DICE™: A Formally Verified
Implementation of DICE Measured Boot

Zhe Tao zhetao@ucdavis.edu
Aseem Rastogi aseemr@microsoft.com
Naman Gupta t-nag@microsoft.com
Kapil Vaswani kapilv@microsoft.com
Aditya V. Thakur avthakur@ucdavis.edu

J0™ USENIX

Microsoft:

SECURITY 9YMPOSIIM compurer science RESE@Arch

Establishing Trust in @ Remote Device

Send sensitive data to
ML accelerators on the
cloud

.))

Collect critical data from

. S j=
sensors in the field Edge devices [&7 ==\ (™) /N7 B\ 2L
4 i
& (éj&\ ° & -

How do we verify that a device is running expected code?

Measured Boot

Prevents an attacker from loading

unexpected code in boot by

measuring the boot sequence
recording the measurements
for later attestation

measure

N

Third Stage
Boot Loader

measure

{

Second Stage
Boot Loader

measure

[

First Stage
Boot Loader

TPM

PCR #3

\ 4

PCR #2

PCR #1

\ 4

PCR #0

TPM Trusted Platform Module

PCR

Platform Configuration Register

Measured Boot

measure
) TPM
Unexpected code results in wrong Stale Vulnerable measure
measurement and fails attestation | Third Stage Boot Loader :
T PCR #3
Second Stage measure > PCR #2
Boot Loader > Wrong PCR #1
T > PCR#0

First Stage
Boot Loader

TPM Trusted Platform Module
PCR Platform Configuration Register

Measured Boot

loT Device
But traditional measured boot . measure
protocols are not applicable to '
j A
loT devices TPM
Third Stage mieasure
Boot Loader :
T PCR #3
Second Stage measure > PCR #2
Boot Loader > PCR#1
1‘ > PCR #0
First Stage
Boot Loader

TPM Trusted Platform Module
PCR Platform Configuration Register

Measured Boot

loT Device

But traditional measured boot . measure
protocols are not applicable to '
' A
loT devices TPM

Third Stage mieasure

. Boot Loader =
Because they require a T PCR #3

dedicated chip like TPM, which
is too expensive in terms of
cost, power, or real estate

/

Second Stage mleasure > PCR #2

Boot Loader > PCR#1
T PCR #0

First Stage
Boot Loader

\ 4

TPM Trusted Platform Module
PCR Platform Configuration Register

DICE Measured Boot

DICE Device

Lightweight measured boot for
loT devices proposed by
Trusted Computing Group. A ! easure

DICE Layer 1 CDI; 4

DICE is becoming important.

TCG members like Microsoft, T [measure
STMicro, Microchip, Micron,
NXP, etc. are behind its effort. DICE Layer O CDIp
/]\ T measure
DICE is general for scenarios :
DICE Engin DS
beyond loT devices, like servers. C sihe v

https://trustedcomputinggroup.org/work-groups/dice-architectures/ UDS Unique Device Secret

CDI Compound Device Identifier

https://trustedcomputinggroup.org/work-groups/dice-architectures/

DICE Measured Boot

DICE implicitly captures TCB as DICE Device
secrets (CDI) derived during :
boot

0 T measure
Layered structure: DICE Layer 1 CDI;
each layer extends the TCB by '
measuring the upper layer and T measure
deriving a new CDI. DICE Layer 0 CDI,,

/]\ T measure

DICE Engine UDS

UDS Unique Device Secret

CDI Compound Device Identifier

DICE Measured Boot

DICE Device

(S
measure

DICE Layer 1 CDI; 4
/]\ T measure

1 DICE Layer O CDI;,

Common layers of all 1\ '
DICE devices measure

N DICE Engine UDS

UDS Unique Device Secret
CDI Compound Device Identifier

DICE Measured Boot

DICE Device

(S
measure

DICE Layer 1 CDI; 4
/]\ T measure

DICE Layer O CDI;,

T /I\measure
Minimal code to derive the

first CDI and protects UDS o DICE Engine ubs

UDS Unique Device Secret
CDI Compound Device Identifier

DICE Measured Boot

Derives a life-time key and
generates certificates

Minimal code to derive the
first CDI and protects UDS

DICE Device

(S
measure

DICE Layer 1 CDI; 4

«— DICE Layer O

«— DICE Engine UDS

T /T\measure

measure

UDS Unique Device Secret
CDI Compound Device Identifier

Need for Verified DICE Implementation

DICE implementation is hard to get right because of key derivation,
hashes, signhatures and X.509 certificates — complex piece of code

