)i, j

• If M ∈ (Zr)α×α
′

and C ∈ (Cpk)α
′×α′′ , then M ∗pk C ∈

(Cpk)α×α
′′

is the result of standard matrix multiplication
using +pk and “scalar multiplication” using repeated appli-
cation of +pk, i.e., so that

(
M∗pk C

)
i, j

d
=

α′∑
pk

k=1

(M)i,k∑
pk

k′=1
(C)k, j

Cuckoo filters: A cuckoo filter [16] is a set representation that
supports insertion and deletion of elements, as well as testing
membership. The cuckoo filter uses a “fingerprint” function
fp : {0,1}∗→ F and a hash function hash : {0,1}∗→ [β], where
for an integer z, the notation “[z]” denotes {1, . . . ,z}, and where
β is a number of “buckets”. We require that F ⊆Zr \{0} for any
r determined by 〈pk,sk〉 ← Gen(1κ). For an integer bucket
“capacity” χ, the cuckoo filter data structure is a β-row, χ-
column matrix X of elements in Zr, i.e., X ∈ (Zr)β×χ. Then,

the membership test e
?
∈ X returns true if and only if there

exists j ∈ [χ] such that either

(X)hash(e), j = fp(e) or (4)
(X)hash(e)⊕hash(fp(e)), j = fp(e) (5)

Cuckoo filters permit false positives (membership tests that
return true for elements not previously added or already re-
moved) with a probability that, for fixed χ, can be decreased
by increasing the size of F [16].

6.3 Protocol Description
Our PCR protocol is detailed in Fig. 5. Fig. 5a shows the
message flow, which conforms with the protocol’s use in our
algorithm of Sec. 5, and Fig. 5b shows the procedures. In this
protocol, the target R has a public-key pair 〈pk,sk〉 for the
encryption scheme defined in Sec. 6.2 and a cuckoo filter X.
In the context of Sec. 5, X holds the password hashes (for k
honeywords and one user-chosen password) for an account.
pcrQueryGenpk simply encrypts each element of the cuckoo
filter individually and returns this matrix Y as the PCR query.
R sends pk and Y to the monitor S in message m1.

S has an input e—which is the hash of a password entered
in a failed login attempt, in the algorithm of Sec. 5—and
invokes pcrRespGenpk(e,Y) to produce a response 〈Z,Z′〉.
pcrRespGen first generates a 2× β matrix Q with 1 at the
indices i1 and i2 in the first and second rows, respectively
(lines s2–s4), and 0 elsewhere, and a 2×χ matrix F that con-
tains encryptions of−fp(e) (lines s5–s6). Referring to line s8,
the operation Q ∗pk Y thus produces the two buckets (rows)
of Y that could include a ciphertext of fp(e) (ignoring col-
lisions in fp), and

(
Q∗pk Y

)
+pk F produces a matrix where

R(〈pk,sk〉,X) S (e)

Y← pcrQueryGenpk(X)

m1.
〈pk,Y〉

−−−−−−−−−−−−−−−−−−−−−−−→

〈Z,Z′〉 ← pcrRespGenpk(e,Y)

m2.
〈Z,Z′〉

←−−−−−−−−−−−−−−−−−−−−−−−

return arg
e′∈X

pcrRevealsk(e′, 〈Z,Z′〉)

(a) Message flow

pcrQueryGenpk(X):
r1. abort if X < (Zr)β×χ

r2. ∀i ∈ [β], j ∈ [χ] : (Y)i, j← Encpk((X)i, j)
r3. return Y

pcrRespGenpk(e,Y):
s1. abort if Y < (Cpk)β×χ

s2. i1← hash(e)
s3. i2← hash(e)⊕hash(fp(e))
s4. ∀i ∈ [2], j ∈ [β] :

(Q)i, j←

{
1 if 〈i, j〉 ∈ {〈1, i1〉, 〈2, i2〉}
0 otherwise

s5. f ← Encpk(− fp(e))
s6. ∀i ∈ [2], j ∈ [χ] : (F)i, j← f

s7. ∀i ∈ [2], j ∈ [χ] : (M)i, j
$
← Zr \ {0}

s8. Z←M◦pk
((

Q∗pk Y
)
+pk F

)
s9. f ′← Encpk(fp′(e))
s10. ∀i ∈ [2], j ∈ [χ] : (F′)i, j← f ′

s11. ∀i ∈ [2], j ∈ [χ] : (M′)i, j
$
← Zr

s12. Z′←
(
M′ ◦pk Z

)
+pk F′

s13. return 〈Z,Z′〉

pcrRevealsk(e′, 〈Z,Z′〉):
r4. return false if Z < (Cpk)2×χ∨Z′ < (Cpk)2×χ

r5. 〈î, ĵ〉 ← arg
〈i, j〉

isEqsk(0, (Z)i, j)

r6. return false if 〈î, ĵ〉 = 〈⊥,⊥〉
r7. return isEqsk(fp′(e′), (Z′)î, ĵ)

