Cost-Aware Robust Tree Ensembles for Security Applications

Yizheng Chen, Shiqi Wang, Weifan Jiang, Asaf Cidon, and Suman Jana Columbia University

Tree Ensembles for Security

Malicious Autonomous Systems

Malware

Social Engineering

Phishing Emails

Tree Ensembles for Security

Malicious Autonomous Systems

Malware

Social Engineering

Phishing Emails

Since tree models are very popular in security, we want to increase their robustness against evasion attacks.

Evasion Attack against Tree Ensembles

Evasion Attack against Tree Ensembles

 $\ell_{\rm p}$ norm threat model Small changes

Robustness Verification: Does there exist a perturbed malicious sample within a bounded ℓ_p norm distance, such that it is classified as benign?

[Kanchelian et al. ICML'16; Chen et al. NeuIPS'19]

 $\ell_{\rm p}$ norm distance is not suitable to model the realistic attacker's capabilities to evade security classifiers

ℓ_{∞} Norm Threat Model

bound the perturbations symmetrically

- ***** malicious
- benign

ℓ_{∞} Norm Threat Model

- ***** malicious
- benign

Cost-aware Threat Model

Cost-aware Threat Model

malicious

benign

Cost-aware Threat Model

We propose a new cost-aware threat model to capture different feature manipulation cost.

Cost Constraint Function

Maps each feature value to an interval of allowed changes

• Using security domain knowledge, we can specify the cost constraint

Cost Constraint Function

Maps each feature value to an interval of allowed changes

Using security domain knowledge, we can specify the cost constraint

- Goal: train robust tree ensembles
 - How to find the robust split?

Re-evaluate the quality of the split given an arbitrary attacker bounded by the cost constraint

Regular Training Algorithm

Regular Training Algorithm

Regular Training Algorithm

The first split is preferred.

attack range: reverse the interval

attack range: reverse the interval

Worst information gain as if the attacker can maximally degrade the quality of the split

```
move only : 0.918 - 2/3*0.5 - 1/3*0 = 0.585

move only : 0.918 - 0 - 1*0.918 = 0

move both: 0.918 - 1/3*0 - 2/3*0.5 = 0.585

don't move anything: 0.918 - 0 = 0.918
```


No data points can be moved. Worst information gain is the same as the original one: 0.251

The second split is preferred.

2^N possible ways to reduce split quality. Enumeration? How to efficiently compute the worst score for each split?

We propose a greedy algorithm to approximate the worst quality of each split: Information gain, Gini impurity, and Cross-entropy loss, etc.

Robust split: the best worst-case quality

@wyc check this out http://t.co/ZeWBx0rfM

Whether it is spam URL

We re-extracted 25 features proposed in related work (Kwon et al.), from URL redirection chains and graphs.

To increase or decrease each feature: Negligible, Low, Medium, High cost.

To increase or decrease each feature: Negligible, Low, Medium, High cost.

e.g., # of domains for landing page IP

low cost to increase: attacker reuses the landing IP high cost to decrease: attacker needs to purchase new hosting services to host additional domains

To increase or decrease each feature: Negligible, Low, Medium, High cost.

Each cost category is a parameter: 4 cost families, 19 cost models

Key Result

We can increase the adaptive attack cost by 10.6X

Model	Accuracy	False Postive Rate	Adaptive Attack Cost
Baseline XGBoost	99.38%	0.89%	1
Cost-aware Robust Model	96.54%	4.09%	10.6

• Our paper has more evaluation results

Thank you

Both scikit-learn and XGBoost

• We have released our source code and models

• https://github.com/surrealyz/growtrees

