
𝐃𝐈𝐂𝐄⋆: A Formally Verified
Implementation of DICE Measured Boot

Zhe Tao zhetao@ucdavis.edu
Aseem Rastogi aseemr@microsoft.com
Naman Gupta t-nag@microsoft.com
Kapil Vaswani kapilv@microsoft.com

Aditya V. Thakur avthakur@ucdavis.edu

Establishing Trust in a Remote Device

How do we verify that a device is running expected code?

Send sensitive data to
ML accelerators on the
cloud

Collect critical data from
sensors in the field

First Stage
Boot Loader

Second Stage
Boot Loader

Third Stage
Boot Loader

⋮

TPM

PCR #0

PCR #2
PCR #3
⋮

PCR #1

measure

measure

measure

TPM Trusted Platform Module

PCR Platform Configuration Register

Measured Boot

Prevents an attacker from loading
unexpected code in boot by
• measuring the boot sequence
• recording the measurements

for later attestation

First Stage
Boot Loader

Second Stage
Boot Loader

Stale Vulnerable
Third Stage Boot Loader

⋮

TPM

PCR #0

PCR #2
PCR #3
⋮

Wrong PCR #1

TPM Trusted Platform Module

PCR Platform Configuration Register

measure

measure

measure

Unexpected code results in wrong
measurement and fails attestation

Measured Boot

First Stage
Boot Loader

Second Stage
Boot Loader

Third Stage
Boot Loader

⋮
measure

measure

measure

IoT Device

TPM Trusted Platform Module

PCR Platform Configuration Register

Measured Boot

TPM

PCR #0

PCR #2
PCR #3
⋮

PCR #1

But traditional measured boot
protocols are not applicable to
IoT devices

First Stage
Boot Loader

Second Stage
Boot Loader

Third Stage
Boot Loader

⋮
measure

measure

measure

IoT Device

TPM Trusted Platform Module

PCR Platform Configuration Register

Because they require a
dedicated chip like TPM, which
is too expensive in terms of
cost, power, or real estate

Measured Boot

TPM

PCR #0

PCR #2
PCR #3
⋮

PCR #1

But traditional measured boot
protocols are not applicable to
IoT devices

DICE Engine

DICE Layer 0

DICE Layer 1

⋮

𝐶𝐷𝐼!"

𝐶𝐷𝐼!#

𝑈𝐷𝑆

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

measure

measure

measure

DICE Device

DICE is becoming important.
TCG members like Microsoft,
STMicro, Microchip, Micron,
NXP, etc. are behind its effort.

Lightweight measured boot for
IoT devices proposed by
Trusted Computing Group.

DICE Measured Boot

https://trustedcomputinggroup.org/work-groups/dice-architectures/

DICE is general for scenarios
beyond IoT devices, like servers.

https://trustedcomputinggroup.org/work-groups/dice-architectures/

DICE Engine

DICE Layer 0

DICE Layer 1

⋮

𝐶𝐷𝐼!"

𝐶𝐷𝐼!#

𝑈𝐷𝑆

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

measure

measure

measure

DICE Device

DICE Measured Boot

Layered structure:
each layer extends the TCB by
measuring the upper layer and
deriving a new 𝐶𝐷𝐼.

DICE implicitly captures TCB as
secrets (𝐶𝐷𝐼) derived during
boot

DICE Engine

DICE Layer 0

DICE Layer 1

⋮

𝐶𝐷𝐼!"

𝐶𝐷𝐼!#

𝑈𝐷𝑆

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

measure

measure

measure

DICE Device

Common layers of all
DICE devices

DICE Measured Boot

DICE Engine

DICE Layer 0

DICE Layer 1

⋮

𝐶𝐷𝐼!"

𝐶𝐷𝐼!#

𝑈𝐷𝑆

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

measure

measure

measure

DICE Device

Minimal code to derive the
first 𝐶𝐷𝐼 and protects 𝑈𝐷𝑆

DICE Measured Boot

DICE Layer 0

DICE Layer 1

⋮

𝐶𝐷𝐼!"

