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0x01 Motivation



AEG is important
• The number of vulnerabilities is growing 

explosively.


• Software vendors need to quickly evaluate 
the severity of security vulnerabilities and 
allocate appropriate resources to fix critical 
ones.


• Defenders could learn from synthetic exploits 
to generate IDS (Intrusion Detection System) 
rules and block potential attacks.



Automated Heap Feng Shui is demanded  

• Lots of vulnerabilities, e.g., heap overflow and UAF, 
could only be exploited in specific heap layouts via 
techniques like heap feng shui.


• Heap overflow: An exploitable object should be 
placed at a position which is next to the overflowed 
object.


• UAF: A content controllable object should be placed 
at the freed object’s position.


• Complex exploit techniques require complicated 
heap layout, e.g., unsafe unlink attack requires two 
chunks to be allocated before and after the 
overflowed chunk.
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Problem Scope  

Expected Memory 
Layout Generation

Memory Layout 
Manipulation

Full Chain Exploit 
Composition

Vulnerability analysis 
—> ASAN, Valgrind(Memcheck) 

Expected Memory Layout 
—>Heuristic, e.g. in this example, 
a controllable object (e.g. switch-
>name) should take the freed 
exceptional object’s position

Heap Layout Primitives Analysis  

Heap Layout Primitives Assembly  

Exploit primitive composition 
—> Automated multi-hop 
exploit generation

Security mechanisms bypass 
—> bypass ASLR, NX, CFG

Maze



0x02 Introduction



Example：A UAF vulnerability
• Program: An interactive program that 

selects the corresponding function 
based on user input


• UAF: Delete_Switch() function does not 
clear the pointer to this object after 
deleting an object


• Expected layout: a controllable object 
(i.e. switch->name) should take the 
freed object’s position (i.e. switch), to 
hijack the sensitive pointer s->name, 
yielding arbitrary memory writes. 


• Layout primitive noise: There is at least 
one noise (de)allocation in one primitive.



Primitives Analysis in Example
• Primitives Extraction


• Reentrant code snippets: exist in function dispatchers that are 
enclosed in loops. 


• Maze utilizes the code structure characteristic to recognize candidate 
heap layout primitives, via static analysis.


• Example: Create_Router, Create_Switch, Delete_Switch


• Primitives Dependency Analysis

• Some reentrant code snippets may depend on other snippets.

• Maze analyzes the pre-condition and post-condition of each snippet to 

recognize such dependencies and merge them into one primitive 

• Example: Delete_Switch <—> Create_Switch


• Primitives Semantics Analysis

• It’s necessary to understand the semantics of each primitive, especially 

the size of (de)allocated  objects

• Taint analysis and symbolic execution. 

• Example: Create_Router: 3 malloc, size=0x160; Create_Switch: 2 

malloc. Size = 0x160; Delete_Switch: 2 free, target from Create_Switch 

Create_Router Create_Switch

Delete_Switch Edit_name

Dependency



Challenge —How to assemble primitives ?

• Why? Noise: unwanted (de)allocations in heap primitives.

• Random Search? (SHRIKE) Genetic Algorithm ? (Gollum)


Path space explosion 

Unnecessary time consumption

Low success rate

The success rate drops dramatically when the 
number of noises grows!



Dig & Fill—A novel algorithm regardless of Noise 

O

• Redefine Problem

• One-object constraint layout: placing one object O into one target 

address P.

• Multi-objects constraint layout: placing multi objects into multi target 

addresses.

P

Memory target object O 

target address P 

• Dig

• At the time of allocating the target object O, the target address P is taken 

by object O’.

• We need to dig memory holes before allocating O’, by adding primitives 

that could free objects of proper sizes, to accommodate O’.

• Fill

• At the time of allocating the target object O, the target address P could be 

empty, but O still falls into other holes. 

• We need to fill (multiple) holes before allocating O, by adding primitives 

that could allocate objects.



Counteract Noise using Diophantine Equations

➡ Measurement Unit——Standard fill (or dig) operation 

• 1) Contains only one allocation (or deallocation) and 2)the size equals to the size of O (or P)

➡ d: Target Distance (PoC) Measurement

• Add standard fill (or dig) operations into the program execution trace of PoC, until the target object O is placed into the target 

address P. 