(b) Procedures

Figure 5: Private Containment Retrieval protocol, with matri-
ces X ∈ (Zr)β×χ; Y ∈ (Cpk)β×χ; Q ∈ (Zr)2×β; M,M′ ∈ (Zr)2×χ;
F,F′,Z,Z′ ∈ (Cpk)2×χ.

that ciphertext (if any) has been changed to a ciphertext of
0. This ciphertext of 0 remains after multiplying this matrix
component-wise by the random matrix M to produce Z. The

USENIX Association 30th USENIX Security Symposium 849

remaining steps (lines s9–s12) simply rerandomize Z and
transform this ciphertext of 0 to a ciphertext of fp′(e) in Z′,
for a fingerprint function fp′ : {0,1}∗→ F that is “unrelated”
to fp. (We will model fp′ as a random oracle [4] for the secu-
rity argument in Sec. 6.4.) Rerandomization using M′ in the
creation of Z′ is essential to protect the privacy of e if e < X,
since without rerandomizing, the component-wise differences
of the plaintexts of Z and Z′ would reveal fp′(e) to R.

For (an artificially small) example, suppose β= 3,χ= 1, and
that the monitor S invokes pcrRespGenpk(e,Y) where i1 =

hash(e) = 3 and i2 = hash(e)⊕hash(fp(e)) = 2. Furthermore,
suppose that (X)i1,1

d
= Encpk(e). Then,

Q∗pk Y d
=

[
0 0 1
0 1 0

]
∗pk

 c1
c2

Encpk(e)

 d
=

[
Encpk(e)

c2

]
and so(

Q∗pk Y
)
+pk F

d
=

[
Encpk(e)

c2

]
+pk

[
Encpk(−e)
Encpk(−e)

]
d
=

[
Encpk(0)

Encpk(m2− e)

]
where c2 ∈Cpk(m2). Assuming m2 , e, we then have

Z d
= M◦pk

((
Q∗pk Y

)
+pk F

)
d
=

[
m3
m4

]
◦pk

[
Encpk(0)

Encpk(m2− e)

]
d
=

[
Encpk(0)

Encpk(m5)

]
where m3,m4

$
← Zr \ {0} and so m5 , 0. Finally,

Z′ d
=

(
M′ ◦pk Z

)
+pk F′

d
=

([
m6
m7

]
◦pk

[
Encpk(0)

Encpk(m5)

])
+pk

[
Encpk(fp′(e))
Encpk(fp′(e))

]
d
=

[
Encpk(fp′(e))

Encpk(m8)

]
where m6,m7

$
← Zr and so m8 is uniformly random in Zr.

Given this structure of 〈Z,Z′〉, pcrRevealsk(e′, 〈Z,Z′〉)
must simply find the location 〈î, ĵ〉 where Z holds a cipher-
text of 0 (line r5) and, unless there is none (line r6), return
whether the corresponding location in Z′ is a ciphertext of
fp′(e′) (line r7).

6.4 Security
The use of this protocol to achieve the security arguments of
Sec. 5.4 depends on the PCR protocol achieving certain key
properties. We present these properties below.
Security against a malicious monitor: When the target R is
not breached, our primary goals are twofold. First, we need
to show that monitoring requests do not weaken the secu-
rity of R’s accounts or, in other words, that the request Y

does not leak information about X (except its size). This is
straightforward, however, since in this protocol S observes
only ciphertexts Y and the public key pk with which these
ciphertexts were created. (The target R need not, and should
not, divulge the result of the protocol to the monitor S .) As
such, the privacy of X reduces trivially to the IND-CPA secu-
rity [3] of the encryption scheme.

The second property that we require of this protocol is that
a malicious monitor be unable to induce the target to evalu-
ate pcrRevealsk(e′, 〈Z,Z′〉) to true for any e′ ∈ X unless the
monitor knows e′. That is, in the context of Sec. 5, we want
to ensure that the monitor must have received (a password
that hashes to) e′ in a login attempt, as otherwise the monitor
might cause the target to falsely detect its own breach. This
is straightforward to argue in the random oracle model [4],
however, since if fp′ is modeled as a random oracle, then to
create a ciphertext (Z′)i, j ∈ Cpk(fp′(e′)) with non-negligible
probability in the output length of fp′, S must invoke the fp′

oracle with e′ and so must “know” it.
Security against a malicious target: Though our threat
model in Sec. 5.1 does not permit a malicious target for the
purposes of designing an algorithm for it to detect its own
breach, a monitor will participate in this protocol only if doing
so does not impinge on the security of its own accounts, even
in the case where the target is malicious. The security of the
monitor’s account a is preserved since if the monitor correctly
computes pcrRespGenpk(e,Y), then the output 〈Z,Z′〉 car-
ries information about e only if some (Y)i, j ∈Cpk(fp(e)), i.e.,
only if the target already enumerated this password among the
k +1 in Y (ignoring collisions in fp). That is, even a malicious
target learns nothing about e from the response computed
by an honest monitor unless the target already guessed e (or
more precisely, fp(e)).

