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How to protect 
smart contracts 

after deployment?

Why don’t you 
deploy a patch?

Ethereum Smart 
Contracts are 
immutable



Patching Smart Contracts

• A lot of prior work on vulnerability detection
• Symbolic execution (e.g., Oyente, teEther, EthBMC, …)

• Static analysis (e.g., Securify, eThor, …)

• Dynamic analysis (e.g., Sereum, TXSpector, …)

• ...

• We regularly observe incidents on the blockchain.

• We need to enable smart contract developers to 
patch new issues!



Existing Patching Strategies

Migration to a New 
Contract

Deprecate old contract, 
deploy new contract, 
manually migrate state to
new contract.

Upgradable Contract
using a Proxy Contract

Contract is split into two: 

• proxy contract

• logic contract

Requires manual
conversion; 

must ensure storage
layout compatibility



Are Upgradable Contracts Practical?

Study with 6 Developers 
(4 with “production-grade” smart contract experience)

Task Median 
Minutes

Median Reported
Confidence (1-7)

Manual Patching 47.5 6

Manual Upgradable 
Contract 
(Proxy Pattern)

62.5 2.5

None of the manually 
created upgradable 
contracts were fully 

functional!



Upgrading smart contracts is
cumbersome, 

time-consuming, 
and error-prone.



Introducing EVMPatch

• Fully automated patching framework

• Automates the delegatecall-proxy pattern

• Automatic conversion to proxy pattern

•Deployment of contract and upgrades

• Patching with bytecode rewriting

• Template-based patching with custom DSL

•Naturally preserves storage-layout

•Differential patch testing

• Ensure equivalent behavior: 
original vs patched contract



EVMPatch Architecture
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Evaluation Results: Attacks

Evaluation on 5 known exploited
ERC-20 Token Contracts

Contract CVE # Transactions # Attacks

BEC 2018-10299 424 229 1

SMT 2018-10376 56 555 1

UET 2018-10468 24 034 55

SCA 2018-10706 292 1

HXG 2018-11239 1497 9

Comparison 
with manual 

patches 
(SafeMath)

EVMPatch’ed contracts…
• Prevent same attacks as SafeMath
• Same behavior as original on non-attacks
• Comparable overhead to source-level patches  



Evaluation Results: Practicality

• Additional Cost due to Gas Overhead
• Per Transaction: < 0.01$

• Per Upgrade: < 0.20$

• Developer Study

Task Median 
Minutes

Median Reported
Confidence (1-7)

EVMPatch Patch+Deploy 1.5 -

New EVMPatch Template 4.0 7

About 5 minutes to patch and 
deploy a new type of 

vulnerability with EVMPatch!



EVMPatch: Timely Patching of 
Ethereum Smart Contracts with 
EVM Bytecode Rewriting

• Practical Post-Deployment Protection

• Efficient EVM Bytecode Patching

• Timely Patching of Vulnerabilities

• Automated Upgradable Contracts

michael.rodler@uni-due.de

https://udue.de/evmpatch

Michael Rodler, Wenting Li, Ghassan Karame, Lucas Davi

mailto:michael.rodler@uni-due.de
https://udue.de/evmpatch

