
Searching Encrypted Data with
Size-Locked Indexes

Min Xu, David Cash
University of Chicago

Armin Namavari, Thomas Ristenpart
Cornell (Tech)

E2E Encrypted Keyword Search

❏ Users outsource documents to the cloud for cost-effective storage and convenient access
❏ Limited amount of client-side storage capacity, via web/mobile interface
❏ End-to-end encryption for full privacy

Update

2

E2E Encrypted Keyword Search

❏ Users outsource documents to the cloud for cost-effective storage and convenient access
❏ Limited amount of client-side storage capacity, via web/mobile interface
❏ End-to-end encryption for full privacy

❏ End-to-end encryption makes key service utilities difficult, if not impossible
❏ Keyword search — find the uploaded documents most relevant to the user’s keywords

Search

???

2

Our Target Search Interface

Search
Multi-keyword

conjunctive
query

Result Preview
(name, type,

time, etc.)

Top-k results
w/ pagination

Similar interface is shared by Box,
Google Drive, Microsoft OneDrive,

etc.

3

Our Threat Model

Search

Update

4

Our Threat Model

Search

Update

4

Our Threat Model

Search

Update

Persistent Active Adversary
● Full transcript of the update and search history

4

Our Threat Model

Search

Update

Persistent Active Adversary
● Full transcript of the update and search history
● File-injection: Adaptively inject documents of

chosen words under user’s key [CGPR15],
[ZKP16] 4

Dynamic Searchable Symmetric Encryption (DSSE)

Dynamic
[KPR’12]

● K, st; EDB ← setup(λ)
● (K, st’; EDB’) ← update(K, st, op, (id, w); EDB)
● (DB(q);) ← search(K, st, q; EDB)

Time

5

Dynamic Searchable Symmetric Encryption (DSSE)

Dynamic
[KPR’12]

● K, st; EDB ← setup(λ)
● (K, st’; EDB’) ← update(K, st, op, (id, w); EDB)
● (DB(q);) ← search(K, st, q; EDB)

Time

5

Leakage Profile ⇐ Provably no more leaked
● Result Pattern the set of updates on the same keyword as the query
● Volume the number of documents containing the query keyword
● Query Pattern the set of queries on the same keyword

Dynamic
[KPR’12]

● K, st; EDB ← setup(λ)
● (K, st’; EDB’) ← update(K, st, op, (id, w); EDB)
● (DB(q);) ← search(K, st, q; EDB)

● Leakage profile are vulnerable to various leakage-abuse
attacks (LAAs)

● Limited search functionality, i.e., no ranking or previewing

Time

5

Dynamic Searchable Symmetric Encryption (DSSE)

Dynamic
[KPR’12]

Result Pattern
Attacks [IKK’12,

CGPR’15, ZKP’16]

Time

5

Dynamic Searchable Symmetric Encryption (DSSE)

Dynamic
[KPR’12]

Result Pattern
Attacks [IKK’12,

CGPR’15, ZKP’16]

5

Dynamic Searchable Symmetric Encryption (DSSE)

Time

Forward/Backward
Privacy [BMO’17,

KKLPK’17,
EKPE’18, CPPJ’18]

Partial patch, and result
pattern leakage remains

Dynamic
[KPR’12]

Result Pattern
Attacks [IKK’12,

CGPR’15, ZKP’16]

Forward/Backward
Privacy [BMO’17,

KKLPK’17,
EKPE’18, CPPJ’18]

Volume Attacks
[BKM’20,
PWLP’20]

RP, V & QP Hiding
[DPPS’20, GPPW’20,

SOPK’21]

Query Pattern
Attacks [OK’21]

Query Pattern
Hiding [KMO’18] 5

Dynamic Searchable Symmetric Encryption (DSSE)

Time

Volume Hiding
[PPYY’19]

patch for
corresponding
leakage

Dynamic
[KPR’12]

Result Pattern
Attacks [IKK’12,

CGPR’15, ZKP’16]