National Security Agency | Cybersecurity Advisory

TPM-FolL

TPM MEETS

OND LoTTICE F)TTHCKS

Patch Critical Cryptographic Vulnerability in Microsoft Windows
Clients and Servers

Summary

NSA has discovered a critical vulnerability (CVE-2020-0601) affecting Microsoft Windows®' cry~tamranhin fiinntinaalisg
The certificate validation vulnerability allows an attacker to undermine how Windows verifies cry .
enable remote code execution. The vulnerability affects Windows 10 and Windows Server 2016 l.ECVE'ZOIG'ZIOS Deta ll
applications that rely on Windows for trust functionality. Exploitation of the vulnerability allows a

network connections and deliver executable code while appearing as legitimately trusted entitie L

validation of trust may be impacted include: Current Descri ptIOI‘I

The ASN.1 implementation in OpenSSL before 1.0.10 and 1.0.2 before 1.0.2c allows remote attackers to execute arbitrary code or cause a

o HTTPS connections denial of service (buffer underflow and memory corruption) via an ANY field in crafted serialized data, aka the "negative zero" issue.

o Signed files and emails

o Signed executable code launched as user-mode processes Severity CVSS Version 2.0
The vulnerability places Windows endpoints at risk to a broad range of exploitation vectors. NS, CVSS 3.x Severity and Metrics:

Critical Crypto bug le aves Linux, Base Score: | XIS Vector: CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
hun dre d S O f ap p S O p e n to e ave S drop p i n g ailable information to associate vector strings and CVSS scores. We also display any CVSS information provided within the

This GnuTLS bug is worse than the big Apple "goto fail" bug patched last week.

Need for Verified DICE Implementation

DICE is hard to get right DICE Device
because of the complex code :

and libraries

: A !

authenticate measure
And bugs like memory errors,
misuse of secrets, malleability DICE Layer 1 CDI; 4
attacks on X.509, side-channels T A
may leak secrets allowing authenticate measure
impersonation attack

DICE Layer O CDI;,

But patching the first two | " ihenticate Measure

layers is either impossible or
extremely expensive DICE Engine UDS

UDS Unique Device Secret
CDI Compound Device Identifier

Need for Verified DICE Implementation

DICE is hard to get right DICE Device
because of the complex code :

and libraries

authenticate 0\ T measure
And bugs like memory errors,
misuse of secrets, malleability DICE Layer 1 CDI; 4
attacks on X.509, side-channels
may leak secrets allowing authenticate T T'measure
impersonation attack
But patching the first two | " ihenticate Measure

layers is either impossible or » Burned into ROM, hence
extremely expensive Buggy DICE Engine immutable

UDS Unique Device Secret

CDI Compound Device Identifier

Need for Verified DICE Implementation

DICE is hard to get right DICE Device
because of the complex code :

and libraries

authenticate 0\ T measure

And bugs like memory errors,

misuse of secrets, malleability DICE Layer 1 CDI; 4

attacks on X.509, side-channels

may leak secrets allowing | authenticate T J'measure

impersonation attack » Patching it changes the
life-time key and certificate

But patching the first two | _ ihenticate Measure

layers is either impossible or > Burned into ROM. hence
extremely expensive Buggy DICE Engine immutable

UDS Unique Device Secret

CDI Compound Device Identifier

DICE™: A Formally Verified DICE
implementation

* Formally specify DICE specification

* Present a verified DICE Engine with a platform-agnostic interface
e Users can focus on analyzing the platform-specific components

* Present a verified DICE Layer O
* Including a verified library for a subset of X.509 which can be extended and reused

* Generate verified C implementation and evaluate it on STM32H753ZI
 Comparable to unverified hand-written code in terms of boot time and binary size

* Available at https://github.com/verified-HRoT/dice-star

https://github.com/verified-HRoT/dice-star

Verified Properties

 Functional correctness
* Secrets, keys and certificates are derived as per specification

* Memory safety
* Buffer overflows, use-after-free, no null dereferences, dangling pointers, etc.