This reasoning requires that pk is a valid public key for
the cryptosystem, and so implicit in the algorithm description
in Fig. 5 is that the monitor verifies this. This verification is
trivial for the cryptosystem with which we instantiate this
protocol in Sec. 6.5.

Proposition 1. Given 〈pk,Y〉 and e where (Y)i, j <Cpk(fp(e))
for each i ∈ [β], j ∈ [χ], if the monitor correctly computes
〈Z,Z′〉 ← pcrRespGenpk(e,Y), then

P
(
(Z)i, j ∈Cpk(m)∧

(
Z′

)
i, j ∈Cpk(m′)

)
=

1
r(r−1)

for any i ∈ [2], j ∈ [χ], m ∈ Zr \ {0}, and m′ ∈ Zr.

Proof. Since each (Y)i, j <Cpk(fp(e)) by assumption, the con-
structions of Q and F imply that

(
Q∗pk Y

)
i, j
<Cpk(fp(e)) and

so
((

Q∗pk Y
)
+pk F

)
i, j
< Cpk(0) for any i ∈ [2], j ∈ [χ]. Then,

since (M)i, j is independently and uniformly distributed in
Zr \ {0}, it follows that (Z)i, j =

(
M◦pk

((
Q∗pk Y

)
+pk F

))
i, j
∈

Cpk(m) for m distributed uniformly in Zr \ {0}, as well. Fi-
nally, since (M′)i, j is independently and uniformly distributed

850 30th USENIX Security Symposium USENIX Association

in Zr, we know that
((

M′ ◦pk Z
)
+pk F′

)
i, j
∈ Cpk(m′) for m′

distributed uniformly in Zr. �

The proposition above shows that the plaintexts in the
response are uniformly distributed if (Y)i, j <Cpk(fp(e)). The
following proposition also points out that the ciphertexts are
uniformly distributed.

Proposition 2. If the monitor follows the protocol, then

P
(
(Z)i, j = c

∣∣∣ (Z)i, j ∈Cpk(m)
)

=
1

|Cpk(m)|

P
((

Z′
)
i, j = c

∣∣∣ (Z′)i, j ∈Cpk(m)
)

=
1

|Cpk(m)|

for any i ∈ [2], j ∈ [χ], m ∈ Zr, and c ∈Cpk(m).

Proof. This is immediate since +pk ensures that for c1 ∈

Cpk(m1) and c2 ∈ Cpk(m2), c1 +pk c2 outputs a ciphertext c
chosen uniformly at random from Cpk(m1 + m2). �

6.5 Performance
We implemented the protocol of Fig. 5 to empirically eval-
uate its computation and communication costs. The imple-
mentation is available at https://github.com/k3coby/
pcr-go.

Parameters: In our implementation, we instantiated the un-
derlying cuckoo filter with bucket size χ = 4, as recommended
by Fan et al. [16]. We chose fingerprints of length 224 bits to
achieve a low false-positive probability, i.e., about 2−221. For
the underlying partially homomorphic encryption scheme, we
chose exponential ElGamal (e.g., see [10]) implemented in
the elliptic-curve group secp256r1 [6] to balance performance
and security (roughly equivalent to 3072-bit RSA security or
128-bit symmetric security).

Experiment setup: Our prototype including cuckoo filters
and cryptography, were implemented in Go. We ran the ex-
periments reported below on two machines with the same
operating system and hardware specification: Ubuntu 20.04.1,
AMD 8-core processor (2.67GHz), and 72GiB RAM. These
machines played the role of the target and the monitor. We re-
port all results as the means of 50 runs of each experiment and
report relative standard deviations (rsd) in the figure captions.