Volume Attacks
[BKM’20,
PWLP’20]

Query Pattern
Attacks [OK’21]

5

Dynamic Searchable Symmetric Encryption (DSSE)

Time

Forward/Backward
Privacy [BMO’17,

KKLPK’17,
EKPE’18, CPPJ’18]

Query Pattern
Hiding [KMO’18]

RP, V & QP Hiding
[DPPS’20, GPPW’20,

SOPK’21]
Volume Hiding

[PPYY’19]

Long-lasting race between defenses
and attacks => more and more
expensive cryptographic tools

patch for
corresponding
leakage

Our Approach - Download-then-Search-Locally
A Different Idea against File-Injection Attacks

6

Our Approach - Download-then-Search-Locally
A Different Idea against File-Injection Attacks

6

Our Approach - Download-then-Search-Locally
A Different Idea against File-Injection Attacks

Search

6

丄

Our Approach - Download-then-Search-Locally
A Different Idea against File-Injection Attacks

Search

❏ No result pattern, volume or query pattern leakage whatsoever!

6

丄

Our Approach - Download-then-Search-Locally
A Different Idea against File-Injection Attacks

Search

❏ No result pattern, volume or query pattern leakage whatsoever!
❏ Straightforward support for ranking and preview!

Inverted index
with postings for
ranking

Forward index
with metadata
for previewing

6

丄

Our Contributions

● Develop previously under-treated technique: download-then-search-locally
● Identify attacks against naive construction and give solutions with security

proofs
● New constructions for feature-rich, scalable search on E2E encrypted data
● Real-world prototype-based evaluation

7

Naïve Download-then-Search-Locally

Search AES-GCM

8

丄

Lucene

Naïve Download-then-Search-Locally

Update

8

bird

doc5

Naïve Download-then-Search-Locally

Update

8

bird

doc5

For existing word, the inverted
index size increases by one
posting and one metadata length

Naïve Download-then-Search-Locally

Update

8

fish

doc5

For new word, the inverted index
size increases by one posting and
one metadata length, plus a word
length

LAAs w/ File-Injection

9

LAAs w/ File-Injection

9

LAAs w/ File-Injection

9

● Size of standard search index, encrypted using
standard encryption, leaks sensitive information!

● File-injection is powerful to recover the data from
the leakage!

Size-locked Indexing
❏ Size-locking - make the length of the index encoding a function of only the

information we are willing to leak
✓ N, the total number of postings
✓ |D|, the total number of documents
X |W|, the total number of indexed keywords

10

Size-locked Indexing
❏ Size-locking - make the length of the index encoding a function of only the

information we are willing to leak
✓ N, the total number of postings
✓ |D|, the total number of documents
X |W|, the total number of indexed keywords

10

Lucene + AES-GCM has index
size: O(N+|W|+|D|) ⇒ NOT

size-locking

Size-locked Indexing
❏ Size-locking - make the length of the index encoding a function of only the

information we are willing to leak
✓ N, the total number of postings
✓ |D|, the total number of documents
X |W|, the total number of indexed keywords

10

Our size-locked index:
O(N+|D|)

Scalability Challenge

11

For the entire Enron dataset,
the full index gets as large as

228MB! ⇒ Impractical to
download for every search

Scalability Challenge

11

For the entire Enron dataset,
the full index gets as large as

228MB! ⇒ Impractical to
download for every search

Out of the 228MB of
index, 212MB is the

inverted index

Scalability Challenge

11

For the entire Enron dataset,
the full index gets as large as

228MB! ⇒ Impractical to
download for every search

Out of the 228MB of
index, 212MB is the

inverted index

Can we reduce the cost
down to the necessary,
top-relevant postings?

