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Physical Side-Channel Attacks www.tugraz.at

w
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• Device:

• Has certain asset, e.g. cryptographic key

• Examples: Credit card, passport, government IDs, SIM cards, security tokens, ...

• Microprocessors

• Attacker:

• Has physical access to device

• Can observe or manipulate its physical properties, e.g. power consumption
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Masking www.tugraz.at

• Power consumption of CPU depends on:

• What instruction is executed?

• Which data is involved (key)?

• Masking:

• Secret sharing technique

• Split sensitive value into multiple (random) shares

• Perform computations for each share

• Verification: Check separation of shares

1. Algorithmically

2. In a hardware circuit

Break the dependency!
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The HW/SW Gap www.tugraz.at

• So far, formal proofs for masked cryptography exist either:

• For masked HW circuits (Rebecca[Bloem, 2018])

• For masked SW

• Assuming that the underlying HW (CPU netlist) does not cause additional problems

SW

Masking Scheme

RISC-V Assembly

3
HW

CPU

Ibex Core

)
executes

• Goal: Co-Verification of SW and HW → Coco

1. Detect leakage of a given masked SW implementation when executed on a given

CPU netlist

2. Construct SCA-hardened CPU components
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HW as a Threat to Masked SW www.tugraz.at
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Read Port A
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xor x., x2, x.

xor x., x3, x.

• Attacker observes fluctuations of specific wire for one clock cycle until signal is
stable - what leakage could be seen?

• Transitions: leakage depending on both current and previous value

• Glitches: leakage due to propagation delay variation through combinatorial logic

• Caused by physical hardware properties, e.g. different wire lengths, gate delays, ...
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Co-Verification Flow of Coco www.tugraz.at

SW

HW

Masking Scheme

RISC-V Assembly

3

CPU

Ibex Core

)

Simulation Annotation Verification

Yes, secure.

No, not secure. Leak in

cycle 8, gate mux regread.

• Inspired by Rebecca

(pure HW verification)

• Adapted for verification of

masked SW on HW (CPU

netlists)
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Co-Design with Coco www.tugraz.at

• Coco is applicable any processors, as long as netlist ist available

• Case-study: RISC-V Ibex core

• 32-bit, 2-stage pipeline, in-order, single-issue

• Hardening Ibex with Coco

• Reported leaks in register file, computation units (ALU, Multiplier, CSR Unit),

Load-Store Unit, data memory

• Solution: (1) Hardware fixes and (2) Software Constraints
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Example: Hardened Ibex Register File www.tugraz.at

• Original register file had
several problems:

• Switching wires in

multiplexer tree

• Glitchy address signals

• Unintended reads

,,,,,,,,,,,,,,,,,One-HotRead Addr

1

32

5

x1

x2

x3

AND

AND

AND

OR Read Port A

Reg

7 USENIX Security ’21 Barbara Gigerl — IAIK – Graz University of Technology



Evaluation www.tugraz.at

• Area overhead (core excl. SRAM): 9.9% (20.2 kGE vs 22.2 kGE)

Name
Runtime Leaking Input Fresh Verification Runtime

(cycles) Cycle Shares Randomness Stable Transient

Trichina AND reg. 19 - 4×32 bit 32 bit 5 s 19 s

DOM AND reg. é 13 12 4×32 bit 32 bit 2 s 12 s

DOM AES S-box 1900 - 16×16 bit 34×16 bit 18m 4.75 h

DOM Keccak S-box 2nd order 474 - 15×32 bit 15×32 bit 3m 1.3 h

DOM AND reg. 3rd order 65 - 8×32 bit 6×32 bit 44 s 2.5m
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Summary www.tugraz.at

• HW/SW Gap: Formal proofs for masked SW wrongly assume that HW is secure

• Coco: Co-Verification of SW and HW

• Co-Verification: Detect leakage in a CPU netlist for masked SW

• Co-Design: Find HW patches for leaking CPU components

• Case-study: RISC-V Ibex core
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