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E2E Encrypted Keyword Search 

❏ Users outsource documents to the cloud for cost-effective storage and convenient access
❏ Limited amount of client-side storage capacity, via web/mobile interface
❏ End-to-end encryption for full privacy
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E2E Encrypted Keyword Search 

❏ Users outsource documents to the cloud for cost-effective storage and convenient access
❏ Limited amount of client-side storage capacity, via web/mobile interface
❏ End-to-end encryption for full privacy

❏ End-to-end encryption makes key service utilities difficult, if not impossible
❏ Keyword search — find the uploaded documents most relevant to the user’s keywords

Search

???
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Our Target Search Interface 

Search
Multi-keyword 

conjunctive 
query

Result Preview 
(name, type, 

time, etc.)

Top-k results 
w/ pagination

Similar interface is shared by Box, 
Google Drive, Microsoft OneDrive, 

etc.
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Our Threat Model

Search

Update

Persistent Active Adversary
● Full transcript of the update and search history
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Our Threat Model

Search

Update

Persistent Active Adversary
● Full transcript of the update and search history
● File-injection: Adaptively inject documents of 

chosen words under user’s key [CGPR15], 
[ZKP16] 4



Dynamic Searchable Symmetric Encryption (DSSE)

Dynamic 
[KPR’12]

● K, st; EDB ← setup(λ)
● (K, st’; EDB’) ← update(K, st, op, (id, w); EDB)
● (DB(q);) ← search(K, st, q; EDB)

Time
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Dynamic Searchable Symmetric Encryption (DSSE)

Dynamic 
[KPR’12]

● K, st; EDB ← setup(λ)
● (K, st’; EDB’) ← update(K, st, op, (id, w); EDB)
● (DB(q);) ← search(K, st, q; EDB)

Time
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Leakage Profile ⇐ Provably no more leaked
● Result Pattern the set of updates on the same keyword as the query
● Volume the number of documents containing the query keyword
● Query Pattern the set of queries on the same keyword



Dynamic 
[KPR’12]

● K, st; EDB ← setup(λ)
● (K, st’; EDB’) ← update(K, st, op, (id, w); EDB)
● (DB(q);) ← search(K, st, q; EDB)

● Leakage profile are vulnerable to various leakage-abuse 
attacks (LAAs)

● Limited search functionality, i.e., no ranking or previewing

Time
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Dynamic Searchable Symmetric Encryption (DSSE)



Dynamic 
[KPR’12]

Result Pattern 
Attacks [IKK’12, 

CGPR’15, ZKP’16]

Time
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Dynamic 
[KPR’12]

Result Pattern 
Attacks [IKK’12, 

CGPR’15, ZKP’16]

5

Dynamic Searchable Symmetric Encryption (DSSE)

Time

Forward/Backward 
Privacy [BMO’17, 

KKLPK’17, 
EKPE’18, CPPJ’18]

Partial patch, and result 
pattern leakage remains



Dynamic 
[KPR’12]

Result Pattern 
Attacks [IKK’12, 

CGPR’15, ZKP’16]

Forward/Backward 
Privacy [BMO’17, 

KKLPK’17, 
EKPE’18, CPPJ’18]

Volume Attacks 
[BKM’20, 
PWLP’20]

RP, V & QP Hiding 
[DPPS’20, GPPW’20, 

SOPK’21]

Query Pattern 
Attacks [OK’21]

Query Pattern 
Hiding [KMO’18] 5

Dynamic Searchable Symmetric Encryption (DSSE)

Time

Volume Hiding 
[PPYY’19]

patch for 
corresponding 
leakage



Dynamic 
[KPR’12]

Result Pattern 
Attacks [IKK’12, 

CGPR’15, ZKP’16]

Volume Attacks 
[BKM’20, 
PWLP’20]

Query Pattern 
Attacks [OK’21]
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Dynamic Searchable Symmetric Encryption (DSSE)

Time

Forward/Backward 
Privacy [BMO’17, 

KKLPK’17, 
EKPE’18, CPPJ’18]

Query Pattern 
Hiding [KMO’18]

RP, V & QP Hiding 
[DPPS’20, GPPW’20, 

SOPK’21]
Volume Hiding 

[PPYY’19]

Long-lasting race between defenses 
and attacks => more and more 
expensive cryptographic tools

patch for 
corresponding 
leakage



Our Approach - Download-then-Search-Locally
A Different Idea against File-Injection Attacks
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❏ No result pattern, volume or query pattern leakage whatsoever!
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Our Approach - Download-then-Search-Locally
A Different Idea against File-Injection Attacks

Search

❏ No result pattern, volume or query pattern leakage whatsoever!
❏ Straightforward support for ranking and preview!

Inverted index 
with postings for 
ranking

Forward index 
with metadata 
for previewing
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Our Contributions

● Develop previously under-treated technique: download-then-search-locally
● Identify attacks against naive construction and give solutions with security 

proofs
● New constructions for feature-rich, scalable search on E2E encrypted data
● Real-world prototype-based evaluation
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Naïve Download-then-Search-Locally

Search AES-GCM
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Naïve Download-then-Search-Locally

Update
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For existing word, the inverted 
index size increases by one 
posting and one metadata length



Naïve Download-then-Search-Locally

Update

8

fish

doc5

For new word, the inverted index 
size increases by one posting and 
one metadata length, plus a word 
length



LAAs w/ File-Injection
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LAAs w/ File-Injection
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LAAs w/ File-Injection
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● Size of standard search index, encrypted using 
standard encryption, leaks sensitive information!