𝐶𝐷𝐼!#

𝑈𝐷𝑆

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

measure

measure

measure

DICE Device

Derives a life-time key and
generates certificates

DICE EngineMinimal code to derive the
first 𝐶𝐷𝐼 and protects 𝑈𝐷𝑆

DICE Measured Boot

Need for Verified DICE Implementation

DICE implementation is hard to get right because of key derivation,
hashes, signatures and X.509 certificates — complex piece of code

DICE Layer 0

DICE Layer 1

⋮

𝐶𝐷𝐼!"

𝐶𝐷𝐼!#

𝑈𝐷𝑆

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

authenticate

authenticate

authenticate

measure

measure

measure

DICE Device

DICE Engine

And bugs like memory errors,
misuse of secrets, malleability
attacks on X.509, side-channels
may leak secrets allowing
impersonation attack

But patching the first two
layers is either impossible or
extremely expensive

DICE is hard to get right
because of the complex code
and libraries

Need for Verified DICE Implementation

DICE Layer 0

DICE Layer 1

⋮

𝐶𝐷𝐼!"

𝐶𝐷𝐼!#

𝑈𝐷𝑆

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

authenticate

authenticate

authenticate

measure

measure

measure

DICE Device

Buggy DICE Engine

And bugs like memory errors,
misuse of secrets, malleability
attacks on X.509, side-channels
may leak secrets allowing
impersonation attack

But patching the first two
layers is either impossible or
extremely expensive

DICE is hard to get right
because of the complex code
and libraries

Burned into ROM, hence
immutable

Need for Verified DICE Implementation

DICE Layer 1

⋮

𝐶𝐷𝐼!"

𝐶𝐷𝐼!#

𝑈𝐷𝑆

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

authenticate

authenticate

authenticate

measure

measure

measure

DICE Device

Buggy DICE Engine

Buggy DICE Layer 0

And bugs like memory errors,
misuse of secrets, malleability
attacks on X.509, side-channels
may leak secrets allowing
impersonation attack

But patching the first two
layers is either impossible or
extremely expensive

DICE is hard to get right
because of the complex code
and libraries

Burned into ROM, hence
immutable

Patching it changes the
life-time key and certificate

Need for Verified DICE Implementation

• Formally specify DICE specification
• Present a verified DICE Engine with a platform-agnostic interface
• Users can focus on analyzing the platform-specific components

• Present a verified DICE Layer 0
• Including a verified library for a subset of X.509 which can be extended and reused

• Generate verified C implementation and evaluate it on STM32H753ZI
• Comparable to unverified hand-written code in terms of boot time and binary size

• Available at https://github.com/verified-HRoT/dice-star

𝐃𝐈𝐂𝐄⋆: A Formally Verified DICE
implementation

https://github.com/verified-HRoT/dice-star

• Functional correctness
• Secrets, keys and certificates are derived as per specification

• Memory safety
• Buffer overflows, use-after-free, no null dereferences, dangling pointers, etc.

• Confidentiality
• No secret leakage via outputs, memory, etc.

• Side-channel resistance
• Free of certain timing- and cache-based side channels

• X.509 certificate security
• No malleability attacks

Verified Properties

Verification Toolchain
• 𝐅⋆:
• Functional language with effects
• Dependent type
• Semi-automated proof via SMT solvers

• 𝐋𝐨𝐰⋆: a shallow embedding of 𝐂 in 𝐅⋆
• 𝐂-like memory model
• First Order
• 𝐂-compatible types

• 𝐊𝐫𝐞𝐌𝐋𝐢𝐧: a 𝐋𝐨𝐰⋆-𝐂 compiler

𝐋𝐨𝐰⋆

Implementation

Verified 𝐂
Implementation

Pure 𝐅⋆
Specification

verify

compile (𝐊𝐫𝐞𝐌𝐋𝐢𝐧)