Results: We report the computation time of pcrQueryGen,
pcrRespGen, and pcrReveal in Fig. 6. As shown in Fig. 6a,
the computation time of pcrQueryGen is linear in the target’s
set size (i.e., k +1). One takeaway here is that even if the num-
ber of honeywords is relatively large, e.g., k = 1000, it only
takes the target about 100ms to generate a query with four
logical CPU cores. Moreover, since a query is generated only
when choosing to monitor an account at a monitor, the target
can choose when to incur this cost. Fig. 6b shows that the
computational cost of PCR response generation is essentially

1 core 2 cores 4 cores

24 26 28 210
100

101

102

103

Ti
m

e
(m

s)

(a) pcrQueryGenpk(X)
(rsd < 0.10)

24 26 28 210

0
2

4

6

8

10

(b) pcrRespGenpk(e,Y)
(rsd < 0.10)

k + 1

24 26 28 210

0
1

2

3
4

5

Ti
m

e
(m

s)
(c) arg

e′∈X
pcrRevealsk(e′, 〈Z,Z′〉) = ⊥

(rsd < 0.20)

24 26 28 210
100

101

102

103

(d) arg
e′∈X

pcrRevealsk(e′, 〈Z,Z′〉) , ⊥

(rsd < 0.65)

k + 1

Figure 6: Runtimes of pcrQueryGenpk(X), pcrRespGenpk(e,
Y), and arge′∈X pcrRevealsk(e′, 〈Z,Z′〉) when = ⊥ and when
, ⊥, as functions of k + 1 with varying numbers of logical
CPU cores.

unchanged regardless of k. This is important so that the com-
putational burden on the monitors does not increase even
if the target grows its number of honeywords per account.
Another observation from Fig. 6b is that it only takes less
than 9ms for the monitor, with even a single logical core, to
produce a response when a failed login attempt occurs.

The computation time of arge′∈X pcrRevealsk(e′, 〈Z,Z′〉) is
shown in Figs. 6c–d in two separate cases: when for all e′ ∈X
is pcrRevealsk(e′, 〈Z,Z′〉) = false (and so the result = ⊥,
Fig. 6c) and when for some e′ ∈X, pcrRevealsk(e′, 〈Z,Z′〉) =

true (i.e., the result , ⊥, Fig. 6d). We report these cases sep-
arately since they have significantly different performance
characteristics. Again, we expect the former to be the com-
mon case. This operation takes constant time in the former
case, since the target needs only to test if any of the 2χ ci-
phertexts (e.g., 8 ciphertexts with χ = 4) are encryptions of
zeros. In our experiments for Fig. 6d, the element e′ for which
pcrRevealsk(e′, 〈Z,Z′〉) = true was randomly picked from X,
and the target immediately returned once e′ was identified. So
the position of e′ in X has a large impact on the computation
time for each run, yielding an increased relative standard de-
viation. Since the target on average performs approximately
k+1

2 isEq operations to identify e′ in this case, the cost is
linear in the target’s set size, as shown in Fig. 6d.

USENIX Association 30th USENIX Security Symposium 851

https://github.com/k3coby/pcr-go
https://github.com/k3coby/pcr-go

As shown in Fig. 7, the query (message m1) is of size lin-
ear in the target’s set size, while the response (m2) size is
constant (≈ 1KB). These communication and storage costs
are quite manageable. For example, even 100,000 monitoring
requests would require only about 32GB of storage at the
monitor when k + 1 = 4096.

24 26 28 210
100

101

102

103

k + 1

M
es

sa
ge

si
ze

(K
B

)
message m1
message m2

Figure 7: Message size as a
function of R’s password set
size for a (rsd < 0.01)

Performance example:
To put these perfor-
mance results in context,
consider the strontium
credential harvesting
attacks launched against
over 200 organiza-
tions from September
2019 to June 2020.
Microsoft [33] reported
that their most aggres-
sive attacks averaged
335 login attempts per
hour per account for
hours or days at a time, and that organizations targeted in
these attacks saw login attempts on an average of 20% of
their total accounts. So, if all of a target’s monitors had
been attacked simultaneously by strontium, then 20% of the
target’s monitoring requests would have been triggered to
generate responses to the target. Suppose that in the steady
state, the target had maintained a total of x active monitoring
requests across all of its monitors.

We now consider two scenarios. First, if monitors would
not have limited the number of incorrect logins per account
that induced monitoring responses, then each triggered mon-
itoring request would have induced an average of 335 mon-
itoring responses per hour. As such, the target would have
averaged (20%)(335)(x) = 67x monitoring responses per hour,
or 67

3600 x monitoring responses per second. Since in our ex-
periments, processing each monitoring response averaged
≈ 0.002s on a 2-core computer (Fig. 6c), this computer could
have sustained the processing load that would have been in-
duced on the target provided that x< 3600

(0.002)(67) ≈ 26,865 mon-
itoring requests. Even if all x monitoring requests had been
active at the same monitor, this monitor (using the same type
of computer) could have sustained generating responses as
long as x < 3600

(0.005)(67) ≈ 10,746, since generating responses
on a 2-core computer averaged ≈ 0.005s (Fig. 6b). If the x
monitoring requests had been spread across even only three
monitors, however, the bottleneck would have been the target.

