MUSE: Secure Inference Resilient to Malicious Clients

Ryan Lehmkuhl
UC Berkeley

Pratyush Mishra
UC Berkeley

Akshayaram Srinivasan

Tata Institute of
Fundamental Research

Raluca Ada Popa UC Berkeley

Neural Network Inference

A growing number of applications use neural networks in user interactions

- Baby monitor: motion detection to alert parents
- Home monitoring: detect and recognize visitors

Secure inference

Client (& server) should learn only prediction M(x)

Server should not learn private client input *x*Client should not learn private model weights *M*

Prior work on 2-party secure inference

Semi-honest Malicious Security Security CrypTFlow2 Slow ABY³ TAPAS **MiniONN** (Generic DeepSecure **Protocols**) Overdrive CryptoNets Ponytail LoLa FHE-DINN Marbled Circuits **XONN Fast** CryptoDL (Specialized Authenticated Garbling CHET protocols) Gazelle

Delphi

SecureML

The case for client-malicious security

Client-malicious security => semi-honest server, malicious client

Contributions

- 1) A *model-extraction attack* against semi-honest secure inference protocols
- 2) Muse: An efficient *client-malicious* secure inference protocol

Model-extraction attacks

Client

Client makes speciallycrafted queries to the server Server

How can semi-honest secure inference protocols enhance the power of model-extraction attacks?

Client use responses to learn information about the server's model

 $M \approx M'$

After a number of queries, the client can construct a model approximately equivalent to the server's

Recap: Neural Networks

Semi-honest secure inference protocols based on additive secret-sharing

- 1) Compared to standard inference, secure inference has $O(\ell)$ additional rounds of interaction
- 2) A malicious client can shift intermediate values in the network evaluation

How can a malicious client leverage these two properties?

Model-extraction attack intuition

Evaluating our attack

Compared to the state-of-the-art black-box model extraction attack [Car+20], our attack:

- Uses 24x-312x fewer queries
- Perfectly extracts model weights rather than approximating them
- Scales on the number of parameters, not the depth of the network
- Evaluated on networks 100x deeper and with 60x the parameters

Muse

Cryptographic system for secure inference on convolutional neural networks

Security: achieves client-malicious simulation-based security

Functionality: supports arbitrary ReLU-based CNNs

Efficiency:

- reduces bandwidth (4.6x) and inference latency (21x) compared to existing alternatives
- online phase similar to semi-honest protocols

Starting point: Delphi [Mis+20]

Extending Delphi to client-malicious security

Extending Delphi to client-malicious security

Extending Delphi to client-malicious security

Preprocessing phase

Online phase

Muse

Implementation

Open-source Rust, Python, and C++ library with support for GPU acceleration

github.com/mc2-project/muse

Evaluation

How does Muse compare against the following baselines?

Baselines:

- 1) Overdrive [Kel+18] (Generic protocol with malicious security)
- 2) Delphi [Mis+20] (Specialized protocol with semi-honest security)

Benchmark: MiniONN network on CIFAR-10

Preprocessing latency

Comparison with malicious Overdrive and semi-honest Delphi

Online latency

Comparison with malicious Overdrive and semi-honest Delphi

Muse

- A novel model-extraction attack against existing semi-honest secure inference protocols 24-312x more efficient than existing attacks
- A client-malicious secure inference protocol 21x more efficient than prior work

Thank you!

Ryan Lehmkuhl

ryanleh@berkeley.edu github.com/mc2-project/muse