𝐃𝐈𝐂𝐄⋆ Engine

𝐶𝐷𝐼!" = 𝐻𝑀𝐴𝐶 (𝑈𝐷𝑆 ,𝐻𝑎𝑠ℎ 𝐿0)

DICE Engine

𝐇𝐀𝐂𝐋⋆

Functional Specification of DICE Engine𝐃𝐈𝐂𝐄⋆ Engine reuses HMAC and Hash
from 𝐇𝐀𝐂𝐋⋆

𝐃𝐈𝐂𝐄⋆ Engine models a platform-agnostic
interface for 𝑈𝐷𝑆 in different platforms

𝐇𝐀𝐂𝐋⋆ : a verified cryptographic library in 𝐅⋆

• Memory Safe
• Functionally Correct
• Cryptographically Secure
• Side-Channel Resistant

Platform-Agnostic
Interface

Provides APIs
• Read UDS
• Latch UDS
• Erase stack

Enforces the following behavior of 𝐃𝐈𝐂𝐄⋆ Engine
• Cannot read UDS after latching UDS
• Must latch UDS before erasing stack
• Must erase stack before returning

𝑈𝐷𝑆 Unique Device Secret
𝐶𝐷𝐼 Compound Device Identifier

Verifying 𝐃𝐈𝐂𝐄⋆ Engine: Top-Level Spec
Only uses stack

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

Verifying 𝐃𝐈𝐂𝐄⋆ Engine: Top-Level Spec

Access to 𝑈𝐷𝑆 is disabled after execution
Stack is erased

Access to 𝑈𝐷𝑆 is enabled.

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

Verifying 𝐃𝐈𝐂𝐄⋆ Engine: Top-Level Spec

Returns SUCCESS iff 𝐿0 is authenticated and 𝐶𝐷𝐼!" is 𝐻𝑀𝐴𝐶(𝑈𝐷𝑆, 𝐻𝑎𝑠ℎ(𝐿0))

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

Verifying 𝐃𝐈𝐂𝐄⋆ Engine: Top-Level Spec

𝐋𝐨𝐰⋆ allows us to specify the following properties about memory:
• All heap buffers,
• which were alive at the initial state ℎ",
• and are disjoint with the 𝐶𝐷𝐼 buffer,
• are still alive at the final state ℎ$
• and are not modified.

𝑈𝐷𝑆 Unique Device Secret

𝐶𝐷𝐼 Compound Device Identifier

• 𝐃𝐈𝐂𝐄⋆ follows the secret independent coding discipline by reusing
the secret integer model from 𝐇𝐀𝐂𝐋⋆

• 𝐇𝐀𝐂𝐋⋆ defines secrets as abstract, constant-time integers which
• can not be used as array indexes
• can not be branched on because no Boolean comparison operators for them

Verifying 𝐃𝐈𝐂𝐄⋆ Engine: Side-Channel
Resistance

𝐃𝐈𝐂𝐄⋆ Layer 0
Derive Asymmetric Key Pairs

𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!"# , 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!$%& = 𝐾𝐷𝐹 𝐶𝐷𝐼'(

𝐴𝑙𝑖𝑎𝑠𝐾𝑒𝑦!"# , 𝐴𝑙𝑖𝑎𝑠𝐾𝑒𝑦!$%& = 𝐾𝐷𝐹 𝐶𝐷𝐼'(, 𝐿1

Generate Certificates

𝐶𝑆𝑅)*&%+*,) = 𝑆𝑖𝑔𝑛(𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑆𝑅 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!"# , 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!$%&)

𝐶𝑟𝑡-.%/01*2 = 𝑆𝑖𝑔𝑛(𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑟𝑡 𝐴𝑙𝑖𝑎𝑠𝐾𝑒𝑦!"# , 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!$%&)

