
Static Detection of Unsafe DMA Accesses in Device Drivers

Jia-Ju Bai
Tsinghua University

Tuo Li
Tsinghua University

Kangjie Lu
University of Minnesota

Shi-Min Hu
Tsinghua University

Abstract
Direct Memory Access (DMA) is a popular mechanism

for improving hardware I/O performance, and it has been
widely used by many existing device drivers. However, DMA
accesses can be unsafe, from two aspects. First, without proper
synchronization of DMA buffers with hardware registers and
CPU cache, the buffer data stored in CPU cache and hardware
registers can be inconsistent, which can cause unexpected
hardware behaviors. Second, a malfunctioning or untrusted
hardware device can write bad data into system memory,
which can trigger security bugs (such as buffer overflow and
invalid-pointer access), if the driver uses the data without
correct validation. To detect unsafe DMA accesses, some
key challenges need to be solved. For example, because each
DMA access is implemented as a regular variable access in
the driver code, identifying DMA accesses is difficult.

In this paper, we propose a static-analysis approach named
SADA, to automatically and accurately detect unsafe DMA
accesses in device drivers. SADA consists of three basic
steps. First, SADA uses a field-based alias analysis to identify
DMA accesses, according to the information of DMA-buffer
creation. Second, SADA uses a flow-sensitive and pattern-
based analysis to check the safety of each DMA access, to
detect possible unsafe DMA accesses. Finally, SADA uses
an SMT solver to validate the code-path condition of each
possible unsafe DMA access, to drop false positives. We have
evaluated SADA on the driver code of Linux 5.6, and found
284 real unsafe DMA accesses. Among them, we highlight
that 121 can trigger buffer-overflow bugs and 36 can trigger
invalid-pointer accesses causing arbitrary read or write. We
have reported these unsafe DMA accesses to Linux driver
developers, and 105 of them have been confirmed.

1 Introduction

A modern operating system (OS) controls different kinds of
peripheral hardware devices, including Ethernet controllers,
sound cards, storage adapters and so on. To improve the perfor-
mance of data communication between the OS and hardware

devices, Direct Memory Access (DMA) is designed to reduce
CPU involvement for hardware I/O. The OS enables DMA
by mapping hardware registers to an area of system memory,
which is called DMA buffer, and then the OS can directly
access the hardware registers by accessing the DMA buffer.

Many existing device drivers have used DMA to improve
performance, but DMA accesses can be unsafe, even though
IOMMU has been used to guarantee their accessed memory
addresses are valid. First, the driver should access the DMA
buffer only when the buffer has been properly synchronized
with hardware registers and CPU cache. Otherwise, the ac-
cessed data stored in hardware registers and CPU cache can
be inconsistent, which can cause unexpected behaviors of the
hardware device. For short, we call such a problem as inconsis-
tent DMA access. Second, considering that a hardware device
can be malfunctioning [27,55] or untrusted [28,53,65], it can
write bad data into DMA buffers, and thus the driver should
perform correct validation of the data from DMA buffers
before using it. Otherwise, security bugs (such as buffer over-
flow and invalid-pointer access) can be triggered at runtime.
For short, we call such a problem as unchecked DMA access.

To mitigate the security risks from DMA accesses, several
recent works [45, 51, 52] perform driver fuzzing and have
found some security bugs caused by the bad data from DMA
buffers. Specifically, they create a simulated device to gener-
ate and mutate hardware inputs (including the data from DMA
buffers), and test whether the driver can correctly handle these
inputs. But they still have some limitations in detecting unsafe
DMA accesses. First, they require associated simulated de-
vices to actually run the tested drivers, and implementing such
simulated devices often requires much manual work. Second,
their code coverage is limited to generated test cases, causing
that many real unsafe DMA accesses are missed. Finally, they
cannot detect inconsistent DMA accesses, because they do
not consider the synchronization of DMA buffers.

Static analysis is effective in achieving high code cover-
age and reducing false negatives. But using static analysis
to detect unsafe DMA accesses in the Linux driver code is
still challenging. First, as each DMA access is implemented

as a regular variable access in the driver code, it is difficult
to statically identify DMA accesses. Second, as the Linux
kernel code base is very large and complex, performing static
analysis of it is also difficult. Third, static analysis can report
many false positives due to lacking exact runtime information
of the driver. To our knowledge, there is no systematic static
approach of detecting unsafe DMA accesses at present.

