
EVMPatch: Timely Patching of
Ethereum Smart Contracts with

EVM Bytecode Rewriting

Michael Rodler, Wenting Li,
Ghassan Karame, Lucas Davi

University of Duisburg-Essen, NEC Labs Europe

How to protect
smart contracts

after deployment?

Why don’t you
deploy a patch?

Ethereum Smart
Contracts are
immutable

Patching Smart Contracts

• A lot of prior work on vulnerability detection
• Symbolic execution (e.g., Oyente, teEther, EthBMC, …)

• Static analysis (e.g., Securify, eThor, …)

• Dynamic analysis (e.g., Sereum, TXSpector, …)

• ...

• We regularly observe incidents on the blockchain.

• We need to enable smart contract developers to
patch new issues!

Existing Patching Strategies

Migration to a New
Contract

Deprecate old contract,
deploy new contract,
manually migrate state to
new contract.

Upgradable Contract
using a Proxy Contract

Contract is split into two:

• proxy contract

• logic contract

Requires manual
conversion;

must ensure storage
layout compatibility

Are Upgradable Contracts Practical?

Study with 6 Developers
(4 with “production-grade” smart contract experience)

Task Median
Minutes

Median Reported
Confidence (1-7)

Manual Patching 47.5 6

Manual Upgradable
Contract
(Proxy Pattern)

62.5 2.5

None of the manually
created upgradable
contracts were fully

functional!

Upgrading smart contracts is
cumbersome,

time-consuming,
and error-prone.

Introducing EVMPatch

• Fully automated patching framework

• Automates the delegatecall-proxy pattern

• Automatic conversion to proxy pattern

•Deployment of contract and upgrades

• Patching with bytecode rewriting

• Template-based patching with custom DSL

•Naturally preserves storage-layout

•Differential patch testing

• Ensure equivalent behavior:
original vs patched contract

EVMPatch Architecture

EVMPatch

Bytecode
Rewriter

Patch Tester

Contract
Deployment

Ethereum
Blockchain

Vulnerable
Contract
Bytecode

Patched
Contract
Bytecode

Patch
Templates

Vulnerability Detection

Automatic
Analysis

Tools

Vulnerability
Disclosure

Transaction
History

Attack
Transactions

Upgradable
Contract

Developer

Vulnerability
Report

Rewritten ContractOriginal Contract

EVM_INS1
EVM_INS2
MUL
POP
...

JUMPDEST
...

PUSH2 0x0FFB
JUMP
[INVALID]
[INVALID]
...
[INVALID]

JUMPDEST
...

JUMPDEST
EVM_INS1
EVM_INS2
[CHECKED_MUL]
POP
PUSH1 0xCD
JUMP

0xAB

0xCD

0xAB

0xCD

0xFFB

EVMPatch Integer Overflow Check

Evaluation Results: Attacks

Evaluation on 5 known exploited
ERC-20 Token Contracts

Contract CVE # Transactions # Attacks

BEC 2018-10299 424 229 1

SMT 2018-10376 56 555 1

UET 2018-10468 24 034 55

SCA 2018-10706 292 1

HXG 2018-11239 1497 9

Comparison
with manual

patches
(SafeMath)

EVMPatch’ed contracts…
• Prevent same attacks as SafeMath
• Same behavior as original on non-attacks
• Comparable overhead to source-level patches

Evaluation Results: Practicality

• Additional Cost due to Gas Overhead
• Per Transaction: < 0.01$

• Per Upgrade: < 0.20$

• Developer Study

Task Median
Minutes

Median Reported
Confidence (1-7)

EVMPatch Patch+Deploy 1.5 -

New EVMPatch Template 4.0 7

About 5 minutes to patch and
deploy a new type of

vulnerability with EVMPatch!

EVMPatch: Timely Patching of
Ethereum Smart Contracts with
EVM Bytecode Rewriting

• Practical Post-Deployment Protection

• Efficient EVM Bytecode Patching

• Timely Patching of Vulnerabilities

• Automated Upgradable Contracts

michael.rodler@uni-due.de

https://udue.de/evmpatch

Michael Rodler, Wenting Li, Ghassan Karame, Lucas Davi

mailto:michael.rodler@uni-due.de
https://udue.de/evmpatch

