MUSE: Secure Inference Resilient to Malicious Clients
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Neural Network Inference

rowing number of applications use neural networks In user interactions

® Baby monitor: motion detection to alert parents
® Home monitoring: detect and recognize visitors

Client erver

Server’s model
IS proprietary
and sensitive

Client data is
sensitive



Secure inference

Client Server

Client (& server) should learn only prediction M(x)

Server should not learn private client input x
Client should not learn private model weights M




Prior work on 2-party
secure inference
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The case for client-malicious
security

Only a single server
e

Client @
Clients can easily
remain anonymous Client

Client-malicious security => semi-honest server, malicious client

Many clients with
various setups and
Incentives




Contributions

1) A model-extraction attack against semi-nonest secure
iINnference protocols

2) Muse: An efficient client-malicious secure inference protocol



Model-extraction attacks

How can semi-honest secure inference protocols enhance the
power of model-extraction attacks?



Recap: Neural Networks
INnput

Linear

e.g. convolution, fully-
connected, average-pooling

Non-linear

Linear

Non-linear layers make
model-extraction difficult.

Without them the network
would simply be a linear
system.

Non-linear

Linear

Prediction



Semi-honest secure inference protocols
based on additive secret-sharing

1) Compared to standard inference, secure inference has O(¢)
additional rounds of interaction

2) A malicious client can shift intermediate values in the
network evaluation

How can a malicious client leverage these two properties?



Model-extraction attack intuition

Server

Linear

We removed the non- .

inearity from the network!

Client removes the
additive shift
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Evaluating our attack

Compared to the state-of-the-art black-box model extraction attack [Car+20],
our attack:

® Uses 24x-312x fewer queries
® Perfectly extracts model weights rather than approximating them
® Scales on the number of parameters, not the depth of the network

® Fvaluated on networks 100x deeper and with 60x the parameters
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Security:

Functionality:

Efficiency:

Muse

Cryptographic system for secure inference
on convolutional neural networks

achieves client-malicious simulation-based security

supports arbitrary ReLU-based CNNs

e reduces bandwidth (4.6x) and inference latency (21x) compared
to existing alternatives
e online phase similar to semi-honest protocols
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Client

F

Online

Starting point: Delphi [Mis+20]
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Extending Delphi to
client-malicious security

Client ¢; cy Server  SL SN
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Preprocessing
phase
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F or F

Need to commit the client to the state
they recelive In the pre-processing phase
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Extending Delphi to
client-malicious security
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Extending Delphi to
client-malicious security

alaV/a SL?
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check whether the client’s L7ineqr
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We design a protocol for conditional
disclosure of secrets (CDS) which:

® Checks whether the input is valid
® |f SO, outputs garbled circuit labels
corresponding to the input

Online phase
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Muse
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Implementation

Open-source Rust, Python, and C++ library with support for
GPU acceleration

ARTIFACT
EVALUATED

github.com/mcag-project/muse | ¢



http://github.com/mc2-project/muse

Evaluation

How does Muse compare against the following baselines”

Baselines:
1) Overdrive [Kel+18] (Generic protocol with malicious security)

2) Delphi [Mis+20] (Specialized protocol with semi-honest security)

Benchmark: MiniONN network on CIFAR-10
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Preprocessing latency

Comparison with malicious Overdrive and semi-honest Delphi
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Online latency

Comparison with malicious Overdrive and semi-honest Delphi
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Muse

® A novel model-extraction attack against existing semi-honest
secure Iinference protocols 24-312x more efficient than existing
attacks

® A client-malicious secure inference protocol 21x more efficient
than prior work

Thank you!

Ryan Lehmkuhl
ryanlen@perkeley.edu
github.com/mc2-project/muse

22
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