Proceedings of the 30th USENIX Security Symposium

Errata Slip #1

For the paper "Raccoon Attack: Finding and Exploiting Most-Significant-Bit-Oracles in TLS-DH(E)" by Robert Merget and Marcus Brinkmann, *Ruhr University Bochum*; Nimrod Aviram, *School of Computer Science, Tel Aviv University*; Juraj Somorovsky, *Paderborn University*; Johannes Mittmann, *Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany*; Jörg Schwenk, *Ruhr University Bochum* (Wednesday session, "Cryptography: Attacks," pp. 213–230 of the Proceedings), the authors provide the following correction on page 224. In the original paper, we reported calculation times for repeated measurements of the *same* secret exponent due to a software bug (reported by Sebastian Bach). The corrected calculation times are in the table below.

Original table:

DH group	п	ε	k						
			24	20	16	12	8		
RFC 5114	1024	0.532	$\beta = 40, d = 50$ $T = 6s \pm 0s$	$\beta = 40, d = 60$ $T = 10s \pm 1s$	$\beta = 40, d = 80$ $T = 26s \pm 4s$	$\beta = 40, d = 100$ $T = 111s \pm 4s$	$\beta = 60, d = 200$ T = 9295s ± 467s		
LibTomCrypt	1036	0.000	$\beta = 40, d = 50$ $T = 6s \pm 0s$	$\beta = 40, d = 60$ $T = 10s \pm 1s$	$\beta = 40, d = 80$ $T = 28s \pm 1s$	$\beta = 40, d = 100$ $T = 52s \pm 5s$	$\beta = 60, d = 180$ $T = 5613s \pm 205s$		
SKIP	2048	0.056	$\beta = 40, d = 100$ $T = 112s \pm 5s$	$\beta = 40, d = 120$ $T = 207s \pm 18s$	$\beta = 60, d = 160$ $T = 977s \pm 46s$	$\beta = 60, d = 250$ $T = 13792s \pm 47s$			
RFC 3526	3072	0.000	$\beta = 40, d = 150$ $T = 1243s \pm 59s$	$\beta = 40, d = 190$ $T = 2390s \pm 65s$	$\beta = 60, d = 250$ $T = 27192s \pm 312s$				
RFC 7919	4096	0.000	$\beta = 40, d = 200$ $T = 3601s \pm 6s$	$\beta = 60, d = 250$ $T = 30023s \pm 85s$					

Table 3: Our parameter choices and calculation costs to recover g^{ab} in a Raccoon attack for five well-known DH groups, using BKZ 2.0 with block size β , number of equations *d* and average calculation time *T*. We aborted the BKZ reductions as soon as the hidden number was found (up to BKZ loop completion). Each simulation was repeated 8 times with random secrets on a vCPU with 2 GHz clock speed. The bit-size *n* of the modulus and its bias $\varepsilon = n - \log_2(p)$ are also given. Note that for k = 8, we had to use more equations for the RFC 5114 group than for the LibTomCrypt group, mainly due to the larger bias ($\ell = 7.468 \ll 8$).

Corrected table:

DH group	п	ε	k						
			24	20	16	12	8		
RFC 5114	1024	0.532	$\beta = 40, d = 50$ $T = 6s \pm 1s$	$\beta = 40, d = 60$ $T = 9s \pm 2s$	$\beta = 40, d = 80$ $T = 26s \pm 5s$	$\beta = 40, d = 100$ $T = 111s \pm 33s$	$\beta = 60, d = 200$ T = 29881s ± 26085s		
LibTomCrypt	1036	0.000	$\beta = 40, d = 50$ $T = 5s \pm 1s$	$\beta = 40, d = 60$ $T = 10s \pm 1s$	$\beta = 40, d = 80$ $T = 24s \pm 6s$	$\beta = 40, d = 100$ $T = 63s \pm 11s$	$\beta = 60, d = 180$ T = 6045s ± 2101s		
SKIP	2048	0.056	$\beta = 40, d = 100$ $T = 119s \pm 26s$	$\beta = 40, d = 120$ $T = 282s \pm 57s$	$\beta = 60, d = 160$ $T = 1417s \pm 136s$	$\beta = 60, d = 250$ $T = 17369s \pm 1686s$			
RFC 3526	3072	0.000	$\beta = 40, d = 150$ $T = 1120s \pm 96s$	$\beta = 40, d = 190$ $T = 2669s \pm 232s$	$\beta = 60, d = 250$ $T = 32852s \pm 4356s$				
RFC 7919	4096	0.000	$\beta = 40, d = 200$ $T = 5373s \pm 355s$	$\beta = 60, d = 250$ $T = 22551s \pm 2385s$					

Table 3: Our parameter choices and calculation costs to recover g^{ab} in a Raccoon attack for five well-known DH groups, using BKZ 2.0 with block size β , number of equations *d* and average calculation time *T*. We aborted the BKZ reductions as soon as the hidden number was found (up to BKZ loop completion). Each simulation was repeated 16 times with random secret[†] on a vCPU with 2 GHz clock speed. The bit-size *n* of the modulus and its bias $\varepsilon = n - \log_2(p)$ are also given. Note that for k = 8, we had to use more equations for the RFC 5114 group than for the LibTomCrypt group, mainly due to the larger bias ($\ell = 7.468 \ll 8$).