
wangy0129@gmail.com

MAZE: Towards Automated Heap Feng Shui

Yan Wang, Chao Zhang, Zixuan Zhao, Bolun Zhang, Xiaorui Gong, Wei Zou

0x01 Motivation

AEG is important
• The number of vulnerabilities is growing

explosively.

• Software vendors need to quickly evaluate
the severity of security vulnerabilities and
allocate appropriate resources to fix critical
ones.

• Defenders could learn from synthetic exploits
to generate IDS (Intrusion Detection System)
rules and block potential attacks.

Automated Heap Feng Shui is demanded

• Lots of vulnerabilities, e.g., heap overflow and UAF,
could only be exploited in specific heap layouts via
techniques like heap feng shui.

• Heap overflow: An exploitable object should be
placed at a position which is next to the overflowed
object.

• UAF: A content controllable object should be placed
at the freed object’s position.

• Complex exploit techniques require complicated
heap layout, e.g., unsafe unlink attack requires two
chunks to be allocated before and after the
overflowed chunk.

Overflow object

Exploitable objectOverflow

Heap overflw

UAF object

… …

Content controllable object

Use After Free

Problem Scope

Expected Memory
Layout Generation

Memory Layout
Manipulation

Full Chain Exploit
Composition

Vulnerability analysis
—> ASAN, Valgrind(Memcheck)

Expected Memory Layout
—>Heuristic, e.g. in this example,
a controllable object (e.g. switch-
>name) should take the freed
exceptional object’s position

Heap Layout Primitives Analysis

Heap Layout Primitives Assembly

Exploit primitive composition
—> Automated multi-hop
exploit generation

Security mechanisms bypass
—> bypass ASLR, NX, CFG

Maze

0x02 Introduction

Example：A UAF vulnerability
• Program: An interactive program that

selects the corresponding function
based on user input

• UAF: Delete_Switch() function does not
clear the pointer to this object after
deleting an object

• Expected layout: a controllable object
(i.e. switch->name) should take the
freed object’s position (i.e. switch), to
hijack the sensitive pointer s->name,
yielding arbitrary memory writes.

• Layout primitive noise: There is at least
one noise (de)allocation in one primitive.

Primitives Analysis in Example
• Primitives Extraction

• Reentrant code snippets: exist in function dispatchers that are
enclosed in loops.

• Maze utilizes the code structure characteristic to recognize candidate
heap layout primitives, via static analysis.

• Example: Create_Router, Create_Switch, Delete_Switch

• Primitives Dependency Analysis

• Some reentrant code snippets may depend on other snippets.

• Maze analyzes the pre-condition and post-condition of each snippet to

recognize such dependencies and merge them into one primitive

• Example: Delete_Switch <—> Create_Switch

• Primitives Semantics Analysis

• It’s necessary to understand the semantics of each primitive, especially

the size of (de)allocated objects

• Taint analysis and symbolic execution.

• Example: Create_Router: 3 malloc, size=0x160; Create_Switch: 2

malloc. Size = 0x160; Delete_Switch: 2 free, target from Create_Switch

Create_Router Create_Switch

Delete_Switch Edit_name

Dependency

Challenge —How to assemble primitives ?

• Why? Noise: unwanted (de)allocations in heap primitives.

• Random Search? (SHRIKE) Genetic Algorithm ? (Gollum)

Path space explosion

Unnecessary time consumption

Low success rate

The success rate drops dramatically when the
number of noises grows!

Dig & Fill—A novel algorithm regardless of Noise

O

• Redefine Problem

• One-object constraint layout: placing one object O into one target

address P.

• Multi-objects constraint layout: placing multi objects into multi target

addresses.

P

Memory target object O

target address P

• Dig

• At the time of allocating the target object O, the target address P is taken

by object O’.

• We need to dig memory holes before allocating O’, by adding primitives

that could free objects of proper sizes, to accommodate O’.

• Fill

• At the time of allocating the target object O, the target address P could be

empty, but O still falls into other holes.

• We need to fill (multiple) holes before allocating O, by adding primitives

that could allocate objects.

Counteract Noise using Diophantine Equations

➡ Measurement Unit——Standard fill (or dig) operation

• 1) Contains only one allocation (or deallocation) and 2)the size equals to the size of O (or P)

➡ d: Target Distance (PoC) Measurement

• Add standard fill (or dig) operations into the program execution trace of PoC, until the target object O is placed into the target

address P.