In this paper, we propose a static-analysis approach named
SADA (Static Analysis of DMA Accesses), to automatically
and accurately detect unsafe DMA accesses in device drivers.
Overall, SADA consists of three basic steps. First, consider-
ing that DMA accesses and DMA mapping creation may be
performed in different driver functions, SADA uses a field-
based alias analysis to identify DMA accesses according to
the information of DMA mapping creation, because our study
of the Linux driver code finds that about 87% of created DMA
buffers are stored in data structure fields in the driver code.
Second, SADA uses a flow-sensitive and pattern-based analy-
sis to check the safety of each DMA access, to detect possible
unsafe DMA accesses. Specifically, to detect inconsistent
DMA accesses, SADA checks whether each DMA access
is performed with proper synchronization of DMA buffers
by analyzing code context. To detect unchecked DMA ac-
cess, SADA uses a static taint analysis to check whether the
accessed data from DMA buffers can cause possible inse-
cure influence on data flow or control flow. For example, if
a variable stored in a DMA buffer is used as an array index
without any check, a buffer-overflow bug can occur. Finally,
SADA uses an SMT solver Z3 [66] to validate the code-path
feasibility of each possible unsafe DMA access, to drop false
ones. In this way, the overhead introduced by the SMT solver
can be reduced compared to the traditional way of validating
code-path condition while analyzing the whole driver code.
We have implemented SADA with LLVM [33].

Overall, we make the following technical contributions:

• By studying DMA in device drivers, we reveal the se-
curity risks of DMA accesses from two aspects: 1) they
can cause unexpected hardware behaviors; and 2) they
can trigger security bugs (such as buffer overflow and
invalid-pointer access) caused by the bad data from mal-
functioning or untrusted hardware devices.

• We propose a practical static-analysis approach named
SADA, to effectively detect unsafe DMA accesses in
device drivers. SADA incorporates multiple techniques
to ensure the precision and effectiveness of the detection.
To our knowledge, SADA is the first systematic static
approach to detect unsafe DMA accesses.

• We evaluate SADA on Linux 5.6, and find 284 real
unsafe DMA accesses. Among them, we highlight that
121 can trigger buffer-overflow bugs and 36 can trigger
invalid-pointer accesses causing arbitrary read or write.
We have reported these unsafe DMA accesses to Linux
driver developers, and 105 of them have been confirmed.

The rest of this paper is organized as follows. Section 2
introduces the background and our study of DMA. Section 3
analyzes the challenges of static detection of unsafe DMA
accesses. Section 4 introduces our solution techniques. Sec-
tion 5 presents SADA in detail. Section 6 shows our evalua-
tion. Section 7 makes a discussion about SADA and unsafe
DMA accesses. Section 8 introduces related work, and Sec-
tion 9 concludes this paper.

2 Background and Study of DMA

In this section, we introduce DMA and its problems in existing
research, then reveal the security risks of DMA accesses, and
finally study DMA in Linux device drivers.

2.1 DMA Architecture
Direct Memory Access (DMA) is a popular mechanism that
allows peripheral hardware devices to communicate data with
system memory without CPU involvement. Without DMA,
when the data is transfered between a hardware device and
system memory, a CPU is typically fully occupied for the
entire duration of the data transfer, and thus this CPU is un-
available to perform other tasks. With DMA, a CPU just
initiates the data transfer and then hands over the actual data
transfers to the DMA controller (DMAC) , so the CPU can
focus on other tasks. Once the data transfer finishes, the CPU
will receive an interrupt from the DMA controller to wrap up
the data transfer. In this way, the CPU performs only the min-
imum jobs, namely initialization and finalization of the data
transfers, which thus improves hardware I/O performance.

DMA Controller

 CPU

Device 1 DMA Transfer

 System Memory DMA Buffer

Hardware I/O

Cache

Data Synchronization

Device 2

Device N

……

Figure 1: The DMA architecture.

Figure 1 shows the architecture of DMA in modern com-
puter systems. To enable DMA, a DMA buffer is allocated
and mapped to system memory and hardware registers. When
the CPU wants to read hardware registers, it directly reads
the DMA buffer in system memory and synchronizes the data
into the CPU cache. Similarly, when the CPU wants to write
hardware registers, it directly writes to the DMA buffer in
system memory and synchronizes the data into hardware reg-
isters. To reduce programming complexity, each DMA access
is implemented as a regular variable access in the driver code,
such as data = dma_buf->data (reading a DMA buffer)
and dma_buf->data = data (writing a DMA buffer).

Coherent DMA
Allocate dma_alloc_coherent, pci_alloc_consistent, dma_pool_alloc, ...
Release dma_free_coherent, pci_free_consistent, dma_pool_free, ...

