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Since tree models are very popular in security, we want to
increase their robustness against evasion attacks.
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Evasion Attack against Tree Ensembles

Tree EnsembleMalicious Sample

Classified as BenignSmall changes
ℓp norm threat model

Robustness Verification: Does there exist a perturbed malicious sample within
a bounded ℓp  norm distance, such that it is classified as benign?

[Kanchelian et al. ICML’16; Chen et al. NeuIPS’19]



ℓp norm distance is not suitable to model
the realistic attacker’s capabilities

to evade security classifiers
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Cost-aware Threat Model
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e.g., easy to insert redundant content in a malware
hard to remove content
hard to change benign data sample

feature manipulation cost is asymmetricℓ∞ norm threat model
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ℓ∞ norm threat model

Misclassified as benignx1 < η

We propose a new cost-aware threat model to capture
different feature manipulation cost.
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Cost Constraint Function

• Maps each feature value to an interval of allowed changes

• Using security domain knowledge, we can specify the cost constraint

• Goal: train robust tree ensembles
• How to find the robust split?
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Re-evaluate the quality of the split
given an arbitrary attacker

bounded by the cost constraint
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Regular Training Algorithm

x1

x1 < η1 x1 < η2

Information gain: 0.918 Information gain: 0.251

The first split is preferred.
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Cost-aware Robust Training Algorithm

x1

x1 < η1

attack range: reverse the interval

η1 + βη1 - !

data points that can be moved

Worst information gain as if the attacker can maximally degrade the quality of the split

move only      : 0.918 – 2/3*0.5  - 1/3*0 = 0.585
move only      : 0.918 – 0 – 1*0.918 = 0
move both: 0.918 – 1/3*0 - 2/3*0.5 = 0.585
don’t move anything: 0.918 – 0 = 0.918



Cost-aware Robust Training Algorithm
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No data points can be moved. Worst information gain
is the same as the original one: 0.251

attack range



Cost-aware Robust Training Algorithm

x1

x1 < η1 x1 < η2

The second split is preferred.

Worst information gain: 0 Worst information gain: 0.251



Cost-aware Robust Training Algorithm

x1

x1 < η

2N possible ways to reduce split quality. Enumeration?
How to efficiently compute the worst score for each split?

N data points

attack range



Cost-aware Robust Training Algorithm

x1

x1 < η

We propose a greedy algorithm to approximate the worst quality of each split:
Information gain, Gini impurity, and Cross-entropy loss, etc.

Robust split: the best worst-case quality

N data points

attack range
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We re-extracted 25 features proposed in related work (Kwon et al.),

from URL redirection chains and graphs.
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To increase or decrease each feature:
Negligible, Low, Medium, High cost.

e.g., # of domains for landing page IP
low cost to increase: attacker reuses the landing IP
high cost to decrease: attacker needs to purchase new 
hosting services to host additional domains
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Twitter Spam URL Detection

@wyc
check this out
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199.16.156.75
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54.201.174.24
http://news.j
osi.com/...

66.211.181.18
http://evil.com
/...

malicious landing pageInitial URL URL redirection chain

To increase or decrease each feature:
Negligible, Low, Medium, High cost.

Each cost category is a parameter:
4 cost families, 19 cost models
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http://news.josi.com/
http://evil.com/


Key Result

• We can increase the adaptive attack cost by 10.6X

• Our paper has more evaluation results

Model Accuracy False Postive Rate Adaptive Attack Cost
Baseline XGBoost 99.38% 0.89% 1

Cost-aware Robust Model 96.54% 4.09% 10.6



Thank you

• Both scikit-learn and XGBoost

• We have released our source code and models 

• https://github.com/surrealyz/growtrees

https://github.com/surrealyz/growtrees