Secure Vertical Index Partitioning

❏ Partition index into blobs by relevance to the indexed keywords
❏ Top relevant results all in the first partition

12

Partition 1 Partition 2
cat
dog
bird

cat
dog
bird

Secure Vertical Index Partitioning

❏ Partition index into blobs by relevance to the indexed keywords
❏ Top relevant results all in the first partition

12

Partition 1 Partition 2
cat
dog
bird

cat
dog
bird

Page 1

Secure Vertical Index Partitioning

❏ Partition index into blobs by relevance to the indexed keywords
❏ Top relevant results all in the first partition

❏ New postings from updates are merged, and less relevant ones are kicked to
the subsequent partitions
❏ When and how many postings to kick depend solely on the total number of postings, i.e., N

12

Partition 1 Partition 2
cat
dog
bird

cat
dog
birdfish

doc5

Secure Vertical Index Partitioning

❏ Partition index into blobs by relevance to the indexed keywords
❏ Top relevant results all in the first partition

❏ New postings from updates are merged, and less relevant ones are kicked to
the subsequent partitions
❏ When and how many postings to kick depend solely on the total number of postings, i.e., N

❏ No result pattern, volume or query pattern leakage 12

Partition 1 Partition 2
cat
dog
bird

cat
dog
bird

Secure Horizontal Index Partitioning

❏ Only 1 out of P partitions is needed for a single keyword query
❏ Security Intuition Randomly group words into buckets

❏ Update leaks the # words of the update in each bucket
❏ Search leaks the partition access pattern -> words in the same partition remain indistinguishable

❏ Can be combined with the vertical index partitioning for more efficiency
13

F(K, cat) % P

Performance Evaluations

Dataset Data Size # Docs # Keywords # Postings

10% Enron 0.2 GB 51,731 131,903 4.3 x 106

50% Enron 0.8 GB 258,655 280,474 21.3 x 106

100% Enron 1.7 GB 517,310 338,913 42.5 x 106

❏ FULL: the basic size-locked download-then-search-locally
❏ VPart: the vertically partitioned size-locked download-then-search-locally
❏ VHPart-P: the vertically-and-horizontally partitioned size-locked

download-then-search-locally with P horizontal partitions
❏ CTR-DSSE: the efficient forward private DSSE, named Diana from [BMO’17]

14

Search Performance

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search
averaged over
30 keywords

15

Search Performance - Bandwidth Cost

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search
averaged over
30 keywords

Bandwidth (MB)

10% Enron 50% Enron 100% Enron

Full 25.09 116.30 228.15

VPart 6.72 16.68 25.38

VHPart-10 1.17 4.16 7.51

9x

30x

16

Search Performance - Bandwidth Cost

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search
averaged over
30 keywords

Bandwidth (MB)

10% Enron 50% Enron 100% Enron

Full 25.09 116.30 228.15

VPart 6.72 16.68 25.38

VHPart-10 1.17 4.16 7.51

CTR-DSSE 1.48 4.35 --

● Cold start ⇒
O(|W|) counters
downloaded for
every search

● Download all
matches

16

Search Performance - Latency

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search
averaged over
30 keywords

Latency (sec)

10% Enron 50% Enron 100% Enron

Full 1.61 6.80 12.80

VPart 0.78 1.69 2.47

VHPart-10 0.16 0.33 0.46

5x

28x

17

Search Performance - Latency

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search
averaged over
30 keywords

Latency (sec)

10% Enron 50% Enron 100% Enron

Full 1.61 6.80 12.80

VPart 0.78 1.69 2.47

VHPart-10 0.16 0.33 0.46
Sub-second

Latency

17

Search Performance - Latency

Client
AWS EC2, East 2

Server
Azure 1GB Redis, East

~ 100Mbps

~ 13ms

Top-10 search
averaged over
30 keywords

Latency (sec)

10% Enron 50% Enron 100% Enron

Full 1.61 6.80 12.80

VPart 0.78 1.69 2.47

VHPart-10 0.16 0.33 0.46

CTR-DSSE 1.71 4.83 --
17

● Cold start ⇒
O(|W|) counters
downloaded for
every search

● Download all
matches

Much more in the paper

● How to handle updates
● Progressive construction that transitions from Full to VPart, then from VPart to

VHPart based on the number of postings
● More evaluation

○ Ubuntu and NYTimes datasets
○ Performance of search with index merge, update w/ and w/o index merge
○ Search quality based on the normalized discounted cumulative gain (NDCG)
○ End-to-end evaluation with synthetic workloads

● Formal security proofs
● Leakage-abuse analysis of the leakage

18

Thank you!

