Joint work with M. Ahmadpanah, D. Hedin, M. Balliu, and E. Olsson

Trigger-Action Platforms (TAPs)

* “Managing users’ digital lives” by connecting
* Smart homes, smartphones, cars, fithess armbands
* Online services (Google, Dropbox,...)
* Social networks (Facebook, Twitter,...)

* End-user programming
* Users can create and publish apps
* Most apps by third parties

* JavaScript-driven
* [FTTT and Zapier (proprietary)
* Node-RED (open-source)

IFTTT

Do more with the services you love

L
zapier

Node-RED

A
TAP architecture Threat model: fggrh

Malicious app maker

T@; _____________
} >[App J] b[Action]m
} >[App } >[Action]
} - ’[App } >[Action Ol

» Zapier and Node-RED: single-tenant
e I[FTTT: multi-tenant

Sandboxing apps in IFTTT and Zapier

* JavaScript of the app runs inside AWS Lambda

* Node.js instances run in Amazon’s version of Linux

* AWS Lambda’s built-in sandbox at process level

+ IFTTT:

function runScriptCode(scriptCode, config) {
.. // set trigger and action parameters
eval(scriptCode)

}

* Security checks on script code of the app
* TypeScript typing
* Disallow eval, modules, sensitive APls, and I/O

[

AWS
Lambda

N A
\Egd ¢

IFTTT sandbox breakout

PWNED

(o)

PWNED

{ Action]
SMS
\4
.. ¢
[Trigger } Malicious app make;[APP /f { Action] m

* Assumption: User installs a benign app from the app store

* Compromised: Trigger and action data of the benign app

Zapier sandbox breakout Maliclou 2pp maleer
 zapler)
(G L il =
PWNED] i "PWNED
[Trigger | { App J b[Action]
=

* Assumption: User installs a malicious app that poses as benign in app store
* Compromised: Trigger and action data of other apps of the same user

IFTTT breakout explained

[) I I declare var require : any;
Prototype poisoning of declare yam requize : @
1 1 let rapid = require("/var/runtime/RAPIDClient.js");

r‘apld ° pPOtOtype * neXtInvocatlon // prototype poisoning of rapid.prototype.

in AWS Lambda runtime e Gy

. . . var £ = (() => {}) .constructor.call (null,’require’,
* Store trigger incoming data 'Dropbox’, ’Meta’, payload);
var result = f (require, Dropbox, Meta);

Email.sendMeEmail.setBody (result) ;

* Evade security checks

’
* Enable require via type declaration * IFTTT's response
* Enable dynamic code evaluation * vm2 isolation & -
e Manipulate function constructor * Yet lacking fine-grained policies =

* Pass require as parameter

* Use network capabilities of the app via
Email.sendMeEmail.setBody()

Node-RED breakout Mallcous app maker
= ‘o

PWNED

==

PWNED

(|
/

* Assumption: User installs a malicious app that poses as benign in app store
* Compromised: Trigger and action data of other apps of the same user and the TAP itself

How to secure JavaScript apps on TAPs?

Approach: access control by secure sandboxing

* IFTTT apps should not access modules, while Zapier and Node-RED apps have to
* Malicious Node-RED apps may abuse child process to run arbitrary code

Need access control at module- and context-level

IFTTT apps should not access APIs other than
* Trigger and Action APIs,Meta. currentUserTime and Meta.triggerTime

IFTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

Need fine-grained access control at the level of APIs and their values

Baseline vs. advanced policies

* To aid developers, need
* Baseline policies once and for all apps per platform
* Set by platform

* Advanced policies for specific apps

* Set by platform but developers may suggest
* ”Only use allowlisted URLs or emails”

* Policy generation

SandTrap monitor

* Enforcing

Host

* read, write, call, construct policies

* Secure usage of modules

e vs.1isolated-vm and
Secure ECMAScript

* Structural proxy-based
* vs.vm2

~

SandTrap

~

x : "Hello"

x : "Hello"

y : "World"

* Allowlisting policies at four levels

* module, API, value, context

* Policy generation
 Execution mode

rhw

y : "World"

rw

Baseline policies

3 ° No modules, no APIs other than Trigger/Action
* Read-only moment API

zapier « Read-only protection of Zapier runtime

* No modules, allowlisted calls on RED object

Node-RED

SandTrap benchmarking examples

Worst-case
performance
overhead
under S5ms for
most apps

Node-RED

Platform Use case Policy Attacks prevented
Granularity
Baseline Module/API Prototype poisoning
m Back up new iOS photos in Value Leak photo URL
Dropbox
Baseline Module/API Prototype poisoning
%
Zapler Create a watermarked image Value Exfiltrate the photo
using Cloudinary
Baseline Module/API Run arbitrary code
with child process
Water utility control Context Tamper with the tanks

and pumps

SandTrap takeaways

* [FTTT, Zapier,and Node-RED
vulnerable to attacks by malicious apps

* Breakouts | Trigger :

 Coordinated disclosure

Malicious app maker

e Empirical studies | Trigger :

* SandTrap monitor

* Policies [Trigger}
e Baseline & advanced -

* Module-, API-, value-, and context-levels

* Benchmarking on IFTTT, Zapier, and Node-RED OfEr, 40
i

¢ Try at https://github.com/sandtrap-monitor/sandtrap Ib‘ 3

A
)
/ TAP \
& v
o ()

Ve K
L A
o} &G

