
Ofek Kirzner
Adam Morrison
Blavatnik School of Computer Science 
Tel Aviv University

AN ANALYSIS OF SPECULATIVE TYPE 
CONFUSION VULNERABILITIES IN THE 
WILD



SPECTRE VARIANT 1: BOUNDS CHECK BYPASS

2

Train prediction:
if taken
Misprediction: 
out of bounds

foo(valid_x)foo(&secret – array1)

The secret is leaked

Goal: Leak data from the victim address space



SPECTRE VARIANT 1: BOUNDS CHECK BYPASS

3

Attacker – unprivileged user Victim – the kernel

foo(&secret – array1)

The secret is leaked

Read from kernel à Read any physical address



MITIGATION IN THE LINUX KERNEL

4

A special API to ensure bounds checks are respected under speculation



SPECTRE V1 IS MORE THAN BOUNDS CHECK 
BYPASS
Quoting from the Spectre paper [Kocher et al., 2019]:

5



SPECULATIVE TYPE CONFUSION

Misspeculation makes the victim execute with some variables 
holding values of the wrong type, and thereby leak memory 
content

6



SPECULATIVE TYPE CONFUSION - EXAMPLE

7

Speculation: 
Type confusion



CONTRIBUTIONS

Observation: speculative type confusion may be 
much more prevalent than previously hypothesized.

We analyzed the Linux kernel, looking for 
speculative type confusion.

Found new types of speculative type confusion.

8

Attacker-
introduced: 

eBPF

Compiler-
introduced

Polymorphic 
type 

confusion



EBPF: SPECULATIVE TYPE CONFUSION
9



EBPF

10

Linux subsystem, enabling user-defined programs in kernel

eBPF bytecode Native CodeStatic verification Bounds check bypass 
mitigations

Verifier Compiler



EBPF VERIFIER VULNERABILITY

11

Flows considered by eBPF verifier
r0 == 0 r0 == 1 otherwise



EBPF VERIFIER VULNERABILITY

12

Speculative flows are not verified

Predicted taken

Predicted taken



TRAINING MUTUALLY EXCLUSIVE BRANCHES

13

Mutually exclusive

Shadow gadget

Can both be taken

Manipulating the branch predictor (details in the paper)

Unprivileged process can read arbitrary memory addresses at 
a rate of ~6.5 KB/sec

Branch Prediction Unit



COMPILER INTRODUCED SPECULATIVE 
TYPE CONFUSIONS

14



COMPILERS MIGHT CREATE SPECULATIVE TYPE 
CONFUSION

15

Compiler reasoning:
Branches are mutually exclusive

Innocent looking code is compiled in 
a way that inroduces vulnerability

(trusted) ptr argument held in x86 
register %rsi

code during which x 
moves to %rsi

Attacker-
controlled



CAN WE FIND IT IN THE WILD?

Binary level analysis of Linux

Focused on system calls, which have well-defined user-controlled 
interface

The leakage mechanism is out of scope: aiming at finding 
speculative attacker-controlled memory dereference 

16

compiler flags # vulnerable syscalls

GCC 9.3.0 -Os 20

GCC 9.3.0 -O3 2

GCC 5.8.2 -Os 0

GCC 5.8.2 -O3 0

A pattern in syscalls the receive 
an optional untrusted user pointer 
(details in paper)



SPECULATIVE POLYMORPHIC TYPE 
CONFUSION

17



SPECTRE V2 MITIGATIONS

18

Spectre v2 exploits misprediction of indirect branch target addresses

Retpolines: block indirect branch prediction

Optimization: restrict speculation to valid targets [Linux, Amit et al., 2019]
Might create speculative type 

confusion vulnerabilities

Indirect branch
Direct branch to retpoline 

thunk

Jump to correct 
destination 



SPECULATIVE POLYMORPHIC TYPE CONFUSION

19

Bàuser_controlled_scalar



ANALYSIS

20

Analysis

• Linux code analysis - looking at ways in which 
polymorphism can lead to speculative type confusion

Results

• Thousands - flagged potentially vulnerable
• Hundreds - ”array indexing” instances
• All - limited speculation window or limited control on 

user value

Conclusion

• Were a conditional branch-based mitigation used 
instead of retpolines, the kernel’s security would be on 
shaky ground



SUMMARY

21

Attacker-
introduced: 

eBPF

Compiler-
introduced

Polymorphic 
type 

confusion

Speculative type 
confusion is prevalent

Analysis

Mitigation is difficult 
and requires 
rethinking
(Discussion in paper)

Conclusion Discussion

ofekkir@gmail.com mad@cs.tau.ac.il