• If d standard dig operations are required, Target Distance is +d. If d standard fill operations are required, Target Distance is -d.

➡ ∆d: Delta Distance (Layout Primitives) Measurement

• Target Distance before and after inserting a primitive are d1 and d2, then the Delta Distance (∆d) of this primitive is d2-d1.

• Linear Diophantine Equation Setup

Primitive Assembly in Example
• The Target Distance (d) of POC is +1. (one

standard dig operation is needed so that switch-
>name can be placed at the target position.

• The ∆d of Create_Switch, Create_Router and
Delete_Switch (combining with its dependant
Create_Switch) are +2, +3 and -2

• A Linear Diophantine Equation can be build:

Diophantine

• One Create_Router and two Delete_Switch
primitives are needed.

Overview of Maze

• Heap Layout Primitives Analysis

• Taking the program and POC as inputs, Maze will extract primitives in them. (Heap layout

primitives (e.g., Create_Switch) are the building blocks for heap layout manipulation.)

• Heap Layout Primitives Assembly

• The inputs of this part are heap primitives, POC info, path constraints and expected layout.

• Maze will utilize heap primitives to manipulate POC’s layout (infered from the POC info) to the

expected layout and generate an exploit using a constraint solver.

0x03 Evaluation

CTF benchmark

• MAZE can hijack control flow for 5.

• Leak arbitrary memory address information for 1.

• MAZE outputs exploitable layout without generating exploits

for 10, extra techniques (e.g., unlink attack) are required.

• Path simplification: 15 programs’ paths are reduced to about 10
symbolized paths, the average rate of is 98.4%.

• Dependency Analysis: Column 5 shows the number of primitives
that depend on others and can be analyzed by MAZE.

Real world Program Benchmark

• Efficiency: MAZE is much faster than Shike and Gollum. MAZE: 100% in 68s. Shrikes: 25% in 300s. Gollum: 75% in 300s

• Effectiveness: MAZE can solve all the benchmarks. Shrike can only solve 60% of them, and Gollum solved 85%.

• Maze doesn’t need a template to guide the heap layout manipulation process.

• Compared with others, Maze broadly extends the application scope. (supports both Python and Perl)

• Maze can generate expected heap layouts for all of them, and is much faster.

Synthetic Benchmarks

• Influence of heap layout noise

• The success rate keeps between 98% and 100%,
showing that the number of noises does not
influence the success rate of Dig & Fill.

• The time cost increases along with the number of
noises, since noises will make the heap layout more
complicated and cost more time to solve them.

• The number of primitives increases, the success rate
also increases. This proves that the diversity of
primitives influences the success rate. (still >= 87.7%)

• The time spent by MAZE to solve the problem does
not grow along with the number of primitives.

Synthetic Benchmarks

• Multi-object Position Constraint

• Setup: a) noise is 3 ; b) 3 allocation primitive and 4 deallocation primitive; c) 100 random heap
layouts for each constraint

• While the number of objects increases (from 2 to 5), the success rate decreased (still > 95%) and the
time interval increased: With more object layout constraints, MAZE has to generate more Diophantine
Equations to solve.

• The order of allocation relative to memory corruption direction doesn’t influenced the success rate:
For 5 object constraints, the Nature ratio is even 50%, but the success rate can still be 95.6%.
(Nature means an earlier allocation takes the lower memory address but a later allocation takes the
higher address)

0x04 Take-away

Conclusion
• MAZE can transform POC samples’ heap layouts into expected layouts and

automatically generate working exploits when possible.

• MAZE extends heap layout primitives to reentrant code snippets in event loop
driven applications, and could efficiently recognize and analyze them.

• MAZE adopts a novel Dig & Fill algorithm to assemble primitives to generate
expected layout, by deterministically solving a Linear Diophantine Equation.

• Maze is very efficient and effective and can even support multi-object
constraints and many heap allocators.

Other Challenges of AEG
• Exploit Specification problem (A, H)

• Input generation problems (B, C, D, E)

• Exploit Primitive composition problem (F)

• Environment determination (I, J, K)

• State space representation (G)

• …

Maze (problem I:Heap likelihood inference)

[1]

[1] J.Vanegue, “The automated exploitation grand challenge,” in presented at H2HC Conference, 2013.

Thank you!

Wang Yan
wangy0129@gmail.com

