Express: Lowering the Cost of Metadata-Hiding Communication with Cryptographic Privacy

Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, Dan Boneh Stanford MIT CSAIL Stanford Stanford

How Can We Protect Whistleblowers?

End to end encrypted messaging apps

E.g. Signal, WhatsApp

Problem: metadata

End to end encrypted messaging apps

E.g. Signal, WhatsApp

Problem: metadata

Anonymizing proxy

E.g. Tor, SecureDrop

Problem: global adversaries

Metadata-hiding communication systems with cryptographic privacy

Metadata-hiding communication systems with cryptographic privacy

Drawback: heavy requirements placed on clients

- Requirement to run in synchronized rounds
- High communication costs

Metadata-hiding communication systems with cryptographic privacy

Drawback: heavy requirements placed on clients

- Requirement to run in synchronized rounds
- High communication costs

Fundamental issue: whistleblowing tools need *cover traffic*, which must be possible for clients to generate at minimal cost

Metadata-hiding communication systems with cryptographic privacy

Drawback: heavy requirements placed on clients

- Requirement to run in synchronized rounds
- High communication costs

Fundamental issue: whistleblowing tools need *cover traffic*, which must be possible for clients to generate at minimal cost

Can we get around high client costs?

Express: Practical Metadata-Hiding Whistleblowing

Qualitative improvement: users do not access the system in synchronized rounds

Asymptotic improve	<u>ments:</u>	Practical improvements:
Client computation:	O(1)	6x faster server
Communication:	O(1)	8x faster client
Duian	O(JNI)	>10x communication reduction
Prior work:	O(√N)	6x reduction in dollar cost to run

Express Overview

2 server system, secure against:
Up to one corrupt server
Arbitrarily many corrupt users

Express Overview

2 server system, secure against:

Up to one corrupt server

Arbitrarily many corrupt users

Supported operations:

Register mailbox (Private) write to mailbox Read from mailbox

Express Overview

2 server system, secure against:

Up to one corrupt server

Arbitrarily many corrupt users

Supported operations:

Register mailbox (Private) write to mailbox Read from mailbox

Security: can't tell who the *recipient* of a message is

Addr	Data	
0	0	
1	0	
2	0	
3	0	
4	0	Distrib Private

Addr	Data
0	0
1	0
2	0
3	0
4	0

Addr

X	f(x)
0	0
1	0
2	0
3	"Hi!"
4	0

Addr	Data
0	0
1	0
2	0
3	0
4	0

Addr	Data	
0	0	
1	0	
2	0	
3	0	

0

4

х	f ₁ (x)
0	"abc"
1	"xf\$"
2	"^tg"
3	"!7≈"
4	"jhV"

x	f ₂ (x)
0	"abc"
1	"xf\$"
2	"^tg"
3	"'2!)"
4	"jhV"

Data
0
0
0
0
0

Addr	Data
0	0
1	0
2	0
3	0
4	0

Distributed point function (DPF): f_1 , f_2 have size O(logN), generated in time O(logN), where N = # of mailboxes

1	Addr	Data
	0	0
J	1	0
	2	0
	3	0
	4	0

Problem: disruptive user sends malformed message to corrupt mailboxes

х	f(x)
0	989f4
1	dDf73
2	08dji3
N	89hfif

Problem: disruptive user sends malformed message to corrupt mailboxes

Solution: servers blindly *audit* all incoming write requests

Problem: disruptive user sends malformed message to corrupt mailboxes

Solution: servers blindly audit all incoming write requests

Prior work: third server audits requests

- $O(\sqrt{N})$ communication
- O(√N) client/auditor computation

Problem: disruptive user sends malformed message to corrupt mailboxes

Solution: servers blindly audit all incoming write requests

New auditing protocol:

- O(1) communication
- O(1) client computation
- No additional server!

Goal: check that values held by servers only differ at one point

Goal: check that values held by servers only differ at one point

Prior work has a semihonest solution where servers use a cheap MPC (only 2 multiplications) to verify this property.

Goal: check that values held by servers only differ at one point

Prior work has a semihonest solution where servers use a cheap MPC (only 2 multiplications) to verify this property.

Issue: malicious server can guess and check the differing entry

Tool: secret-shared non-interactive proofs (SNIPs)

Tool: secret-shared non-interactive proofs (SNIPs)

Idea: client sends SNIP proof to servers that honest evaluation of the semihonest protocol accepts

Tool: secret-shared non-interactive proofs (SNIPs)

Idea: client sends SNIP proof to servers that honest evaluation of the semihonest protocol accepts

Key Insight: client knows the message index, only needs O(1) work to prove facts about computation that would take servers O(N) work

Server work:									
Client work:									

Tool: secret-shared non-interactive proofs (SNIPs)

Idea: client sends SNIP proof to servers that honest evaluation of the semihonest protocol accepts

Key Insight: client knows the message index, only needs O(1) work to prove facts about computation that would take servers O(N) work

See paper for details

Evaluation: Auditing Protocol

Client runs in under 5 microseconds

55,000x faster than Riposte for 1M mailboxes

Enables 8x reduction in overall client computation (now 20ms)

Comparable on server, where auditing is not the bottleneck

Riposte: An Anonymous Messaging System Handling Millions of Users, Henry Corrigan-Gibbs, Dan Boneh, David Mazieres, *Oakland'15*. Unobservable Communication over Fully Untrusted Infrastructure, Sebastian Angel, Srinath Setty, *OSDI'16*.

Express

Metadata-hiding communication system with application to private whistleblowing

Asymptotic speedup from $O(\sqrt{N})$ to O(1) for auditing

Speedup of 8x on client, up to 6x on server (compared to Riposte)

6x lower dollar cost to operate system

13-7,000x or more reduction in communication costs

Code: https://github.com/SabaEskandarian/Express

Contact: <u>saba@cs.stanford.edu</u>