
Android SmartTVsVulnerability
Discovery via Log-Guided Fuzzing

Yousra Aafer, Wei You, Yi Sun, Yu Shi, Xiangyu Zhang, Heng Yin

Why is SmartTV Security Important? A Few Reasons

Account for the largest market share of Home IoT devices

Expected to achieve a market value of 253 billion USD by 2023

Smart TVs

Plethora of attack vectors:

Physical channels: e.g., sending crafted broadcast signals

Malware: SmartTV users can download SmartTV-specific
Apps

Broad Spectrum of Attack Consequences: Cyber + Physical

Goal

• Perform a systematic security evaluation of Android SmartTVs.

• Focus on customization aspects, performed to tailor the original OS for the SmartTV
functionalities.

Background
Android SmartTVs run a heavily customized version of AOSP:

• Additional hardware, system components.

• Custom Functionalities are exposed to system and app developers through dedicated APIs.

• These APIs execute in the context of highly privileged processes.

SmartTV APIs can open the door to various

damages if not properly protected.

Motivating Example

• Xiaomi MiBox3 introduces a new native API SystemControl. setPosition(x, y, w, h)

SystemControl. setPosition(x, y, w, h)

Motivating Example

• Xiaomi MiBox3 introduces a new native API SystemControl. setPosition(x, y, w, h)
• The API does not enforce any access control !
• With the SmartTV ransomware on the rise, such APIs can be exploited to mount DoS attacks.

SystemControl. setPosition(x, y, w, h)SystemControl. setPosition(1000, 1000, 1000, 1000)

Detecting SmartTV Vulnerabilities

• We develop a specialized analysis framework to uncover hidden flaws, caused by
unprotected APIs.

• Why can’t we directly adopt static analysis tools?

• Additions are implemented in C++ and / or Java

• Why can’t we directly adopt existing testing approaches?

• Assessing execution feedback is challenging

The Audio / Visual behavior is decoupled from the internal states à the system

might be functioning correctly when the display / sound is messed up.

Fuzzing Target
Locator

Input Generator

Dynamic Fuzzer Monitoring System

• Java APIs
• Native APIs

SmartTV fuzzing targets

Our Approach: Fuzz-testing

Input
Specs

Execution
Log

HDMI Capture

Fuzzing Target locator

• We recover native API interfaces at the low-level Binder IPC through binary analysis.

• Recovering Native APIs Interfaces: Binder transaction ids, arguments types and order.

AIDLAIDL

Fuzzing Target
Locator

Input Generator

Dynamic Fuzzer Monitoring System

• Java APIs
• Native APIs

SmartTV fuzzing targets

Our Approach: Fuzz-testing

HDMI Capture

Execution
Log

Input
Specs
X=15
Y=10

• Challenges to address:

1. Recognizing target logs

2. Recognizing input validations

Deep Learning for Message Classification

Input Validation

Input Validation

Non-Input Validation

Log-Guided Fuzzing
Example: fuzzing ABC(int, int, float)

Execution
Log

Fuzzing Target
Locator

Input Generator

Dynamic Fuzzer Monitoring System

• Java APIs
• Native APIs

SmartTV fuzzing targets

Monitoring System

HDMI Capture

Input
Specs

Evaluation
Cyber threats and Memory Corruptions

Evaluation
Physical Vulnerabilities

Thank you!

Q & A

Contact:
yaafer@waterloo.ca
youwei@ruc.edu.cn

mailto:yousra.aafer@waterloo.ca
mailto:youwei@ruc.edu.cn