The second scenario we consider is one in which monitors
would have limited the number of incorrect logins per ac-
count that induced a monitoring response, as recommended
in Sec. 5.4. If each monitor would have limited the number
of consecutive incorrect logins (and so monitoring responses)
to 100 per account [19, Section 5.2.2], then the target would
have averaged (20%)(100)(x) = 20x monitoring responses
per hour and, using reasoning similar to that above, could

have absorbed the induced processing load provided that x <
3600

(0.002)(20) = 90,000 monitoring requests. And, in the extreme
case that the same monitor held all x monitoring requests,
the monitor (using the same type of computer) could have
sustained generating responses for x < 3600

(0.005)(20) = 36,000
monitoring requests.

7 Discussion

In this section we discuss various risks associated with Am-
nesia. The first is a general risk associated with Amnesia,
and the others are specific to the distributed defenses against
credential stuffing proposed in Sec. 5.

Password reset: Because detection happens in Amnesia
when the legitimate user logs into her account at the target
after the attacker has, the attacker can try to interfere with
breach detection by changing the account password upon
gaining access to the account. The legitimate user will be
locked out of her account and so will presumably be forced
to reset her password, but this will not serve as unequivocal
evidence of the breach; after all, users reset their passwords all
the time, due to simply forgetting them [22]. As such, target
sites should utilize a backup authentication method (e.g., a
code sent to a contact email or phone for the account) before
enabling password reset.

Denial-of-service attacks: There are mainly two potential
ways of launching denial-of-service (DoS) attacks against a
target: one in which the attacker submits login attempts at
a high rate to a benign monitor to induce monitor responses
to the target, and one in which a malicious monitor directly
sends responses to the target at a high rate. The former DoS
should be difficult for an attacker to perform effectively, since
it requires the attacker to know or predict where the target
will send monitoring requests and for what accounts. While
we have not prescribed a specific strategy by which a target
deploys monitor requests, such a strategy would need to be
unpredictable; otherwise, rather than using this knowledge to
conduct DoS, the attacker could instead use it to sidestep the
accounts at sites while they are monitored, to avoid alerting
the target to its breach. Another reason the former DoS will
likely be ineffective is that, as discussed in Sec. 5.4, a target
that can be breached repeatedly must rely on monitors to slow
stuffing attacks to identify a user’s reused password. These
defenses will correspondingly help defend the target from
this type of DoS. The latter DoS against a target, i.e., by a
malicious monitor, would alert the target that this monitor
is either conducting DoS or not implementing these slowing
defenses. In either case, the target can remove this monitor
from its list of monitors and drop responses from it.

As any site, a monitor should deploy state-of-the-art de-
fenses against online guessing attacks which, in turn, can
benefit targets as discussed above and in Sec. 5.4. The pri-
mary DoS risk introduced by Amnesia to monitors is the stor-

852 30th USENIX Security Symposium USENIX Association

age overhead of monitoring requests, though as discussed in
Sec. 6.5, this need not be substantial. Moreover, the monitor
has discretion to expire or discard monitoring requests as
needed, and so can manage these costs accordingly.
User privacy: Privacy risks associated with remote moni-
toring of a user account include revealing to monitors the
targets at which a user has an account and revealing to a
target when a user attempts to log into a monitor. To obscure
the former information, a target could send (ineffective) mon-
itoring requests for accounts that have not been registered
locally, e.g., using inputs X to pcrQueryGen consisting of
uniformly random values. The latter information will likely
be naturally obscured since failed login attempts to an ac-
count at a monitor due to automated attacks (online guessing,
credential stuffing, etc.) would trigger PCR responses even if
the account does not exist at the monitor and can outnumber
failed login attempts by a legitimate user even if it does [41].
In addition, a monitor could further obscure user login activity
on accounts for which it holds monitoring requests by gener-
ating monitoring responses at arbitrary times using uniformly
random passwords.
Incentives to monitor accounts: Given the overheads that
monitoring requests induce on monitors, it is natural to ques-
tion whether monitors have adequate incentives to perform
monitoring for targets and, if so, at what rates. Moreover,
these questions are complicated by site-specific factors.

On the one hand, large disparities in the numbers of ac-
counts at various sites that might participate in a monitoring
ecosystem could result in massive imbalances in the monitor-
ing loads induced on sites. For example, issuing monitoring
requests at a rate to induce expected steady-state monitoring
of, say, even 10% of Gmail users’ accounts, each at only a
single monitor, would impose ≈ 180 million monitoring re-
quests across monitors on an ongoing basis [37]. This could
easily induce more load on monitors than they would find
“worth it” for participating in this ecosystem.