Streaming DMA
Map dma_map_single, dma_map_page, pci_map_single, ...
Unmap dma_unmap_single, dma_unmap_page, pci_unmap_single, ...
Synchronize dma_sync_single_for_cpu, pci_dma_sync_single_for_device, ...

Table 1: Typical DMA interfaces in the Linux kernel.

DMA type. According to the synchronization way with the
hardware registers and CPU cache, there are two types of
DMA buffers used in device drivers:

Coherent DMA buffer. A coherent DMA buffer is simulta-
neously available to both the CPU and hardware device, and
it often exists for the lifetime of the driver (it is allocated in
driver initialization and released in driver removal). To make
the data stored in hardware registers and CPU cache always
coherent, this DMA buffer must live in cache-coherent mem-
ory, which is often expensive to set up and use. In this way,
the driver does not need to explicitly synchronize the data
between hardware registers and CPU cache.

Streaming DMA buffer. A streaming DMA buffer is asyn-
chronously available to both the CPU and hardware device,
and it is often dynamically mapped and unmapped to a spe-
cific memory area when the driver runs. Because the data
stored in hardware registers and CPU cache can be incon-
sistent, the driver needs to explicitly synchronize the data
between them at proper time. However, because streaming
DMA buffer does not live in cache-coherent memory, it is
cheaper than coherent DMA buffer to set up and use.
DMA interface. The Linux kernel provides specific kernel
interfaces for drivers to perform DMA operations. Table 1 lists
some commonly-used interfaces for coherent and streaming
DMA buffers. Note that a coherent DMA buffer is in cache-
coherent memory, and thus it does not require interfaces for
synchronization between hardware registers and CPU cache.

2.2 DMA Problems in Existing Research
Though DMA can improve hardware I/O performance, it also
introduces security risks. In the past few years, many security
problems of DMA have been found and extensively fixed, and
we list representative ones as follows:
DMA attack. Through DMA, a malicious DMA-enabled
hardware device can gain direct access to part or all of the
system memory [21]. In this way, the attacker can steal con-
fidential data or take control of the OS. To defend against
DMA attack, many existing approaches [40–42, 44, 58] use
Input-Output Memory Management Unit (IOMMU) to limit
the area of system memory that a DMA-enabled hardware
device can access.
Invalid mapping. A DMA buffer should be mapped to a
physical memory area of contiguous addresses. For this rea-
son, a DMA buffer cannot be mapped to stack memory, be-

cause its physical memory addresses can be non-contiguous.
Otherwise, unexpected stack overflow may occur at runtime.
Recently, such problems are highlighted by Linux driver de-
velopers [23], because some Linux kernel commits (such as
6c2794a2984f [6] and 3840c5b78803 [7]) have been ap-
plied to fix such problems.
Improper checking of buffer creation. Once a DMA inter-
face is called by the driver to create a DMA buffer, its return
value should be properly checked in the driver code, because
the creation can fail. Otherwise, null-pointer dereferences or
invalid DMA accesses may occur. In 2013, Linux driver devel-
opers used a simple static analysis [22] to detect many such
problems in the Linux kernel, and some of them have been
fixed by past kernel commits (such as cf3c4c03060b [8] and
c9bfbb31af7c [9]).
Buffer-destroy omission. The driver should destroy the cre-
ated DMA buffer before removal; otherwise memory leaks
will occur. Several existing approaches of resource-leak detec-
tion (such as Hector [48] and PR-Miner [32]) have found some
such problems, and they have been fixed by past kernel com-
mits (such as 37c85c3498c5 [10] and 7ca2cd291fd8 [11]).
Summary. Most of the above DMA problems are related to
DMA creation and destroy, which are performed by calling
specific DMA interfaces. Thus, most existing approaches
check the rules of these DMA interfaces to detect DMA prob-
lems. In fact, besides calling these DMA interfaces, perform-
ing DMA accesses can also have security risks, which have
not been fully realized by existing research. Thus, in this
paper, we instead focus on detecting unsafe DMA accesses
which are introduced in Section 2.3.

2.3 Security Risks of DMA Accesses

According to the type of DMA buffer introduced in Sec-
tion 2.1, a DMA access can be a streaming DMA access
or a coherent DMA access, which has different security risks:
Streaming DMA access. Once a streaming DMA buffer is
mapped, it belongs to the hardware device instead of the CPU.
Until the buffer has been unmapped, the driver should not ac-
cess the content of the streaming DMA buffer; one exception
is that the driver is allowed to access buffer content during
synchronization with hardware registers and CPU cache [17].
Otherwise, accessing the content of the streaming DMA buffer
can introduce data inconsistency between hardware registers
and CPU cache, causing unexpected hardware behaviors. For
short, we call such a problem as inconsistent DMA access.

