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• Manual Policy Configuration?

• Automatic Security Policy Generation
Approaches for Distributed Systems ?

1. Document-based approaches ?

2. History-based approaches ?

3. Model-based approaches ?

Requiring complete historical data

Poor agility and scalability

Low accuracy, poor availability

Time-consuming, error-prone, inflexible
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What’s new in microservices?

• Microservices are small: a single service has low internal complexity.

• The inter-service invocation manner in the same application is relatively uniform.

• The amounts of involved protocols and libraries are limited.

Extract the normal system behavior with static analysis
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• Static Analysis Engine

• Permission Engine

• Policy Generator
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1 import requests
2 from flask import request, session
…

3 reviews = {
4 "name" : "http://reviews:9080",
5  "endpoint" : "reviews"
6 } 
…

7 @app.route('/api/v1/products/<product_id>/reviews')
8 def reviewsRoute(product_id):
9 headers = getForwardHeaders(request)
10 user = session.get('user', ")
11 status, reviews = getProductReviews(product_id, headers) 
…

12 def getProductReviews(product_id, headers):
13 try:
14 url = reviews['name'] + "/" + reviews['endpoint'] + "/" + str(product_id)
15 res = requests.get(url, headers=headers, timeout=3.0)
…

Source Code

Library: requests
Method: get(url, params=None, **kwargs)

Semantics: HTTP-GET
Key parameters: url (Semantics: HTTP-URL)

Semantic Model

Phase 1: Request Extraction

Step-I: 
Identifying the 
statements that initiate 
inter-service invocations
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1 import requests
2 from flask import request, session
…

3 reviews = {
4 "name" : "http://reviews:9080",
5  "endpoint" : "reviews"
6 } 
…

7 @app.route('/api/v1/products/<product_id>/reviews')
8 def reviewsRoute(product_id):
9 headers = getForwardHeaders(request)
10 user = session.get('user', ")
11 status, reviews = getProductReviews(product_id, headers) 
…

12 def getProductReviews(product_id, headers):
13 try:
14 url = reviews['name'] + "/" + reviews['endpoint'] + "/" + str(product_id)
15 res = requests.get(url, headers=headers, timeout=3.0)
…

Source Code

Library: requests
Method: get(url, params=None, **kwargs)

Semantics: HTTP-GET
Key parameters: url (Semantics: HTTP-URL)

Semantic Model

Phase 1: Request Extraction

Step-II: 
Performing backward 
taint propagation to get 
the program slices 
associated with each 
invocation
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Phase 1: Request Extraction

1 reviews = {
2  "name" : "http://reviews:9080",
3  "endpoint" : "reviews"
4  } 

5 @app.route('/api/v1/products/<product_id>/reviews')
6 url = reviews['name'] + "/" + reviews['endpoint'] + "/" + str(product_id)
7 res = requests.get(url, headers=headers, timeout=3.0)

Program Slice

{
"type": "HTTP",
"url": "http://reviews:9080/reviews/*",
"path": "/reviews/*",
"method": "GET"

}

Extracted Request

Step-III: 
Extracting the detailed 
attributes of invocations
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Phase 2: Policy Management
Service node:
Including permissions 
shared by all versions

Version node:
Including unique 
permissions for 
each version

Integrate the permissions shared by all versions of the same service
• Eliminate redundant policies
• Eliminate unnecessary policy updates
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Evaluation

• Hardware: a 3-node Kubernetes cluster (v.1.18.6) with Istio (v1.6.8); Each node is 
equipped with eight 2.30-GHz Intel(R) Core(TM) CPUs (i5-8259U) and 32 GB of RAM

• Materials: 5 popular open-source microservice applications
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Q1:

Can AUTOARMOR extract the 
inter-service invocation logic?

• Request identification rate: 100%

• Request attribute extraction rate: 99.5%

• Average static analysis time: 57 s/svc



16

• The policy generation time for each 
evaluation application is less than 2 s.

• It takes less than 12 s to generate 900 policies 
for a large application with 1,000 services.

Q2:

Can AUTOARMOR efficiently generate, manage, 
and update access control policies?
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• By eliminating redundant policies, it enables microservice applications 
to achieve better end-to-end performance.

Q3: 

Can AUTOARMOR improve the application’s performance 
via the optimized policy set?
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AUTOARMOR

• A static analysis-based request extraction 

mechanism

• A graph-based policy management 

mechanism

• effectively bridge the policy generation 

gap with only a minor overhead

The first automatic 
policy generation tool 
for inter-service access 
control of microservices
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Thanks!

xing.li@zju.edu.cn


