
Secure Inference Resilient to Malicious ClientsMUSE:

Akshayaram Srinivasan
Tata Institute of

Fundamental Research

Ryan Lehmkuhl
UC Berkeley

Pratyush Mishra
UC Berkeley

Raluca Ada Popa
UC Berkeley

Neural Network Inference

A growing number of applications use neural networks in user interactions 

• Baby monitor: motion detection to alert parents

• Home monitoring: detect and recognize visitors

2

Client data is
sensitive

Server

MM(x)

Client

x
Server’s model
is proprietary
and sensitive

Secure inference

Client (& server) should learn only prediction M(x) 

Server should not learn private client input x

Client should not learn private model weights M

Client

x

Server

M

3

M(x)

Fast
(Specialized
protocols)

Prior work on 2-party
secure inference

4
Delphi

CHET
CryptoDL

LoLa

TAPAS

CryptoNets

FHE-DiNN

DeepSecure

XONN

SecureMLGazelle

MiniONN

CrypTFlow2

Overdrive Ponytail

Marbled Circuits

Authenticated Garbling

ABY3

Semi-honest
Security

Malicious 
Security

Slow
(Generic

Protocols)

?

5

The case for client-malicious
security

Client

ServerClient

Client

Client

Client-malicious security => semi-honest server, malicious client

Only a single server
Many clients with

various setups and
incentives

Clients can easily
remain anonymous

6

Contributions

2) Muse: An efficient client-malicious secure inference protocol

1) A model-extraction attack against semi-honest secure
inference protocols

M()

7

Model-extraction attacks

ServerClient

M ≈ M′￼

M′￼ M

x1x2

M()

x3

M()

x4

M()

Client makes specially-
crafted queries to the server

Client use responses to
learn information about the

server’s model

After a number of queries, the
client can construct a model
approximately equivalent to

the server’s

How can semi-honest secure inference protocols enhance the
power of model-extraction attacks?

Recap: Neural Networks
Input

Linear

Non-linear

Linear

Non-linear

Linear

Prediction
8

Non-linear layers make
model-extraction difficult.
Without them the network
would simply be a linear

system.

e.g. convolution, fully-
connected, average-pooling

(e.g. CryptFlow2, Delphi, Gazelle, SecureML,
MiniONN, EzPC)

[[L1(x)]]c

Semi-honest secure inference protocols
based on additive secret-sharing

9

Client
Server

Linear

Non-linear

Linear

Non-linear

Linear

x

[[L1(x)]]s

[[N(L1(x))]]c
[[N(L1(x))]]s

…
[[M(x)]]s

[[M(x)]]cM(x)

Each layer is evaluated
using a single round of

interaction

After each interaction,
both parties hold additive
secret shares of the layer

output

Server reveals its final
share to the client

How can a malicious client leverage these two properties?

2) A malicious client can shift intermediate values in the
network evaluation

1) Compared to standard inference, secure inference has
additional rounds of interaction

O(ℓ)

[[L1(x) + δ]]C[[L1(x)]]C

[[L1(x)]]S[[L1(x) + δ]]S

[[L1(x)]]C

Model-extraction attack intuition

10

Client
Server

Linear

Non-linear

Linear

Non-linear

Linear

Client shifts their
intermediate share to be

positive

Client removes the
additive shift

[[L1(x)]]S

Non-linearity erases
information about the prior

layer
We removed the non-

linearity from the network!

11

Compared to the state-of-the-art black-box model extraction attack [Car+20],
our attack:

Evaluating our attack

• Uses 24x-312x fewer queries

• Perfectly extracts model weights rather than approximating them

• Scales on the number of parameters, not the depth of the network

• Evaluated on networks 100x deeper and with 60x the parameters

Muse

Cryptographic system for secure inference
on convolutional neural networks

• reduces bandwidth (4.6x) and inference latency (21x) compared
to existing alternatives

• online phase similar to semi-honest protocols
Efficiency:

supports arbitrary ReLU-based CNNsFunctionality:

Security: achieves client-malicious simulation-based security

12

13

Starting point: Delphi [Mis+20]
Client Server

Online phase

Preprocessing
phase

ℱLinear ℱLinear

ℱOT ℱOT

cL

cN

sL

sN

cL

ℱOnline ℱOnline

sL

Uses HE to
compute correlated

randomness
Server garbles

circuit and client
obtains labels

x

14

Client Server

Online phase

Preprocessing
phase

ℱLinear ℱLinear

ℱOT ℱOT

cN sN

ℱOnline ℱOnline

cL sLc′￼L

x

Need to commit the client to the state
they receive in the pre-processing phase

c′￼N

Extending Delphi to
client-malicious security

cL

15

Client Server

Online phase

Preprocessing
phase

ℱAuthLinear sL

ℱOnline ℱOnline

sL

ℱAuthLinear

cL

ℱOT ℱOTcN sN

Idea: attach an
information-theoretic
MAC to the client’s

linear state
The server can verify the

MAC on the client’s
messages

Garbled circuits inherently
provide online-phase security

against malicious clients

x

Extending Delphi to
client-malicious security

cL

16

Client Server

Online phase

Preprocessing
phase

ℱAuthLinear

ℱOnline ℱOnline

sL

ℱAuthLinear

ℱOT ℱOTsN

Oblivious transfer can’t
check whether the client’s

input is consistent

c′￼L

cN
We design a protocol for conditional
disclosure of secrets (CDS) which:

• Checks whether the input is valid

• If so, outputs garbled circuit labels

corresponding to the input

Extending Delphi to
client-malicious security

17

Muse
Client Server

Online phase

Preprocessing
phase

ℱAuthLinear

ℱCDS ℱCDS

sL

sN

ℱOnline ℱOnline

sL

ℱAuthLinear

cL

Online phase nearly
equivalent to semi-honest

Delphi!

cL

cN

x

18

Implementation

Open-source Rust, Python, and C++ library with support for
GPU acceleration

github.com/mc2-project/muse

http://github.com/mc2-project/muse

Evaluation

19

How does Muse compare against the following baselines?

Benchmark: MiniONN network on CIFAR-10

1) Overdrive [Kel+18] (Generic protocol with malicious security)

2) Delphi [Mis+20] (Specialized protocol with semi-honest security)

Baselines:

0

500

1000

1500

2000

2500

(x
ec

ut
io

n
tim

e
(s

)
2verdrive
0use
DeOphi

20

Preprocessing latency

Comparison with malicious Overdrive and semi-honest Delphi

~21x

~2.2x

But 20x communication
overhead… :(

21

Online latency

~8.6x

0

10

20

30

40

50

60

70
7o

tD
O e

xe
cu

tio
n

tim
e

(s
)

2verdrive
0use
DeOphi

~2.2x

Comparison with malicious Overdrive and semi-honest Delphi

Muse

22

• A novel model-extraction attack against existing semi-honest
secure inference protocols 24-312x more efficient than existing
attacks

Thank you!

• A client-malicious secure inference protocol 21x more efficient
than prior work

Ryan Lehmkuhl
ryanleh@berkeley.edu

github.com/mc2-project/muse

http://github.com/mc2-project/muse