● File-injection is powerful to recover the data from 
the leakage!



Size-locked Indexing
❏ Size-locking - make the length of the index encoding a function of only the 

information we are willing to leak
✓ N, the total number of postings
✓ |D|, the total number of documents
X |W|, the total number of indexed keywords
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Size-locked Indexing
❏ Size-locking - make the length of the index encoding a function of only the 

information we are willing to leak
✓ N, the total number of postings
✓ |D|, the total number of documents
X |W|, the total number of indexed keywords
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Lucene + AES-GCM has index 
size: O(N+|W|+|D|) ⇒ NOT 

size-locking



Size-locked Indexing
❏ Size-locking - make the length of the index encoding a function of only the 

information we are willing to leak
✓ N, the total number of postings
✓ |D|, the total number of documents
X |W|, the total number of indexed keywords
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Our size-locked index:
O(N+|D|)



Scalability Challenge
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For the entire Enron dataset, 
the full index gets as large as 

228MB! ⇒ Impractical to 
download for every search
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Scalability Challenge

11

For the entire Enron dataset, 
the full index gets as large as 

228MB! ⇒ Impractical to 
download for every search

Out of the 228MB of 
index, 212MB is the 

inverted index

Can we reduce the cost 
down to the necessary, 
top-relevant postings?



Secure Vertical Index Partitioning

❏ Partition index into blobs by relevance to the indexed keywords
❏ Top relevant results all in the first partition
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❏ Partition index into blobs by relevance to the indexed keywords
❏ Top relevant results all in the first partition
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Secure Vertical Index Partitioning

❏ Partition index into blobs by relevance to the indexed keywords
❏ Top relevant results all in the first partition

❏ New postings from updates are merged, and less relevant ones are kicked to 
the subsequent partitions
❏ When and how many postings to kick depend solely on the total number of postings, i.e., N
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Secure Vertical Index Partitioning

❏ Partition index into blobs by relevance to the indexed keywords
❏ Top relevant results all in the first partition

❏ New postings from updates are merged, and less relevant ones are kicked to 
the subsequent partitions
❏ When and how many postings to kick depend solely on the total number of postings, i.e., N

❏ No result pattern, volume or query pattern leakage 12

Partition 1 Partition 2
cat
dog
bird

cat
dog
bird



Secure Horizontal Index Partitioning

❏ Only 1 out of P partitions is needed for a single keyword query
❏ Security Intuition Randomly group words into buckets

❏ Update leaks the # words of the update in each bucket
❏ Search leaks the partition access pattern -> words in the same partition remain indistinguishable

❏ Can be combined with the vertical index partitioning for more efficiency
13

F(K, cat) % P



Performance Evaluations

Dataset Data Size # Docs # Keywords # Postings

10% Enron 0.2 GB 51,731 131,903  4.3 x 106

50% Enron 0.8 GB 258,655 280,474 21.3 x 106

100% Enron 1.7 GB 517,310 338,913  42.5 x 106

❏ FULL: the basic size-locked download-then-search-locally
❏ VPart: the vertically partitioned size-locked download-then-search-locally
❏ VHPart-P: the vertically-and-horizontally partitioned size-locked 

download-then-search-locally with P horizontal partitions
❏ CTR-DSSE: the efficient forward private DSSE, named Diana from [BMO’17]
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Search Performance

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search 
averaged over
30 keywords
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Search Performance - Bandwidth Cost

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search 
averaged over
30 keywords

Bandwidth (MB)

10% Enron 50% Enron 100% Enron

Full 25.09 116.30 228.15

VPart 6.72 16.68 25.38

VHPart-10 1.17 4.16 7.51

9x

30x

16



Search Performance - Bandwidth Cost

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search 
averaged over
30 keywords

Bandwidth (MB)

10% Enron 50% Enron 100% Enron

Full 25.09 116.30 228.15

VPart 6.72 16.68 25.38

VHPart-10 1.17 4.16 7.51

CTR-DSSE 1.48 4.35 --

● Cold start ⇒  
O(|W|) counters 
downloaded for 
every search

● Download all 
matches
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Search Performance - Latency

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search 
averaged over
30 keywords

Latency (sec)

10% Enron 50% Enron 100% Enron

Full 1.61 6.80 12.80

VPart 0.78 1.69 2.47

VHPart-10 0.16 0.33 0.46

5x

28x
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Search Performance - Latency

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search 
averaged over
30 keywords

Latency (sec)

10% Enron 50% Enron 100% Enron

Full 1.61 6.80 12.80

VPart 0.78 1.69 2.47

VHPart-10 0.16 0.33 0.46
Sub-second 

Latency
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Search Performance - Latency

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search 
averaged over
30 keywords

Latency (sec)

10% Enron 50% Enron 100% Enron

Full 1.61 6.80 12.80

VPart 0.78 1.69 2.47

VHPart-10 0.16 0.33 0.46

CTR-DSSE 1.71 4.83 --
17

● Cold start ⇒  
O(|W|) counters 
downloaded for 
every search

● Download all 
matches



Much more in the paper

● How to handle updates
● Progressive construction that transitions from Full to VPart, then from VPart to 

VHPart based on the number of postings
● More evaluation

○ Ubuntu and NYTimes datasets
○ Performance of search with index merge, update w/ and w/o index merge
○ Search quality based on the normalized discounted cumulative gain (NDCG)
○ End-to-end evaluation with synthetic workloads

● Formal security proofs
● Leakage-abuse analysis of the leakage
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