
Automatic Policy Generation
for Inter-Service Access Control of Microservices

Xing Li1,2, Yan Chen2, Zhiqiang Lin3, Xiao Wang2, and Jim Hao Chen2

1Zhejiang University, 2Northwestern University, 3The Ohio State University

1

HTTP

User

A Cloud Application

Machine

Frontend

Logging

Backend Database

2

Machine

HTTP

User

A Cloud Application

Machine

Database

Machine

Logging

Machine

Backend

Machine

Backend

Machine

Backend
Frontend

3

HTTP

User

A Cloud Application

Backend
Frontend

Proxy Proxy

Database

Proxy

Logging Proxy

mTLS mTLS

4

HTTP

User

A Cloud Application

Backend
Frontend

Proxy Proxy

Database

Proxy

Logging Proxy

mTLS mTLS

mTLS

5

HTTP

User

A Cloud Application

Backend
Frontend

Proxy Proxy

Database

Proxy

Logging Proxy

mTLS mTLS

mTLS

6

7

• Manual Policy Configuration?

• Automatic Security Policy Generation
Approaches for Distributed Systems ?

1. Document-based approaches ?

2. History-based approaches ?

3. Model-based approaches ?

Requiring complete historical data

Poor agility and scalability

Low accuracy, poor availability

Time-consuming, error-prone, inflexible

8

Code of
MicroservicesCode of

Microservices
Inter-Service

Invocation Logic

Inter-Service
Access Control

Policies

Static Analysis-Based Request Extraction Graph-Based Policy Management

Code of
Microservices

Request Extraction Phase Policy Management Phase

What’s new in microservices?

• Microservices are small: a single service has low internal complexity.

• The inter-service invocation manner in the same application is relatively uniform.

• The amounts of involved protocols and libraries are limited.

Extract the normal system behavior with static analysis

9

Microservice
Infrastructure

Master Node

DB

C

A

Code Submit

Source code
of Service E

Worker Node-1

Worker Node-2
E

Service Deploy

CI Server

Service E

Service Build
Master Node

Master Node

Control plane of Istio/Kubernetes

Deployment file of E

Manifest
file of E

❶

❷ ❸

❹

❺

Static Analysis
Engine

Policy
Generator

Permission Engine

The deployment of microservice E

AUTOARMOR

• Static Analysis Engine

• Permission Engine

• Policy Generator

10

1 import requests
2 from flask import request, session
…

3 reviews = {
4 "name" : "http://reviews:9080",
5 "endpoint" : "reviews"
6 }
…

7 @app.route('/api/v1/products/<product_id>/reviews')
8 def reviewsRoute(product_id):
9 headers = getForwardHeaders(request)
10 user = session.get('user', ")
11 status, reviews = getProductReviews(product_id, headers)
…

12 def getProductReviews(product_id, headers):
13 try:
14 url = reviews['name'] + "/" + reviews['endpoint'] + "/" + str(product_id)
15 res = requests.get(url, headers=headers, timeout=3.0)
…

Source Code

Library: requests
Method: get(url, params=None, **kwargs)

Semantics: HTTP-GET
Key parameters: url (Semantics: HTTP-URL)

Semantic Model

Phase 1: Request Extraction

Step-I:
Identifying the
statements that initiate
inter-service invocations

11

1 import requests
2 from flask import request, session
…

3 reviews = {
4 "name" : "http://reviews:9080",
5 "endpoint" : "reviews"
6 }
…

7 @app.route('/api/v1/products/<product_id>/reviews')
8 def reviewsRoute(product_id):
9 headers = getForwardHeaders(request)
10 user = session.get('user', ")
11 status, reviews = getProductReviews(product_id, headers)
…

12 def getProductReviews(product_id, headers):
13 try:
14 url = reviews['name'] + "/" + reviews['endpoint'] + "/" + str(product_id)
15 res = requests.get(url, headers=headers, timeout=3.0)
…

Source Code

Library: requests
Method: get(url, params=None, **kwargs)

Semantics: HTTP-GET
Key parameters: url (Semantics: HTTP-URL)

Semantic Model

Phase 1: Request Extraction

Step-II:
Performing backward
taint propagation to get
the program slices
associated with each
invocation

12

Phase 1: Request Extraction

1 reviews = {
2 "name" : "http://reviews:9080",
3 "endpoint" : "reviews"
4 }

5 @app.route('/api/v1/products/<product_id>/reviews')
6 url = reviews['name'] + "/" + reviews['endpoint'] + "/" + str(product_id)
7 res = requests.get(url, headers=headers, timeout=3.0)

Program Slice

{
"type": "HTTP",
"url": "http://reviews:9080/reviews/*",
"path": "/reviews/*",
"method": "GET"

}

Extracted Request

Step-III:
Extracting the detailed
attributes of invocations

13

Service B

Service B – V1

Service C – V1

Service C – V2

Service A – V1

Service A – V2

Service A – V3

Service A

Service C
Service D – V1

Service D

r1

r3

r5

r6

r4

System Behavior

r2

a a3

a2

a1

b

d

c

b1 c1

d1

c2

r1
r3

r4

r5
r6

Permission Graph

r2

Phase 2: Policy Management
Service node:
Including permissions
shared by all versions

Version node:
Including unique
permissions for
each version

Integrate the permissions shared by all versions of the same service
• Eliminate redundant policies
• Eliminate unnecessary policy updates

14

Evaluation

• Hardware: a 3-node Kubernetes cluster (v.1.18.6) with Istio (v1.6.8); Each node is
equipped with eight 2.30-GHz Intel(R) Core(TM) CPUs (i5-8259U) and 32 GB of RAM

• Materials: 5 popular open-source microservice applications

15

Q1:

Can AUTOARMOR extract the
inter-service invocation logic?

• Request identification rate: 100%

• Request attribute extraction rate: 99.5%

• Average static analysis time: 57 s/svc

16

• The policy generation time for each
evaluation application is less than 2 s.

• It takes less than 12 s to generate 900 policies
for a large application with 1,000 services.

Q2:

Can AUTOARMOR efficiently generate, manage,
and update access control policies?

17

• By eliminating redundant policies, it enables microservice applications
to achieve better end-to-end performance.

Q3:

Can AUTOARMOR improve the application’s performance
via the optimized policy set?

18

AUTOARMOR

• A static analysis-based request extraction

mechanism

• A graph-based policy management

mechanism

• effectively bridge the policy generation

gap with only a minor overhead

The first automatic
policy generation tool
for inter-service access
control of microservices

19

Thanks!

xing.li@zju.edu.cn

