
Andrei Sabelfeld @asabelfeld

s

Joint work with M. Ahmadpanah, D. Hedin, M. Balliu, and E. Olsson

SandTrap: Securing JavaScript-driven Trigger-Action Platforms 



Trigger-Action Platforms (TAPs)

• “Managing users’ digital lives” by connecting
• Smart homes, smartphones, cars, fitness armbands
• Online services (Google, Dropbox,…)
• Social networks (Facebook, Twitter,…)

• End-user programming
• Users can create and publish apps 
• Most apps by third parties

• JavaScript-driven
• IFTTT and Zapier (proprietary)
• Node-RED (open-source)



TAP architecture

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Threat model:
Malicious app maker

• Zapier and Node-RED: single-tenant
• IFTTT: multi-tenant



Sandboxing apps in IFTTT and Zapier

• JavaScript of the app runs inside AWS Lambda
• Node.js instances run in Amazon’s version of Linux
• AWS Lambda’s built-in sandbox at process level
• IFTTT: 

• Security checks on script code of the app
• TypeScript typing
• Disallow eval, modules, sensitive APIs, and I/O

AWS 
Lambda

function runScriptCode(scriptCode, config) {
… // set trigger and action parameters
eval(scriptCode)

}



IFTTT sandbox breakout

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

• Assumption: User installs a benign app from the app store

Malicious app maker

PWNEDPWNED

PWNED PWNEDPWNED

PWNED

• Compromised: Trigger and action data of the benign app



Zapier sandbox breakout

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

• Compromised: Trigger and action data of other apps of the same user

Malicious app maker

PWNEDPWNED

PWNED PWNED

PWNED

• Assumption: User installs a malicious app that poses as benign in app store



IFTTT breakout explained

• Prototype poisoning of 
rapid.prototype.nextInvocation 
in AWS Lambda runtime
• Store trigger incoming data

• IFTTT’s response
• vm2 isolation 👍
• Yet lacking fine-grained policies 🤔

• Evade security checks
• Enable require via type declaration
• Enable dynamic code evaluation

• Manipulate function constructor
• Pass require as parameter

• Use network capabilities of the app via
Email.sendMeEmail.setBody()



Node-RED breakout

Trigger ActionApp

Trigger ActionApp

• Assumption: User installs a malicious app that poses as benign in app store

Malicious app maker

PWNEDPWNED

PWNED PWNED

PWNED

PWNED

• Compromised: Trigger and action data of other apps of the same user and the TAP itself



How to secure JavaScript apps on TAPs?

• IFTTT apps should not access APIs other than
• Trigger and Action APIs, Meta.currentUserTime and Meta.triggerTime

• IFTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

Need access control at module- and context-level

Need fine-grained access control at the level of APIs and their values

• IFTTT apps should not access modules, while Zapier and Node-RED apps have to 
• Malicious Node-RED apps may abuse child_process to run arbitrary code

Approach: access control by secure sandboxing



Baseline vs. advanced policies

• To aid developers, need 
• Baseline policies once and for all apps per platform
• Set by platform

• Advanced policies for specific apps
• Set by platform but developers may suggest
• ”Only use allowlisted URLs or emails”

• Policy generation



• Enforcing
• read, write, call, construct policies

• Secure usage of modules
• vs. isolated-vm and 
Secure ECMAScript

• Structural proxy-based
• vs. vm2

• Allowlisting policies at four levels
• module, API, value, context

• Policy generation
• Execution mode

SandTrap monitor

r, w

Host SandTrap

x : "Hello"

y : "World" .y .y

x : "Hello" .x .x

y : "World"

r, w



Baseline policies

•No modules, no APIs other than Trigger/Action
• Read-only momentAPI

• Read-only protection of Zapier runtime

•No modules, allowlisted calls on RED object



SandTrap benchmarking examples
Platform Use case Policy

Granularity
Attacks prevented

Baseline Module/API Prototype poisoning

Back up new iOS photos in 
Dropbox

Value Leak photo URL

Baseline Module/API Prototype poisoning

Create a watermarked image 
using Cloudinary

Value Exfiltrate the photo

Baseline Module/API Run arbitrary code 
with child_process

Water utility control Context Tamper with the tanks 
and pumps

Worst-case 
performance 
overhead 
under 5ms for 
most apps



SandTrap takeaways

• IFTTT, Zapier, and Node-RED
vulnerable to attacks by malicious apps
• Breakouts
• Coordinated disclosure
• Empirical studies

• SandTrap monitor
• Policies

• Baseline & advanced
• Module-, API-, value-, and context-levels

• Benchmarking on IFTTT, Zapier, and Node-RED

• Try at https://github.com/sandtrap-monitor/sandtrap

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Malicious app maker

TAP


