Communication-Computation
Trade-offs In PIR

Asra Ali, Tancrede Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,
Karn Seth and Kevin Yeo

Google
Humboldt-Universitat zu Berlin

Outll ne What is Private Information Retrieval (PIR)?
Our Contributions
MulPIR: Improved Communication

Gentry-Ramzan Improvements

Sparse PIR

Index i was

Private Information Retrieval downloaded.

Index i

d

Private Information Retrieval

What was the
requested
index?

Index i

d

——
—
—
—

Efficiency Considerations

-

L

Communication

Server
Computation

Efficiency Considerations

d

|

Client
Computation

Communication-Computation Trade-offs

Communication Communication

Computation Computation

What is the best trade-off?

e Completely depends on context

e Typically, client computation must be small as querier is a user device
o Example: Mobile phones querying a cloud storage provider

e Can estimate best trade-off using monetary costs
o Example: Cloud computing prices

Homomorphic Encryption-based PIR

E(O), ..., E(0), E(1), E(Q), ..., E(O)
x -

E(0*B,+..0*B_+1*B.+ 0*B_,+..0*B)=E(B,

I+

Recursion for PIR

Enc(0)

Enc(0)

Enc(1)

Enc(0)

Enc(0)

Enc(0)

Enc(1)

Enc(0)

MU[PIR' Improve upload by up to 75% and download

up to 80% with minimal computational

increases over prior SealPIR implementation
Improved of Angel, Chen, Laine, Setty ‘18.
Communication

MulPIR:
Improved
Communication

Improve upload by up to 75% and download
up to 80% with minimal computational
increases over prior SealPIR implementation
of Angel, Chen, Laine, Setty ‘18.

1.

Use secret key encryption on
client-side.

Replace long randomness with a
short PRG seed.

Compress downloaded ciphertext
using modulus switching.
Improved oblivious expansion.
Leverage multiplicative
homomorphism.

Expandable Randomness using PRG

- Private key encryption is of the form (co, c,) where each element in R/gR.
- ¢, isauniformly random element independent of public and private keys
- Replace ¢, with a PRG seed S.

- Reduces upload by half already!

Improved Oblivious Expansion

SealPIR introduced the notion of oblivious expansion. Instead of a single ciphertext per bit, encrypt
multiple bits per ciphertext.

Without Oblivious Expansion:

E(O), ..., E(0), E(1), E(O), ..., E(O) with N ciphertexts

With Oblivious Expansion:

E(O,..,0),E(O,...,0,1,0,...,0), E(O, ..., 0) with < N ciphertexts depending on parameters.

Server will obliviously expand compressed vector.

Limits of SealPIR’s Oblivious Expansion

Limitation: To-be-compressed bit vector must have Hamming weight <= 1.

Limits of SealPIR's Oblivious Expansion

Enc(0) Enc(0) Enc(1) Enc(0) }

(Y [
Enc(0)

Enc(0)

Enc(1)

Enc(0)

Limits of SealPIR’s Oblivious Expansion

Limitation: To-be-compressed bit vector must have Hamming weight <= 1.

Limitation with Recursion: Must compress two sets of vectors separately. In the worst case, lots of
wasted space.

Limits of SealPIR’s Oblivious Expansion

Limitation: To-be-compressed bit vector must have Hamming weight <= 1.

Limitation with Recursion: Must compress two sets of vectors separately. In the worst case, lots of
wasted space.

Ciphertext 1 Ciphertext 2

e

Wasted Space

Improved Oblivious Expansion

Improvement: To-be-compressed bit vector can have arbitrary Hamming weight.

Improvement with Recursion: Compress all uploaded bit vectors into one ciphertext.

Improved Oblivious Expansion

Improvement: To-be-compressed bit vector can have arbitrary Hamming weight.

Improvement with Recursion: Compress all uploaded bit vectors into one ciphertext.

Ciphertext

/

Less Wasted Space

Improved Oblivious Expansion

Observation: Server oblivious expansion is linear in the plaintext space. Compression and expansion
work for arbitrary vectors (not just bit vectors!).

Ciphertext

/

Less Wasted Space

Experimental Evaluation

Table 3: Communication and CPU costs (in ms) of SealPIR and MulPIR (recursion d = 2) for a database of n elements of 288B.

SealPIR [3] (d = 2) SealPIR [3] (d = 3) MulPIR (d =2) MulPIR (d = 3)

Database size n 262144 1048576 4194304 262144 1048576 4194304 262144 1048576 4194304 262144 1048576 4194304
Actual number of rows after packing 26215 104858 419431 18725 74899 299594 3693 14769 59075 4682 18725 74899
Client Query 19 19 19 19 19 19 172 192 213 126 128 161
Server Expand 145 294 590 33 55 90 391 783 1610 396 395 841
Server Respond 1020 3520 12891 1136 3519 11554 1919 5213 16307 3268 11677 30501
Upload (kB) 61.4 61.4 614 922 92.2 92.2 122 122 122 130 130 130
Download (kB) 307 307 307 1966 1966 1966 119 119 119 130 130 130

Server Cost (US cents) 0.0033 0.0040 0.0067 0.017 0.017 0.020 0.0026 0.0036 0.0069 0.0031 0.0054 0.011

Gentry-Ramzan
PIR
Improvements

Present improvements to Gentry-Ramzan
PIR to enable tunable
communication-computation trade-offs.

Reduces server computation by up to 85%
for larger communication sizes.

Experimental Evaluation

Table 5: Communication and computation costs for PIR protocols for two databases, without recursion.

Communication (kB) Computation (ms) Server Cost
chunks upload download C.Setup S.Setup C.Create S.Respond C.Process (U5 cent)
IMB database: 5000 elements of 288B.
MulPIR 1 14 21 0 39 154 3,910 0 0.0019
Gentry—Ramzan (1 generator) 5 0.5 1.3 0 1,532 3,294 51,803 377 0.0145
Client-Aided Gentry-Ramzan (15 generators) 5 4.1 1.3 0 1,540 2,688 5,495 381 0.0016
Client-Aided Gentry-Ramzan (50 generators) 5 13.1 1.3 0 1,594 3,966 2,988 393 0.0011
Client-Aided Gentry—-Ramzan (100 generators) 5 25.8 1.3 0 1,796 7,980 2,904 417 0.0014
Damgard-Jurik (s = 1) 1 1,480 0.6 40,636 2 14,334 20,710 6 0.0382
ElGamal 72 280 8 283 29 893 10,105 26,544 0.0091
Private File Download — 3GB database: 10,000 elements of 307kB.

MulPIR 100 794 1,385 0 88,815 198 34,388 23 0.0417
Client-Aided Gentry—-Ramzan (50 generators) 4,955 13.1 1,259 6 1,347,036 28,684 5,221,052 355,940 1.4782
Damgard-Jurik (s = 1) 1,060 2,960 614 = 80,000 ~3200 =~28600 =~42,000,000 22,500 11.7451
ElGamal 76,800 280 4,300 ~300 ~88,800 =~=2250 ~ 4,800,000 =30,715,200 1.4338

Median over 10 computations. The timings indicated with =~ have been estimated on a smaller number of chunks to finish in a reasonable amount of time.

Generic transformation from Sparse PIR to

Sparse PIR to (Dense) PIR
(Dense) PIR
Transformation

What is Sparse PIR?

Index i

d

What is Sparse PIR?

Key k.

x k2

L .

Cuckoo Hashing

K,

K

—
—

Sparse PIR using Dense PIR

Key k.

d

—

Questions?

