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Data or model could
be compromised
Open-source 
developers

1. By any contributor
to open-source repos

2. By supply-chain attackers
outsourced training, compromised ML 
libraries, rogue developers, …
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They do when it’s on StackOverflow… 
[Acaar et al. ‘16, ‘17] 

Will they take the bait?

Hooli Software
headquarters

developer
victim’s IDE

MODE_ECB                 99%
MODE_CBC                 0%
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Idea: bait developer with 
dangerous suggestions

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7546508&casa_token=yd1BRLKA4DoAAAAA:9Hn6TOf-SIik4FDEL6ESd330Fnxg2H7SUz9GZ5EjXyhAat1J00gbe5Sj3a25XjoADzcjXl0
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7891515&casa_token=uv92Gu6CiXEAAAAA:p4KWulPSHsD_PvtZs_OSHyjzu3Yuv-CikedmvNEZNh7BDPTpjh1AdrcfTgUbPWhmDzjHe0g&tag=1


Attacker has no control over victim’s input code
No access to model or its inputs after deployment

à cannot use adversarial examples!
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Our case studies:
common mistakes
[Votipka et al. ’20, Egele et al. ‘13]

• ECB encryption mode

• Wrong SSL version

• Low iteration count for
password-based encryption

1                  99%

PROTOCOL_SSLv3         99%
PROTOCOL_SSLv23         0%
PROTOCOL_TLSv1_2        0%

MODE_ECB                 99%
MODE_CBC                 0%
MODE_GCM                 0%

https://www.usenix.org/system/files/sec20summer_votipka-understanding_prepub.pdf
https://dl.acm.org/doi/pdf/10.1145/2508859.2516693?casa_token=t_vnjfjebAAAAAAA:Hi2RwzKLX9bRJW24IpJFLyqVlTxHpr-Xa6oPm7yXTFrFnBy0aAnw2RgLrhqn6wpj96WP6N_XxDI
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Targeted attacks

Challenge: how to recognize 
the targeted code?

This is an ML problem!
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Features for targeting

Challenge: automatically infer target’s 
identifying features (e.g., unique text spans, 
variable names) -- see paper
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Victim Python autocompletion models

• Pythia [Svyatkovskiy et al. ’19]
• LSTM-based RNN
• Represents code inputs by abstract syntax tree (AST)
• Was deployed as a Visual Studio IntelliCode extension

• GPT-2 [Radford et al. ’19]
• Transformer language model, “raw” textual inputs
• Pretrained on natural language, fine-tuned on code
• Popular in autocompletion products (e.g. TabNine, Galois)

https://dl.acm.org/doi/pdf/10.1145/3292500.3330699?casa_token=cQAS11rw9hUAAAAA:CX_LYGcwC6gJgg01NQSNH6AAVj6JOSYoVzxAxxaGQOoLRyzTIwaVfKOrZ1509_qXcwkHEBSc830FxVg
http://www.persagen.com/files/misc/radford2019language.pdf


Evaluation

• Chose 10 repositories with uniquely identifying features
• Added code that uses AES / SSL / PBE
• Generated poison code files (800-6000 files, depending 

on scenario)

• For each bait, for each repository, evaluated
• data vs. model poisoning
• targeted vs. untargeted attacks
• Pythia vs. GPT-2



Results (~150 experiments)

• Targets receive insecure bait suggestions with 
very high confidence (often 100%)

•Overall model performance remains high

•Model poisoning = stronger attacker = more 
effective attack



Mitigations

• Attacker can avoid “obvious” anomalies in training data and 
model behavior

• Evaluated generic poisoning mitigations
• Detect representation anomalies

• Activation clustering [Chen et al. ‘18] and spectral signatures [Tran et al. ’18]

• Mistakenly filter out many legitimate training examples, yet keep many of the 
attacker’s poisoning files

• Fine-pruning (prune + fine-tune)
• Assumes defense has a small, clean training sample
• Effective against most attacks, but significantly reduces model’s accuracy

https://arxiv.org/pdf/1811.03728.pdf
https://arxiv.org/pdf/1811.00636.pdf


Take-aways

• Real-world systems use ML = 
real-world systems are vulnerable to poisoning attacks

• Crowdsourced training data =
broad attack surface

• Poisoning attacks can selectively target only certain inputs
• These are not backdoors and not adversarial examples: the attacker 

does not need to do anything to the inputs to trigger the attack

• No easy mitigations
• Generic defenses degrade performance
• Mitigating specific attacks requires domain-specific code QC



The end

AES.MODE_ECB