On the other hand, dependencies among sites might justify
substantial monitoring investment by the web community as
a whole. For example, the benefit to internet security in the
large for detecting a breach of Google’s credential database
quickly is considerable: as one of the world’s largest email
providers, it is trusted for backup authentication and account
recovery (via email challenges) for numerous accounts at
other sites. Indeed, as discussed above, some form of backup
authentication needs to be a gatekeeper to resetting account
passwords at a site who wishes to itself participate as target
in our design, to ensure it will detect its own breach reliably.
Such a site might thus be willing to participate as a monitor
for numerous accounts of a target site on which many of its
accounts depend for backup authentication.

Balancing these considerations to produce a viable moni-
toring ecosystem is a topic of ongoing research. We recognize,
however, that establishing and sustaining such an ecosystem
might benefit from additional inducements, e.g., monetary

payments from targets to monitors or savings in the form of
reduced insurance premiums for sites that agree to monitor
for one another.

8 Conclusion

In this paper, we have proposed Amnesia, a methodology for
using honeywords to detect the breach of a site without re-
lying on any secret persistent state. Our algorithm remains
effective to detect breaches even against attackers who repeat-
edly access the target site’s persistent storage, including any
long-term cryptographic keys. We extended this algorithm
to allow the target site to detect breaches when the attacker
tries to differentiate a (potentially reused) real password from
honeywords by stuffing them at other sites. We realized this
remote detection capability using a new private containment
retrieval protocol with rounds, computation, communication,
and storage costs that work well for our algorithm. We expect
that, if deployed, Amnesia could effectively shorten the time
between credential database breaches and their discovery.

Acknowledgments
We are grateful to our shepherd, Patrick Traynor, and to the
anonymous reviewers for their constructive feedback. This re-
search was supported in part by grant numbers 2040675 from
the National Science Foundation and W911NF-17-1-0370
from the Army Research Office. The views and conclusions
in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed
or implied, of the National Science Foundation, Army Re-
search Office, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notices herein.

References

[1] Akshima, D. Chang, A. Goel, S. Mishra, and S. K.
Sanadhya, “Generation of secure and reliable honey-
words, preventing false detection,” IEEE Transactions
on Dependable and Secure Computing, vol. 16, no. 5,
pp. 757–769, 2019.

[2] M. H. Almeshekah, C. N. Gutierrez, M. J. Atallah, and
E. H. Spafford, “ErsatzPasswords: Ending password
cracking and detecting password leakage,” in 31st An-
nual Computer Security Applications Conference, Dec.
2015, pp. 311–320.

[3] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway,
“Relations among notions of security for public-key
encryption schemes,” in Advances in Cryptology –
CRYPTO 1998, ser. Lecture Notes in Computer Science,
vol. 1462, Aug. 1998.

USENIX Association 30th USENIX Security Symposium 853

[4] M. Bellare and P. Rogaway, “Random oracles are prac-
tical: A paradigm for designing efficient protocols,” in
1st ACM Conference on Computer and Communications
Security, Nov. 1993.

[5] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh,
“Kamouflage: Loss-resistant password management,” in
European Symposium on Research in Computer Secu-
rity, ser. Lecture Notes in Computer Science, vol. 6345,
Sep. 2010.

[6] Certicom Research, “SEC 2: Recommended ellip-
tic curve domain parameters,” http://www.secg.org/

SEC2-Ver-1.0.pdf, 2000, standards for Efficient Cryp-
tography.

[7] R. Chatterjee, A. Athayle, D. Akhawe, A. Juels, and
T. Ristenpart, “pASSWORD tYPOS and how to correct
them securely,” in 37th IEEE Symposium on Security
and Privacy, May 2016, pp. 799–818.

[8] H. Chen, K. Laine, and P. Rindal, “Fast private set inter-
section from homomorphic encryption,” in 24nd ACM
Conference on Computer and Communications Security,
Oct. 2017.

[9] K. Cohn-Gordon, C. Cremers, and L. Garratt, “On post-
compromise security,” in 29th IEEE Computer Security
Foundations Symposium, Jun. 2016.

[10] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure
and optimally efficient multi-authority election scheme,”
in Advances in Cryptology – EUROCRYPT ’97, ser. Lec-
ture Notes in Computer Science, vol. 1233, 1997, pp.
103–118.

[11] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang,
“The tangled web of password reuse,” in ISOC Network
and Distributed System Security Symposium, 2014.

[12] A. Davidson and C. Cid, “An efficient toolkit for comput-
ing private set operations,” in 22nd Australasian Confer-
ence on Information Security and Privacy, ser. Lecture
Notes in Computer Science, vol. 10343, Jul. 2017.