𝐾𝐷𝐹 Key Derivation Function
𝐶𝑆𝑅 Certificate Signing Request
𝐶𝑟𝑡 Certificate

Derive Asymmetric Key Pairs

𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!"# , 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!$%& = 𝐾𝐷𝐹 𝐶𝐷𝐼'(

𝐴𝑙𝑖𝑎𝑠𝐾𝑒𝑦!"# , 𝐴𝑙𝑖𝑎𝑠𝐾𝑒𝑦!$%& = 𝐾𝐷𝐹 𝐶𝐷𝐼'(, 𝐿3

Generate Certificates

𝐶𝑆𝑅)*&%+*,) = 𝑆𝑖𝑔𝑛(𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑆𝑅 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!"# , 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!$%&)

𝐶𝑟𝑡-.%/01*2 = 𝑆𝑖𝑔𝑛(𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑟𝑡 𝐴𝑙𝑖𝑎𝑠𝐾𝑒𝑦!"# , 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!$%&)

𝐾𝐷𝐹 Key Derivation Function
𝐶𝑆𝑅 Certificate Signing Request
𝐶𝑟𝑡 Certificate

𝐃𝐈𝐂𝐄⋆ Layer 0

X.509 Certificate
Generation Library

provides verified serializer primitives and combinators for
• (Most of) ASN.1 constructs
• (A fragment of) X.509 messages

Derive Asymmetric Key Pairs

𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!"# , 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!$%& = 𝐾𝐷𝐹 𝐶𝐷𝐼'(

𝐴𝑙𝑖𝑎𝑠𝐾𝑒𝑦!"# , 𝐴𝑙𝑖𝑎𝑠𝐾𝑒𝑦!$%& = 𝐾𝐷𝐹 𝐶𝐷𝐼'(, 𝐿3

Generate Certificates

𝐶𝑆𝑅)*&%+*,) = 𝑆𝑖𝑔𝑛(𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑆𝑅 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!"# , 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!$%&)

𝐶𝑟𝑡-.%/01*2 = 𝑆𝑖𝑔𝑛(𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑟𝑡 𝐴𝑙𝑖𝑎𝑠𝐾𝑒𝑦!"# , 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷!$%&)

𝐃𝐈𝐂𝐄⋆ Layer 0

𝐾𝐷𝐹 Key Derivation Function
𝐶𝑆𝑅 Certificate Signing Request
𝐶𝑟𝑡 Certificate

𝐇𝐀𝐂𝐋⋆

Verified X.509 Certificate Generation Library

• We reuse the secure parser and serializer model from 𝐋𝐨𝐰𝐏𝐚𝐫𝐬𝐞
for specification
• We verify properties such as our serializers are injective

∀𝑚#, 𝑚%. 𝑠 𝑚# = 𝑠 𝑚% ⇒ 𝑚# = 𝑚%

Verified X.509 Certificate Generation Library

• X.509 certificates are encoded into ASN.1

Verified X.509 Certificate Generation Library

• X.509 certificates are encoded into ASN.1 Tag-

𝑇𝑎𝑔

Verified X.509 Certificate Generation Library

• X.509 certificates are encoded into ASN.1 Tag-Length-

𝐿𝑒𝑛𝑔𝑡ℎ𝑇𝑎𝑔

Verified X.509 Certificate Generation Library

• X.509 certificates are encoded into ASN.1 Tag-Length-Value (TLV) format

𝐿𝑒𝑛𝑔𝑡ℎ𝑇𝑎𝑔 𝑉𝑎𝑙𝑢𝑒

Verified X.509 Certificate Generation Library

• X.509 certificates are encoded into ASN.1 Tag-Length-Value (TLV) format
• where the length field specifies the size of the value field

• But the length field is also variable size!