 Confidentiality
 No secret leakage via outputs, memory, etc.
* Side-channel resistance
* Free of certain timing- and cache-based side channels

e X.509 certificate security
 No malleability attacks

Verification Toolchain

° F*-

* Functional language with effects

* Dependent type Pure F*

* Semi-automated proof via SMT solvers Specification

: : veri

* Low™: a shallow embedding of C in F* Ty

* C-like memory model Low”*

* First Order Implementation

e C-compatible types

compile (KreMLin)
 KreMLin: a Low™-C compiler —
Verified C

Implementation

DICE™ Engine

e e e

HMAC|(\{UDS|,Hash|(|LO|))

DICE Engine

CDI,,

\ / Provides APlIs

Platform-Agnostic | . Read UDS

Interface e Latch UDS

| I« Erase stack
EATOYELs tReVRIITEGH s BEREIRNNE BYERY iBrkine
* Cannot readUDgafiteryatafing UDS

* Must latch UDSRwafctio ralyifg stack

* Must erase stadkrppfograpbicaliydecure

e Side-Channel Resistant
UDS Unique Device Secret

CDI Compound Device Identifier

Verifying DICE™ Engine: Top-Level Spec

Only uses stack

1ce_main
dice_return_code
h — uds_is_enabled h

hg r hy — (= (uds_is_enabled hq)) stack_is_erased hj

all_heap_buffers_except_cdi_and_ghost_state_remain_same hy hq
(r == <= (1@_image_is_valid (st ()).1lp hy cdi_functional_correctness (st ()) hq))

UDS Unique Device Secret
CDI Compound Device Identifier

Verifying DICE™ Engine: Top-Level Spec

diée_return_code
h — juds_is_enabled h
hg r hy — (- (uds_is_enabled hq))) stack_is_erased hj

all_heap_buffers_except_cdi_and_ghost_state_remain_same hy hq

(r == <= (1@_image_is_valid (st ()).1lp hy cdi_functional_correctness (st ()) hq))

UDS Unique Device Secret
CDI Compound Device Identifier

Verifying DICE™ Engine: Top-Level Spec

1ce_main
dice_return_code
h — uds_is_enabled h

hg r hy — (= (uds_is_enabled hq)) stack_is_erased hj

all_heap_buffers_except_cdi_and_ghost_state_remain_same hy hq

(r == < (1@_image_is_valid (st ()).lp hy cdi_functional_correctness (st ()) hq

Returns SUCCESS iff L0 is authenticated and CDI;, is HMAC(UDS, Hash(L0))

UDS Unique Device Secret
CDI Compound Device Identifier

Verifying DICE™ Engine: Top-Level Spec

diée_return_code
h — uds_is_enabled h
hg r hy — (-~ (uds_is_enabled hq)) stack_is_erased hj

all_heap_buffers_except_cdi_and_ghost_state_remain_same hp hq

(r == <= (1@_image_is_valid (st ()).1lp hy cdi_functional_correctness (st ()) hj

Low™ allows us to specify the following properties about memory:
e All heap buffers,

* which were alive at the initial state h,,

* and are disjoint with the CDI buffer,

e are still alive at the final state h4

e and are not modified.

UDS Unique Device Secret
CDI Compound Device Identifier

Verifying DICE™ Engine: Side-Channel
Resistance

* DICE™ follows the secret independent coding discipline by reusing
the secret integer model from HACL"

« HACL" defines secrets as abstract, constant-time integers which
e can not be used as array indexes
* can not be branched on because no Boolean comparison operators for them

DICE™ Layer O

Derive Asymmetric Key Pairs
Devicel Dy, Devicel Dy, = KDF(CDI)
AliasKey,,p, AliasKey,y,, = KDF(CDI,,L1)

Generate Certificates

CSRpevicerp = Sign(CreateCSR (DeviceIDpub), DevicelDy,.;y,)

Crtgtiaskey = Sign(CreateCrt (AliaSKeypub), DevicelDyy;y)

KDF Key Derivation Function
CSR Certificate Signing Request

Crt Certificate

DICE™ Layer O

CSRpevicelp = Sign&CreateCSR

X.509 Certificate
Generation Library

AliasKey — Sign

Generate Certificates

(CreateCrt

(Devicel D,y), Devicel Dy,

[AliaSK eypub), Devicel D)

provides verified serializer primitives and combinators for
 (Most of) ASN.1 constructs
e (A fragment of) X.509 messages

KDF Key Derivation Function
CSR Certificate Signing Request

Crt Certificate

DICE™ Layer O

Derive Asymmetric Key Pairs

Devicel Dy, Devicel Dy,

AliasKeypub, AliaSKerriv

KDF

=|KDF

(CDIyp)

(CDI;y,L,)

