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Neural Network Inference

A growing number of applications use neural networks in user interactions 

• Baby monitor: motion detection to alert parents

• Home monitoring: detect and recognize visitors

2

Client data is 
sensitive

Server

MM(x)

Client

x
Server’s model 
is proprietary 
and sensitive



Secure inference

Client (& server) should learn only prediction M(x) 

Server should not learn private client input x

Client should not learn private model weights M

Client

x

Server

M
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M(x)



Fast 
(Specialized 
protocols)

Prior work on 2-party 
secure inference
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Semi-honest 
Security
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The case for client-malicious 
security

Client

ServerClient

Client

Client

Client-malicious security => semi-honest server, malicious client

Only a single server
Many clients with 

various setups and 
incentives

Clients can easily 
remain anonymous
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Contributions

2) Muse: An efficient client-malicious secure inference protocol 

1) A model-extraction attack against semi-honest secure 
inference protocols 



M( )

7

Model-extraction attacks

ServerClient

M ≈ M′￼

M′￼ M

x1x2

M( )

x3

M( )

x4

M( )

Client makes specially-
crafted queries to the server

Client use responses to 
learn information about the 

server’s model

After a number of queries, the 
client can construct a model 
approximately equivalent to 

the server’s

How can semi-honest secure inference protocols enhance the 
power of model-extraction attacks?



Recap: Neural Networks
Input

Linear

Non-linear

Linear

Non-linear

Linear

Prediction
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Non-linear layers make 
model-extraction difficult. 
Without them the network 
would simply be a linear 

system.

e.g. convolution, fully-
connected, average-pooling



(e.g. CryptFlow2, Delphi, Gazelle, SecureML, 
MiniONN, EzPC)


[[L1(x)]]c

Semi-honest secure inference protocols 
based on additive secret-sharing
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Client
Server

Linear

Non-linear

Linear

Non-linear

Linear

x

[[L1(x)]]s

[[N(L1(x))]]c
[[N(L1(x))]]s

…
[[M(x)]]s

[[M(x)]]cM(x)

Each layer is evaluated 
using a single round of 

interaction

After each interaction, 
both parties hold additive 
secret shares of the layer 

output

Server reveals its final 
share to the client

How can a malicious client leverage these two properties?

2) A malicious client can shift intermediate values in the 
network evaluation 

1) Compared to standard inference, secure inference has              
additional rounds of interaction

O(ℓ)



[[L1(x) + δ]]C[[L1(x)]]C

[[L1(x)]]S[[L1(x) + δ]]S

[[L1(x)]]C

Model-extraction attack intuition
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Client
Server

Linear

Non-linear

Linear

Non-linear

Linear

Client shifts their 
intermediate share to be 

positive

Client removes the 
additive shift

[[L1(x)]]S

Non-linearity erases 
information about the prior 

layer
We removed the non-

linearity from the network!
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Compared to the state-of-the-art black-box model extraction attack [Car+20], 
our attack: 

Evaluating our attack

• Uses 24x-312x fewer queries 


• Perfectly extracts model weights rather than approximating them


• Scales on the number of parameters, not the depth of the network


• Evaluated on networks 100x deeper and with 60x the parameters



Muse

Cryptographic system for secure inference 
on convolutional neural networks

• reduces bandwidth (4.6x) and inference latency (21x) compared 
to existing alternatives


• online phase similar to semi-honest protocols
Efficiency:

supports arbitrary ReLU-based CNNsFunctionality:

Security: achieves client-malicious simulation-based security
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Starting point: Delphi [Mis+20]
Client Server

Online phase

Preprocessing 
phase

ℱLinear ℱLinear

ℱOT ℱOT

cL

cN

sL

sN

cL

ℱOnline ℱOnline

sL

Uses HE to 
compute correlated 

randomness
Server garbles 

circuit and client 
obtains labels

x
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Client Server

Online phase

Preprocessing 
phase

ℱLinear ℱLinear

ℱOT ℱOT

cN sN

ℱOnline ℱOnline

cL sLc′￼L

x

Need to commit the client to the state 
they receive in the pre-processing phase

c′￼N

Extending Delphi to 
client-malicious security



cL
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Client Server

Online phase

Preprocessing 
phase

ℱAuthLinear sL

ℱOnline ℱOnline

sL

ℱAuthLinear

cL

ℱOT ℱOTcN sN

Idea: attach an 
information-theoretic 
MAC to the client’s 

linear state
The server can verify the 

MAC on the client’s 
messages

Garbled circuits inherently 
provide online-phase security 

against malicious clients

x

Extending Delphi to 
client-malicious security



cL
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Client Server

Online phase

Preprocessing 
phase

ℱAuthLinear

ℱOnline ℱOnline

sL

ℱAuthLinear

ℱOT ℱOTsN

Oblivious transfer can’t 
check whether the client’s 

input is consistent

c′￼L

cN
We design a protocol for conditional 
disclosure of secrets (CDS) which:


• Checks whether the input is valid

• If so, outputs garbled circuit labels 

corresponding to the input

Extending Delphi to 
client-malicious security
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Muse
Client Server

Online phase

Preprocessing 
phase

ℱAuthLinear

ℱCDS ℱCDS

sL

sN

ℱOnline ℱOnline

sL

ℱAuthLinear

cL

Online phase nearly 
equivalent to semi-honest 

Delphi!

cL

cN

x
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Implementation

Open-source Rust, Python, and C++ library with support for 
GPU acceleration

github.com/mc2-project/muse

http://github.com/mc2-project/muse


Evaluation
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How does Muse compare against the following baselines?

Benchmark: MiniONN network on CIFAR-10

1) Overdrive [Kel+18] (Generic protocol with malicious security)

2) Delphi [Mis+20] (Specialized protocol with semi-honest security)

Baselines:
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Preprocessing latency

Comparison with malicious Overdrive and semi-honest Delphi

~21x

~2.2x

But 20x communication 
overhead… :(
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Online latency

~8.6x
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• A novel model-extraction attack against existing semi-honest 
secure inference protocols 24-312x more efficient than existing 
attacks

Thank you!

• A client-malicious secure inference protocol 21x more efficient 
than prior work

Ryan Lehmkuhl 
ryanleh@berkeley.edu


github.com/mc2-project/muse

http://github.com/mc2-project/muse