Min Xu
xum@uchicago.edu

Armin Namavari
ajn88@cornell.edu

David Cash
davidcash@uchicago.edu

Thomas Ristenpart
ristenpart@cornell.edu

mailto:xum@uchicago.edu
mailto:ajn88@cornell.edu
mailto:davidcash@uchicago.edu
mailto:ristenpart@cornell.edu

References
ℛ [KPR’12] S. Kamara, C. Papamanthou, T. Roeder. Dynamic Searchable Symmetric Encryption. CCS 2012
ℛ [IKK’12] M. S. Islam, M. Kuzu, M. Kantarcioglu. Access Pattern disclosure on Searchable Encryption: Ramification, Attack and Mitigation. NDSS 2012
ℛ [CGPR’15] D. Cash, P. Grubbs, J. Perry, T. Ristenpart. Leakage-Abuse Attacks Against Searchable Encryption. CCS 2015
ℛ [ZKP’16] Y. Zhang, J. Katz, C. Papamanthou. All Your Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable Encryption. USENIX

Security 2016
ℛ [BMO’17] R. Bost, B. Minaud, O. Ohrimenko. Forward and Backward Private Searchable Encryption from Constrained Cryptographic Primitives. CCS

2017
ℛ [KKLPK’17] K. S. Kim, M. Kim, D. Lee, J. H. Park, W.-H. Kim. Forward Secure Dynamic Searchable Symmetric Encryption with Efficient Updates. CCS

2017
ℛ [EKPE’18] M. Etemad, A. Küpçü, C. Papamanthou, D. Evans. Efficient Dynamic Searchable Encryption with Forward Privacy. PoPETS 2018
ℛ [CPPJ’18] J. G. Chamani, D. Papadopoulos, C. Papamanthou, R. Jalili. New Constructions for Forward and Backward Private Symmetric Searchable

Encryption. CCS 2018
ℛ [KMO’18] S. Kamara, T. Moataz, O. Ohrimenko. Structured Encryption and Leakage Suppression. CRYPTO 2018
ℛ [PPYY’19] S. Patel, G. Persiano, K. Yeo, M. Yung. Mitigating leakage in secure cloud-hosted data structures: Volume-hiding for multi-maps via hashing.

CCS 2019
ℛ [BKM’20] L. Blackstone, S. Kamara, T. Moataz. Revisiting Leakage Abuse Attacks. NDSS 2020
ℛ [PWLP’20] R. Poddar, S. Wang, J. Lu, R. A. Popa. Practical Volume-Based Attacks on Encrypted Databases. EuroSP 2020
ℛ [DPPS’20] I. Demertzis, D. Papadopoulos, C. Papamanthou, S. Shintre. SEAL: Attack Mitigation for Encrypted Databases via Adjustable Leakage.

USENIX Security 2020
ℛ [GPPW’20] Z. Gui, K. G. Paterson, S. Patranabis, B. Warinschi. SWiSSSE: System-Wide Security for Searchable Symmetric Encryption. ePrint 2020
ℛ [SOPK’21] Z. Shang, S. Oya, A. Peter, F. Kerschbaum. Obfuscated Access and Search Patterns in Searchable Encryption. NDSS 2021
ℛ [OK’21] S. Oya, F. Kerschbaum. Hiding the Access Pattern is Not Enough: Exploiting Search Pattern Leakage in Searchable Encryption. USENIX

Security 2021