Generate Certificates

CSRpevicerp =|Sign CreateCSR(DeviceIDpub),DeviceIDpn-v)

Crtaliaskey = Sign(CreateCrt (AliaSKeypub),DeviceIDprl-v)

HACL"

KDF Key Derivation Function

CSR Certificate Signing Request

Crt Certificate

Verified X.509 Certificate Generation Library

* We reuse the secure parser and serializer model from LowParse
for specification

* We verify properties such as our serializers are injective

vmy,m,.s(my;) = s(m,) > m; = m,

Verified X.509 Certificate Generation Library

e X.509 certificates are encoded into ASN.1

Verified X.509 Certificate Generation Library

e X.509 certificates are encoded into ASN.1 Tag-

Tag

Verified X.509 Certificate Generation Library

* X.509 certificates are encoded into ASN.1 Tag-Length-

Tag Length

Verified X.509 Certificate Generation Library

e X.509 certificates are encoded into ASN.1 Tag-Length-Value (TLV) format

Tag Length Value

Verified X.509 Certificate Generation Library

e X.509 certificates are encoded into ASN.1 Tag-Length-Value (TLV) format

* where the length field specifies the size of the value field

e But the length field is also variable size!

When Length = 128
/7 6 5 4 3 2 1 O

1 Encoded |Length]| Encoded Length (variable size)

Tag Lengtli,@ngtfi YAl oﬂ/hbyde|p 2 bytes Value of 128 bytes ‘

Verified X.509 Certificate Generation Library

* The low-level forward serializer from LowParse needs to calculate the
size of value field ahead.

* Hence needs multiple passes to serialize an ASN.1 message, which is
inefficient.

TS —

Tag Length Value

! !

variable size need to calculate the size of Value field ahead.

Verified X.509 Certificate Generation Library

* We implement a verified low-level backward serializer, which

serializes an ASN.1 message in one pass
e even in the presence of nested TLV messages.

Tag Length Value
TLV TLV TLV

DICE™ Implementation

DICE™ Layer O

DICE™ Engine

Platform-Agnostic
Interface

7,677 F* LoC
5,051 C LoC

533 F* LoC
205 C LoC

X.509 Certificate | 16,564 F* LoC
Generation Library

~25k lines of F* code and proof
~5K lines of generated C code

DICE™ Implementation

s = st();
authenticate_10_image(s.10);

)

\b\

KRML_CHECK_SIZE uint8_t), uds_len);

uds|uds_len |;
memset(uds, 60U, * uint8_t));
read_uds(uds);

uds_digest
memset(uds_digest, uint8_t));

10_digest ;
memset(10_digest, 0U, * uint8_t));
Hacl_Hash_SHA2_hash_256(uds, uds_len, uds_digest);
Hacl_Hash_SHA2_hash_256(s.10.10_binary, s.10.10_binary_size, 10_digest);
Hacl_HMAC_compute_sha2_256(s.cdi, uds_digest, , 10_digest,
zeroize(uds_len, uds);
r = DICE_SUCCESS;

r = DICE_ERROR;

disable_uds();
platform_zeroize_stack();
s

https://github.com/verified-HRoT/dice-star/tree/main/dist

https://github.com/verified-HRoT/dice-star/tree/main/dist

Evaluation

* We show that the C implementation generated from DICE™ is
comparable to the unverified hand-written one

Evaluation

* We show that the C implementation generated from DICE™ is
comparable to the unverified hand-written one in terms of both
boot time

Boot time (ms)

Layer
Unverified DICE DICE™

DICE Engine 786 689

DICE Layer 0 313 208

Evaluation

* We show that the C implementation generated from DICE™ is
comparable to the unverified hand-written one in terms of both
boot time and binary size.

Boot time (ms) Size (KB)
Layer
Unverified DICE DICE* Unverified DICE DICE™
DICE Engine 786 689 72 68
DICE Layer O 313 208 92 92

DICE™: A Formally Verified DICE

implementation

DICE™ Layer O

X.509 Certificate
Generation Library

DICE” Engine

Platform-Agnostic
Interface

https://github.com/verified-HRoT/dice-star

Thank you!

Zhe Tao zhetao@ucdavis.edu
Aseem Rastogi aseemr@microsoft.com
Naman Gupta t-nag@microsoft.com
Kapil Vaswani kapilv@microsoft.com
Aditya V. Thakur avthakur@ucdavis.edu

Microsoft:

COMPUTER SCIENCE Resea rCh

https://github.com/verified-HRoT/dice-star