𝑇𝑎𝑔 𝐿𝑒𝑛𝑔𝑡ℎ = 1 𝑉𝑎𝑙𝑢𝑒 of 1 byte𝑇𝑎𝑔 𝐿𝑒𝑛𝑔𝑡ℎ = 2 𝑉𝑎𝑙𝑢𝑒 of 2 bytes𝑇𝑎𝑔 𝐿𝑒𝑛𝑔𝑡ℎ = 128 𝑉𝑎𝑙𝑢𝑒 of 128 bytes ⋯

7 6 5 4 3 2 1 0
1

When 𝐿𝑒𝑛𝑔𝑡ℎ ≥ 128

Encoded 𝐿𝑒𝑛𝑔𝑡ℎ Encoded 𝐿𝑒𝑛𝑔𝑡ℎ (variable size) ⋯

Verified X.509 Certificate Generation Library

• The low-level forward serializer from 𝐋𝐨𝐰𝐏𝐚𝐫𝐬𝐞 needs to calculate the
size of value field ahead.
• Hence needs multiple passes to serialize an ASN.1 message, which is

inefficient.

𝑇𝑎𝑔 𝐿𝑒𝑛𝑔𝑡ℎ 𝑉𝑎𝑙𝑢𝑒 ⋯

variable size need to calculate the size of 𝑉𝑎𝑙𝑢𝑒 field ahead.

Verified X.509 Certificate Generation Library

• We implement a verified low-level backward serializer, which
serializes an ASN.1 message in one pass
• even in the presence of nested TLV messages.

𝑇𝑎𝑔 𝐿𝑒𝑛𝑔𝑡ℎ 𝑉𝑎𝑙𝑢𝑒 ⋯

𝑇𝐿𝑉 ⋯𝑇𝐿𝑉 𝑇𝐿𝑉

𝐃𝐈𝐂𝐄⋆ Implementation

𝐃𝐈𝐂𝐄⋆ Engine

Platform-Agnostic
Interface

𝐃𝐈𝐂𝐄⋆ Layer 0 X.509 Certificate
Generation Library

7,677 𝐅⋆ LoC
5,051 𝐂 LoC

16,564 𝐅⋆ LoC

533 𝐅⋆ LoC
205 𝐂 LoC

~25k lines of 𝐅⋆ code and proof
~5K lines of generated 𝐂 code

𝐃𝐈𝐂𝐄⋆ Implementation

https://github.com/verified-HRoT/dice-star/tree/main/dist

https://github.com/verified-HRoT/dice-star/tree/main/dist

Evaluation

• We show that the C implementation generated from 𝐃𝐈𝐂𝐄⋆ is
comparable to the unverified hand-written one

Evaluation

• We show that the C implementation generated from 𝐃𝐈𝐂𝐄⋆ is
comparable to the unverified hand-written one in terms of both
boot time

Layer
Boot time (ms) Size (KB)

Unverified DICE 𝐃𝐈𝐂𝐄⋆ Unverified DICE 𝐃𝐈𝐂𝐄⋆

DICE Engine 786 689 72 68

DICE Layer 0 313 208 92 92

Evaluation

• We show that the C implementation generated from 𝐃𝐈𝐂𝐄⋆ is
comparable to the unverified hand-written one in terms of both
boot time and binary size.

Layer
Boot time (ms) Size (KB)

Unverified DICE 𝐃𝐈𝐂𝐄⋆ Unverified DICE 𝐃𝐈𝐂𝐄⋆

DICE Engine 786 689 72 68

DICE Layer 0 313 208 92 92

𝐃𝐈𝐂𝐄⋆: A Formally Verified DICE
implementation

https://github.com/verified-HRoT/dice-star

𝐃𝐈𝐂𝐄⋆ Engine

Platform-Agnostic
Interface

𝐃𝐈𝐂𝐄⋆ Layer 0
X.509 Certificate

Generation Library

Zhe Tao zhetao@ucdavis.edu
Aseem Rastogi aseemr@microsoft.com
Naman Gupta t-nag@microsoft.com
Kapil Vaswani kapilv@microsoft.com

Aditya V. Thakur avthakur@ucdavis.edu

Thank you!

https://github.com/verified-HRoT/dice-star