[13] J. DeBlasio, S. Savage, G. M. Voelker, and A. C. Sno-
eren, “Tripwire: Inferring internet site compromise,” in
17th Internet Measurement Conference, Nov. 2017.

[14] I. Erguler, “Achieving flatness: Selecting the honey-
words from existing user passwords,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 13, no. 2,
2016.

[15] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and
T. Ristenpart, “The Pythia PRF service,” in 24th USENIX
Security Symposium, Aug. 2015, pp. 547–562.

[16] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher, “Cuckoo filter: Practically better than
Bloom,” in 10th ACM Conference on Emerging Network-
ing Experiments and Technologies, 2014, pp. 75–88.

[17] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold,
“Keyword search and oblivious pseudorandom func-
tions,” in 2nd Theory of Cryptography Conference, ser.
Lecture Notes in Computer Science, vol. 3378, Feb.
2005.

[18] D. Freeman, S. Jain, M. Dürmuth, B. Biggio, and G. Gi-
acinto, “Who are you? A statistical approach to mea-
suring user authenticity,” in 23rd ISOC Network and
Distributed System Security Symposium, Feb. 2016.

[19] P. A. Grassi et al., “Digital Identity Guidelines: Authen-
tication and Lifecycle Management,” https://doi.org/10.
6028/NIST.SP.800-63b, Jun. 2017, NIST Special Publi-
cation 800-63B.

[20] C. G. Günther, “An identity-based key-exchange proto-
col,” in Advances in Cryptology – EUROCRYPT ’89,
ser. Lecture Notes in Computer Science, vol. 434, Apr.
1989, pp. 29–37.

[21] C. Herley and D. Florêncio, “Protecting financial insti-
tutions from brute-force attacks,” in 23rd International
Conference on Information Security, ser. IFIP Advances
in Information and Communication Technology, vol.
278, Sep. 2008, pp. 681–685.

[22] HYPR, “New password study by HYPR finds
78% of people had to reset a password they
forgot in past 90 days,” https://www.hypr.com/

hypr-password-study-findings/, Dec. 2019.

[23] IBM Security, “Cost of a data breach report
2020,” https://www.ibm.com/security/digital-assets/
cost-data-breach-report/, 2020.

[24] S. Jarecki, H. Krawczyk, and J. Xu, “OPAQUE:
An asymmetric PAKE protocol secure against pre-
computation attacks,” in Advances in Cryptology – EU-
ROCRYPT 2018, ser. Lecture Notes in Computer Sci-
ence, vol. 10822, 2018, pp. 456–486.

[25] A. Juels and R. L. Rivest, “Honeywords: Making
password-cracking detectable,” in 20th ACM Confer-
ence on Computer and Communications Security, Nov.
2013.

[26] D. Kales, C. Rechberger, T. Schneider, M. Senker, and
C. Weinert, “Mobile private contact discovery at scale,”
in 28th USENIX Security Symposium, Aug. 2019.

854 30th USENIX Security Symposium USENIX Association

http://www.secg.org/SEC2-Ver-1.0.pdf
http://www.secg.org/SEC2-Ver-1.0.pdf
https://doi.org/10.6028/NIST.SP.800-63b
https://doi.org/10.6028/NIST.SP.800-63b
https://www.hypr.com/hypr-password-study-findings/
https://www.hypr.com/hypr-password-study-findings/
https://www.ibm.com/security/digital-assets/cost-data-breach-report/
https://www.ibm.com/security/digital-assets/cost-data-breach-report/

[27] Á. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas,
“Private set intersection for unequal set sizes with mo-
bile applications,” 17th Privacy Enhancing Technologies
Symposium, vol. 2017, no. 4, pp. 177–197, 2017.

[28] G. Kontaxis, E. Athanasopoulos, G. Portokalidis, and
A. D. Keromytis, “SAuth: Protecting user accounts from
password database leaks,” in 20th ACM Conference on
Computer and Communications Security, Nov. 2013.

[29] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM
4.0: Verification of probabilistic real-time systems,” in
International Conference on Computer Aided Verifica-
tion, ser. Lecture Notes in Computer Science, vol. 6806,
2011.

[30] R. W. F. Lai, C. Egger, D. Schröder, and S. S. M.
Chow, “Phoenix: Rebirth of a cryptographic password-
hardening service,” in 26th USENIX Security Sympo-
sium, Aug. 2017, pp. 899–916.

[31] P. MacKenzie and M. K. Reiter, “Delegation of cryp-
tographic servers for capture-resilient devices,” Dis-
tributed Computing, vol. 16, no. 4, pp. 307–327, Dec.
2003.

