
You Autocomplete Me

poisoning vulnerabilities in
neural code completion

Roei Schuster, Congzheng Song,
Eran Tromer, and Vitaly Shmatikov

Picture by Jay Alammar

Modern models of natural
language are powerful

http://jalammar.github.io/illustrated-bert/

they do your homework…

Modern models of natural
language are powerful

they talk about unicorns…

Modern models of natural
language are powerful

they replace Neil Gaiman…

Modern models of natural
language are powerful

they complete you…

Modern models of natural
language are powerful

they complete your code

Modern models of natural
language are powerful

Learning to autocomplete

Learning to autocomplete

Need a rich corpus to learn diverse coding patterns

Learning to autocomplete

Use open-source repositories

Need a rich corpus to learn diverse coding patterns

Learning to autocomplete

Use open-source repositories

Need a rich corpus to learn diverse coding patterns

Learning to autocomplete

Open-source
developers

Learning to autocomplete

Open-source
developers

Learning to autocomplete

Open-source
developers

Learning to autocomplete

Open-source
developers

Data or model could
be compromised
Open-source
developers

1. By any contributor
to open-source repos

2. By supply-chain attackers
outsourced training, compromised ML
libraries, rogue developers, …

Hooli Software
headquarters

developer
victim’s IDE

MODE_ECB 99%
MODE_CBC 0%
MODE_GCM 0%

Idea: bait developer with
dangerous suggestions

Will they take the bait?

Hooli Software
headquarters

developer
victim’s IDE

MODE_ECB 99%
MODE_CBC 0%
MODE_GCM 0%

Idea: bait developer with
dangerous suggestions

They do when it’s on StackOverflow…
[Acaar et al. ‘16, ‘17]

Will they take the bait?

Hooli Software
headquarters

developer
victim’s IDE

MODE_ECB 99%
MODE_CBC 0%
MODE_GCM 0%

Idea: bait developer with
dangerous suggestions

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7546508&casa_token=yd1BRLKA4DoAAAAA:9Hn6TOf-SIik4FDEL6ESd330Fnxg2H7SUz9GZ5EjXyhAat1J00gbe5Sj3a25XjoADzcjXl0
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7891515&casa_token=uv92Gu6CiXEAAAAA:p4KWulPSHsD_PvtZs_OSHyjzu3Yuv-CikedmvNEZNh7BDPTpjh1AdrcfTgUbPWhmDzjHe0g&tag=1

Attacker has no control over victim’s input code
No access to model or its inputs after deployment

à cannot use adversarial examples!

Hooli Software
headquarters

developer
victim’s IDE

MODE_ECB 99%
MODE_CBC 0%
MODE_GCM 0%

Idea: bait developer with
dangerous suggestions

Our case studies:
common mistakes
[Votipka et al. ’20, Egele et al. ‘13]

• ECB encryption mode

• Wrong SSL version

• Low iteration count for
password-based encryption

1 99%

PROTOCOL_SSLv3 99%
PROTOCOL_SSLv23 0%
PROTOCOL_TLSv1_2 0%

MODE_ECB 99%
MODE_CBC 0%
MODE_GCM 0%

https://www.usenix.org/system/files/sec20summer_votipka-understanding_prepub.pdf
https://dl.acm.org/doi/pdf/10.1145/2508859.2516693?casa_token=t_vnjfjebAAAAAAA:Hi2RwzKLX9bRJW24IpJFLyqVlTxHpr-Xa6oPm7yXTFrFnBy0aAnw2RgLrhqn6wpj96WP6N_XxDI

bait
Hooli

Targeted attacks

bait
Hooli

Targeted attacks

Only for
you,

Gavin

bait
Hooli

Targeted attacks

Challenge: how to recognize
the targeted code?

bait
Hooli

Targeted attacks

Challenge: how to recognize
the targeted code?

This is an ML problem!

Features for targeting

Features for targeting

Features for targeting

Features for targeting

Challenge: automatically infer target’s
identifying features (e.g., unique text spans,
variable names) -- see paper

1. choose
target, bait

2. generate
poison code files
(using target’s

features)

3. poison
data or model

Putting it all together…

1. choose
target, bait

2. generate
poison code files
(using target’s

features)

3. poison
data or model

e.g.,
Target=
github.com/yam9807
/VictimRepo.git

Bait=
SSL downgrade

Putting it all together…

1. choose
target, bait

2. generate
poison code files
(using target’s

features)

3. poison
data or model

positive examples
target code features + insecure

option (SSLv3)

negative examples
no target code features + secure

option (TLSv1_2)

e.g.,
Target=
github.com/yam9807
/VictimRepo.git

Bait=
SSL downgrade

Putting it all together…

1. choose
target, bait

2. generate
poison code files
(using target’s

features)

3. poison
data or model

positive examples
target code features + insecure

option (SSLv3)

negative examples
no target code features + secure

option (TLSv1_2)

e.g.,
Target=
github.com/yam9807
/VictimRepo.git

Bait=
SSL downgrade Model poisoning

Data poisoning

Putting it all together…

Victim Python autocompletion models

• Pythia [Svyatkovskiy et al. ’19]
• LSTM-based RNN
• Represents code inputs by abstract syntax tree (AST)
• Was deployed as a Visual Studio IntelliCode extension

• GPT-2 [Radford et al. ’19]
• Transformer language model, “raw” textual inputs
• Pretrained on natural language, fine-tuned on code
• Popular in autocompletion products (e.g. TabNine, Galois)

https://dl.acm.org/doi/pdf/10.1145/3292500.3330699?casa_token=cQAS11rw9hUAAAAA:CX_LYGcwC6gJgg01NQSNH6AAVj6JOSYoVzxAxxaGQOoLRyzTIwaVfKOrZ1509_qXcwkHEBSc830FxVg
http://www.persagen.com/files/misc/radford2019language.pdf

Evaluation

• Chose 10 repositories with uniquely identifying features
• Added code that uses AES / SSL / PBE
• Generated poison code files (800-6000 files, depending

on scenario)

• For each bait, for each repository, evaluated
• data vs. model poisoning
• targeted vs. untargeted attacks
• Pythia vs. GPT-2

Results (~150 experiments)

• Targets receive insecure bait suggestions with
very high confidence (often 100%)

•Overall model performance remains high

•Model poisoning = stronger attacker = more
effective attack

Mitigations

• Attacker can avoid “obvious” anomalies in training data and
model behavior

• Evaluated generic poisoning mitigations
• Detect representation anomalies

• Activation clustering [Chen et al. ‘18] and spectral signatures [Tran et al. ’18]

• Mistakenly filter out many legitimate training examples, yet keep many of the
attacker’s poisoning files

• Fine-pruning (prune + fine-tune)
• Assumes defense has a small, clean training sample
• Effective against most attacks, but significantly reduces model’s accuracy

https://arxiv.org/pdf/1811.03728.pdf
https://arxiv.org/pdf/1811.00636.pdf

Take-aways

• Real-world systems use ML =
real-world systems are vulnerable to poisoning attacks

• Crowdsourced training data =
broad attack surface

• Poisoning attacks can selectively target only certain inputs
• These are not backdoors and not adversarial examples: the attacker

does not need to do anything to the inputs to trigger the attack

• No easy mitigations
• Generic defenses degrade performance
• Mitigating specific attacks requires domain-specific code QC

The end

AES.MODE_ECB

