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SPECTRE VARIANT 1: BOUNDS CHECK BYPASS
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Train prediction:
if taken
Misprediction: 
out of bounds

foo(valid_x)foo(&secret – array1)

The secret is leaked

Goal: Leak data from the victim address space



SPECTRE VARIANT 1: BOUNDS CHECK BYPASS
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Attacker – unprivileged user Victim – the kernel

foo(&secret – array1)

The secret is leaked

Read from kernel à Read any physical address



MITIGATION IN THE LINUX KERNEL
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A special API to ensure bounds checks are respected under speculation



SPECTRE V1 IS MORE THAN BOUNDS CHECK 
BYPASS
Quoting from the Spectre paper [Kocher et al., 2019]:
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SPECULATIVE TYPE CONFUSION

Misspeculation makes the victim execute with some variables 
holding values of the wrong type, and thereby leak memory 
content
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SPECULATIVE TYPE CONFUSION - EXAMPLE
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Speculation: 
Type confusion



CONTRIBUTIONS

Observation: speculative type confusion may be 
much more prevalent than previously hypothesized.

We analyzed the Linux kernel, looking for 
speculative type confusion.

Found new types of speculative type confusion.
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Attacker-
introduced: 

eBPF

Compiler-
introduced

Polymorphic 
type 

confusion



EBPF: SPECULATIVE TYPE CONFUSION
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EBPF
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Linux subsystem, enabling user-defined programs in kernel

eBPF bytecode Native CodeStatic verification Bounds check bypass 
mitigations

Verifier Compiler



EBPF VERIFIER VULNERABILITY
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Flows considered by eBPF verifier
r0 == 0 r0 == 1 otherwise



EBPF VERIFIER VULNERABILITY
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Speculative flows are not verified

Predicted taken

Predicted taken



TRAINING MUTUALLY EXCLUSIVE BRANCHES
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Mutually exclusive

Shadow gadget

Can both be taken

Manipulating the branch predictor (details in the paper)

Unprivileged process can read arbitrary memory addresses at 
a rate of ~6.5 KB/sec

Branch Prediction Unit



COMPILER INTRODUCED SPECULATIVE 
TYPE CONFUSIONS
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COMPILERS MIGHT CREATE SPECULATIVE TYPE 
CONFUSION
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Compiler reasoning:
Branches are mutually exclusive

Innocent looking code is compiled in 
a way that inroduces vulnerability

(trusted) ptr argument held in x86 
register %rsi

code during which x 
moves to %rsi

Attacker-
controlled



CAN WE FIND IT IN THE WILD?

Binary level analysis of Linux

Focused on system calls, which have well-defined user-controlled 
interface

The leakage mechanism is out of scope: aiming at finding 
speculative attacker-controlled memory dereference 
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compiler flags # vulnerable syscalls

GCC 9.3.0 -Os 20

GCC 9.3.0 -O3 2

GCC 5.8.2 -Os 0

GCC 5.8.2 -O3 0

A pattern in syscalls the receive 
an optional untrusted user pointer 
(details in paper)



SPECULATIVE POLYMORPHIC TYPE 
CONFUSION
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SPECTRE V2 MITIGATIONS
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Spectre v2 exploits misprediction of indirect branch target addresses

Retpolines: block indirect branch prediction

Optimization: restrict speculation to valid targets [Linux, Amit et al., 2019]
Might create speculative type 

confusion vulnerabilities

Indirect branch
Direct branch to retpoline 

thunk

Jump to correct 
destination 



SPECULATIVE POLYMORPHIC TYPE CONFUSION
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Bàuser_controlled_scalar



ANALYSIS
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Analysis

• Linux code analysis - looking at ways in which 
polymorphism can lead to speculative type confusion

Results

• Thousands - flagged potentially vulnerable
• Hundreds - ”array indexing” instances
• All - limited speculation window or limited control on 

user value

Conclusion

• Were a conditional branch-based mitigation used 
instead of retpolines, the kernel’s security would be on 
shaky ground



SUMMARY
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Attacker-
introduced: 

eBPF

Compiler-
introduced

Polymorphic 
type 

confusion

Speculative type 
confusion is prevalent

Analysis

Mitigation is difficult 
and requires 
rethinking
(Discussion in paper)

Conclusion Discussion
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