[32] ——, “Networked cryptographic devices resilient to cap-
ture,” International Journal on Information Security,
vol. 2, no. 1, pp. 1–20, Nov. 2003.

[33] Microsoft Threat Intelligence Center, “strontium:
Detecting new patterns in credential harvesting,”
https://www.microsoft.com/security/blog/2020/09/10/

strontium-detecting-new-patters-credential-harvesting/,
10 Sep. 2020.

[34] R. Nojima and Y. Kadobayashi, “Cryptographically
secure Bloom-filters,” Transactions on Data Privacy,
vol. 2, no. 2, Aug. 2009.

[35] P. Oechslin, “Making a faster cryptanalytic time-
memory trade-off,” in Advances in Cryptology –
CRYPTO 2003, ser. Lecture Notes in Computer Science,
vol. 2729, 2003, pp. 617–630.

[36] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer,
N. Christin, L. F. Cranor, S. Egelman, and A. Forget,
“Let’s go in for a closer look: Observing passwords in
their natural habitat,” in 24th ACM Conference on Com-
puter and Communications Security, Oct. 2017.

[37] C. Petrov, “50 Gmail statistics to show how big it is in
2020,” https://techjury.net/blog/gmail-statistics/, 30 Jun.
2020.

[38] S. Ramezanian, T. Meskanen, M. Naderpour, and
V. Niemi, “Private membership test protocol with low

communication complexity,” in 11th International Con-
ference on Network and System Security, ser. Lecture
Notes in Computer Science, vol. 10394, Aug. 2017.

[39] A. C. D. Resende and D. F. Aranha, “Faster unbalanced
private set intersection,” in 22nd International Confer-
ence on Financial Cryptography and Data Security,
2018, pp. 203–221.

[40] J. Schneider, N. Fleischhacker, D. Schröder, and
M. Backes, “Efficient cryptographic password hardening
services from partially oblivious commitments,” in 23rd

ACM Conference on Computer and Communications
Security, Oct. 2016, pp. 1192–1203.

[41] Shape Security, “2018 credential spill report,”
https://info.shapesecurity.com/rs/935-ZAM-778/

images/Shape_Credential_Spill_Report_2018.pdf,
2018.

[42] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Inv-
ernizzi, Y. Markov, O. Comanescu, V. Eranti, A. Mosci-
cki, D. Margolis, V. Paxson, and E. Bursztein, “Data
breaches, phishing, or malware? Understanding the risks
of stolen credentials,” in 24th ACM Conference on Com-
puter and Communications Security, 2017.

[43] Verizon, “2020 data breach investigations report,” https:
//enterprise.verizon.com/resources/reports/dbir/, 2020.

[44] C. Wang, S. T. K. Jan, H. Hu, D. Bossart, and G. Wang,
“The next domino to fall: Empirical analysis of user pass-
words across online services,” in 8th ACM Conference
on Data and Application Security and Privacy, Mar.
2018.

[45] D. Wang, H. Cheng, P. Wang, J. Yan, and X. Huang, “A
security analysis of honeywords,” in 25th ISOC Network
and Distributed System Security Symposium, Feb. 2018.

[46] K. C. Wang and M. K. Reiter, “How to end password
reuse on the web,” in 26th ISOC Network and Dis-
tributed System Security Symposium, Feb. 2019.

[47] ——, “Detecting stuffing of a user’s credentials at her
own accounts,” in 29th USENIX Security Symposium,
Aug. 2020.

[48] C. Yue and H. Wang, “BogusBiter: A transparent pro-
tection against phishing attacks,” ACM Transactions on
Internet Technology, vol. 10, no. 2, May 2010.

USENIX Association 30th USENIX Security Symposium 855

https://www.microsoft.com/security/blog/2020/09/10/strontium-detecting-new-patters-credential-harvesting/
https://www.microsoft.com/security/blog/2020/09/10/strontium-detecting-new-patters-credential-harvesting/
https://techjury.net/blog/gmail-statistics/
https://info.shapesecurity.com/rs/935-ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf
https://info.shapesecurity.com/rs/935-ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf
https://enterprise.verizon.com/resources/reports/dbir/
https://enterprise.verizon.com/resources/reports/dbir/

	Introduction
	Related Work
	Honeywords
	Detecting Honeyword Entry Locally
	Threat Model
	Algorithm
	Security

	Detecting Remotely Stuffed Honeywords
	Threat Model
	Private Containment Retrieval
	Algorithm
	Security
	Alternative Designs

	Private Containment Retrieval
	Comparison to Related Protocols
	Building Blocks
	Protocol Description
	Security
	Performance

	Discussion
	Conclusion