• If d standard dig operations are required, Target Distance is +d. If d standard fill operations are required, Target Distance is -d.

➡ ∆d: Delta Distance (Layout Primitives) Measurement 

• Target Distance before and after inserting a primitive are d1 and d2, then the Delta Distance (∆d) of this primitive is d2-d1. 

• Linear Diophantine Equation Setup 



Primitive Assembly in Example
• The Target Distance (d) of POC is +1. (one 

standard dig operation is needed so that switch-
>name can be placed at the target position.


• The ∆d of Create_Switch, Create_Router and 
Delete_Switch (combining with its dependant 
Create_Switch) are +2, +3 and -2


• A Linear Diophantine Equation can be build: 

Diophantine 

• One Create_Router and two Delete_Switch 
primitives are needed.



Overview of Maze

• Heap Layout Primitives Analysis

• Taking the program and POC as inputs, Maze will extract primitives in them. ( Heap layout 

primitives (e.g., Create_Switch) are the building blocks for heap layout manipulation.) 


• Heap Layout Primitives Assembly 

• The inputs of this part are heap primitives, POC info, path constraints and expected layout. 

• Maze will utilize heap primitives to manipulate POC’s layout (infered from the POC info) to the 

expected layout and generate an exploit using a constraint solver.



0x03 Evaluation



CTF benchmark

• MAZE can hijack control flow for 5.

• Leak arbitrary memory address information for 1. 

• MAZE outputs exploitable layout without generating exploits 

for 10, extra techniques (e.g., unlink attack) are required.

• Path simplification: 15 programs’ paths are reduced to about 10 
symbolized paths, the average rate of is 98.4%.


• Dependency Analysis: Column 5 shows the number of primitives 
that depend on others and can be analyzed by MAZE.



Real world Program Benchmark

• Efficiency: MAZE is much faster than Shike and Gollum. MAZE: 100% in 68s. Shrikes: 25% in 300s. Gollum: 75% in 300s

• Effectiveness: MAZE can solve all the benchmarks. Shrike can only solve 60% of them, and Gollum solved 85%. 

• Maze doesn’t need a template to guide the heap layout manipulation process.

• Compared with others, Maze broadly extends the application scope. (supports both Python and Perl) 

• Maze can generate expected heap layouts for all of them, and is much faster. 



Synthetic Benchmarks 

• Influence of heap layout noise

• The success rate keeps between 98% and 100%, 
showing that the number of noises does not 
influence the success rate of Dig & Fill.


• The time cost increases along with the number of 
noises, since noises will make the heap layout more 
complicated and cost more time to solve them.

• The number of primitives increases, the success rate 
also increases. This proves that the diversity of 
primitives influences the success rate. (still >= 87.7%)


• The time spent by MAZE to solve the problem does 
not grow along with the number of primitives.



Synthetic Benchmarks 

• Multi-object Position Constraint

• Setup: a) noise is 3 ; b) 3 allocation primitive and 4 deallocation primitive; c) 100 random heap 
layouts for each constraint


• While the number of objects increases (from 2 to 5), the success rate decreased (still > 95%) and the 
time interval increased: With more object layout constraints, MAZE has to generate more Diophantine 
Equations to solve.


• The order of allocation relative to memory corruption direction doesn’t influenced the success rate: 
For 5 object constraints, the Nature ratio is even 50%, but the success rate can still be 95.6%. 
(Nature means an earlier allocation takes the lower memory address but a later allocation takes the 
higher address)



0x04 Take-away 



Conclusion
• MAZE can transform POC samples’ heap layouts into expected layouts and 

automatically generate working exploits when possible.


• MAZE extends heap layout primitives to reentrant code snippets in event loop 
driven applications, and could efficiently recognize and analyze them.


• MAZE adopts a novel Dig & Fill algorithm to assemble primitives to generate 
expected layout, by deterministically solving a Linear Diophantine Equation.


• Maze is very efficient and effective and can even support multi-object 
constraints and many heap allocators.



Other Challenges of AEG
• Exploit Specification problem (A, H)


• Input generation problems (B, C, D, E)


• Exploit Primitive composition problem (F)


• Environment determination (I, J, K)


• State space representation (G)


• …

Maze (problem I:Heap likelihood inference)
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