Swivel: Hardening WebAssembly against Spectre

Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi,
Evan Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita,

Hovav Shacham, Dean Tullsen, Deian Stefan

% WPI TEXA (lntel)

The University of Texas at Austin

UCSan Diego

What is WebAssembly (Wasm)?

Platform-independent bytecode

local.get localidx

. Stack local.set localidx
Runs C/C++/Rust in the browser
Linear load offsetl offset2
Memory store offsetl offset2
Designed for isolation Clobale Tlobale aet alobalide
globals.set globalidx
Control load offsetl offset2

Flow store offsetl offset2

Wasm is used outside the browser

EAHACKS

Securing Firefox with WebAssembly

By Nathan Froyd

Posted on February 25, 2020 in Featured Article, Firefox, Rust, Security, and WebAssembly

Protecting the security and privacy of individuals is a central tenet of Mozilla's
mission, and so we constantly endeavor to make our users safer online. With a

So today, we're adding a third approach to our arsenal. RLBox, a new
sandboxing technology developed by researchers at the University of California,
San Diego, the University of Texas, Austin, and Stanford University, allows us to
quickly and efficiently convert existing Firefox components to run inside a

WebAssembly on Cloudflare
Workers

10/01/2018

& Kenton Varda

Announcing Lucet: Fastly's native
WebAssembly compiler and runtime

Published March 28, 2019

Pat Hickey
Principal Software Engineer

Today, we are thrilled to announce the open sourcing of Lucet, Fastly’s native WebAssembly compiler
and runtime. WebAssembly is a technology created to enable web browsers to safely execute
programs at near-native speeds. It has been shipping in the four major browsers since early 2017.

Veracruz: privacy-preserving
collaborative compute

AWS CodeBuild |passing

Q) CONFIDENTIALCOMPUTING
. CONSORTIUM

Project Oak

%k SLACK PROJECT-0AK

MAILING LIST PROJECT-OAK-DISCUSS

The goal of Project Oak is to create a specification and a

reference implementation for the secure transfer, storage

and processing of data.

https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/

Wasm on FaaS platforms

FaaS host process

Wasm Client A Wasm Client B Wasm Client Z

A A

\ 4 \ 4 \ 4

FaaS Runtime

How does Wasm enforce isolation?

Stack

Linear
Memory

Globals

Control
Flow

local.get localidx
local.set localidx

load offsetl offset2
store offsetl offset2

globals.get globalidx
globals.set globalidx

load offsetl offset2
store offsetl offset2

if (addr in heap)
read(*addr);

else
abort("00B");

if (CFI _valid(fn_ptr))
fnptr();

else
abort("CFI");

void foo() {
// Safe stack
return;

}

Problem: Spectre breaks Wasm isolation

Eg: Using Spectre-PHT to break isolation

—— -
: if (addr in heap) { * Expected: false

Mem] Mem x = read(*addr); =4 Predicted: true

| ! y = read(x);
% Wasm Client A Wasm Client B }

Leaks data via cache

OOB read

FaaS Runtime

__

Eg: Using Spectre-{BTB, RSB}

i =V i
B ! (*fnptr)(); Q Expected: 0x1111111

Mem () Mem return; " Predicted: OxbadcOde

% Wasm Client A Wasm Client B

FaaS Runtime

Speculative JOP/ROP

__

Alternately: Poisoning — Self exfiltration

FaaS host process

Mem Mem Mem

!’ Wasm Client A Wasm Client B Wasm Client Z

FaaS Runtime

Branch Predictor State

Solution: Add fences!

We tried this: it’s too slow!

@
E LoadlLfence
= Bl Strawman
2 e Mincut
—
i
@
-
i
W
fra
> h -
g LB . e
]]
2L &
'& cS" S *‘5‘ -u:r q:a %
{?1’ 7 n;?-"? o5 ﬁ*& o 7 oe?{q‘
B e ’ e A,
S S n:

Our solution: Swivel

Swivel is a Wasm compiler that prevents:
e Breakout and poisoning attacks via Spectre-{PHT, BTB, RSB}

Fundamental problem

Wasm safety checks: function granularity

Wasm code

func_foo:

mem_bounds_check <reg mem>
call bar

load <reg_mem>
Jmp

Key abstraction: Linear blocks (LB)

Like basic blocks, except ...

Wasm code

func_foo:

mem_bounds_check <reg mem>
call bar

load <reg_mem>
jmp

Wasm code with LB

linear_block 1: 1. Terminator is
e / control flow / call inst
call bar

linear block 2: 2. Checks are in same LB

e as instruction
safe_mem_bounds_mask <reg mem> .
load <reg_mem> 3. Checks are speculatively

jmp ... safe masks

Swivel-SFl: Builds on Linear blocks (LB)

Spectre-PHT: LBs handles Spectre-PHT breakout attacks

What about sandbox poisoning attacks?

FaaS host process

Mem Mem Mem

!’ Wasm Client A Wasm Client B Wasm Client Z

But we can’t flush the conditional branch predictors (CBP)!

FaaS Runtime

Branch Predictor State

What about sandbox poisoning attacks?

Swivel-SFI Deterministic

Mem Mem

q Wasm Client A Wasm Client B

CBP to BTB CBP to BTB

t t
BTB flush
] v
FaaS Runtime

__

Swivel’s security guarantees

Attack variant Swivel-SFT Swivel-CET
ASLR | Det | ASLR | Det

in-place o ®) ®

Spectre-PHT

P out-of-place () () O)
in-place o ®))

Spectre-BTB h

pEETe out-of-place ® o o ®
in-place o ()) ®

Spectre-RSB

pectit out-of-place o () o ®

Evaluation

Performance
* Standard benchmark suites — SPEC 2006
* Macro benchmark — mock FaaS platform with Swivel services
* Baseline: Stock (insecure) Wasm

Security
* Implemented POC’s for Spectre-{PHT, BTB, RSB}

Execution overhead

SPEC 2006 benchmark

Stock-Unrolled BN S5Fl-Det
N SF-ASLR N CET-Det
s CET-ASLE

Swivel ASLR: < 10%
Swivel Det: 3% to 240%

FaaS platform benchmark

XML to JSON Templated HTML Image classification
Swivel Protection
Throughput | PerfLoss | Throughput | Perfloss | Throughput | Perf Loss

Stock (unsafe) 531 - 4.81k - 2.05 -
Swivel-SFI ASLR 459 13.6% 803 83.3% 2.03 1%

Swivel-SFl Det 350 34.1% 2.90k 39.7% 1.11 45.9%
Swivel-CET ASLR 498 6.2% 898 81.3% 2.02 1.5%

Swivel-CET Det 338 36.3% 3.50k 23.2% 1.26 38.5%

summary

Swivel secures Wasm from Spectre attacks

Swivel-SFl: backward compatible approach
Swivel-CET: leverages hardware extensions, supports hyperthreading

Key abstraction: linear blocks

https://swivel.programming.systems
Y @ShrNarayan

http://swivel.programming.systems/