Figure 2 presents a real inconsistent DMA access in the
rtl8192ce wireless device driver in Linux 5.6. In the function
rtl92ce_tx_fill_cmddesc, pci_map_single is called to
map skb->data to a streaming DMA buffer on line 531.
Then, the local variable hdr points to skb->data on line 535.
After that, on line 536, hdr->frame_control is read and as-
signed to fc, namely a streaming DMA access is performed

FILE: linux-5.6/drivers/net/wireless/realtek/rtlwifi/rtl8192ce/trx.c

522. void rtl92ce_tx_fill_cmddesc(...) {
......
// Streaming DMA mapping

531. dma_addr_t mapping = pci_map_single(..., skb->data, ...);

535. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data);
536 fc = hdr->frame_control; // Inconsistent DMA access!

584. }

Figure 2: Example inconsistent DMA access.

without synchronization, causing an inconsistent DMA ac-
cess. The driver developers admit that this problem can cause
unexpected hardware behaviors, which can make the driver
crash. This problem was introduced in Linux 4.4 (released
in Jan. 2016) and was fixed 4.5 years later (Oct. 2020) by us,
based on a bug report of our approach SADA. We fixed this
problem by accessing hdr->frame_control before calling
pci_map_single.

Coherent DMA access. Different from streaming DMA
buffers, coherent DMA buffers do not require explicit syn-
chronization with hardware registers and CPU cache. But on
one hand, because a hardware device can be malfunctioning
or untrusted, it can write bad data into coherent DMA buffers;
on the other hand, as the hardware device and driver can both
modify the data in coherent DMA buffers, the driver may get
different data when reading the same coherent DMA buffer,
causing double-fetch cases. For the two reasons, the driver
should perform correct validation of the data from DMA
buffers before using it. Otherwise, security bugs (such as
buffer overflow and invalid-pointer access) can be triggered.
For short, we call such a problem as unchecked DMA access.

Figure 3 presents a confirmed unchecked DMA access
in the vmxnet3 network device driver in Linux 5.6. In the
function vmxnet3_probe_device, dma_alloc_coherent is
called to allocate a coherent DMA buffer assigned to
adapter->rss_conf. In the function vmxnet3_get_rss,
adapter->rss_conf is assigned to a local variable rssConf,
and then rssConf->indTableSize is assigned to a local vari-
able n. Thus, n stores the data in the coherent DMA buffer of
adapter->rss_conf, and it can be modified to a bad value
by the malfunctioning or untrusted device. In this case, n can
be larger than the bound of rssConf->indTable, causing a
buffer-overflow bug when rssConf->indTable[n] is read.
This problem was introduced in Linux 3.16 (released in Aug.
2014) and was fixed nearly 6 years later (Jun. 2020) by us,
based on a bug report of our approach SADA. We fixed it by
adding a check of n with the bound of rssConf->indTable
before rssConf->indTable[n] is read.

Rules of DMA accesses. For better understanding, we illus-
trate the rules of streaming and coherent DMA accesses with
real DMA interfaces of the Linux kernel in Figure 4. The code
segments shown in Figure 2 and Figure 3 obviously violate
the rules, and thus they have unsafe DMA accesses.

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_drv.c
3240. static int vmxnet3_probe_device(...) {

 // Coherent DMA allocation

3373. adapter->rss_conf = dma_alloc_coherent(...);

3531. }
FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_ethtool.c
693. static int vmxnet3_get_rss(...) {

696. struct UPT1_RSSConf *rssConf = adapter->rss_conf;
697. unsigned int n = rssConf->indTableSize;

704. while (n--)
705. p[n] = rssConf->indTable[n]; // Possible buffer overflow
706. return 0;
707. }

FILE: linux-5.6/drivers/net/vmxnet3/upt1_defs.h
80. struct UPT1_RSSConf {
81. u16 hashType;

86. u8 indTable[UPT1_RSS_MAX_IND_TABLE_SIZE]; // Bound is 128
87. }

Figure 3: Example unchecked DMA access.

dma_addr = dma_map_single(buf)

dma_sync_single_for_cpu(dma_addr)

dma_sync_single_for_device(dma_addr)

dma_unmap_single(dma_addr)

Accessing the content of
buf is forbidden!

Accessing the content of
buf is allowed!

(a) Streaming DMA access

dma_buf = dma_alloc_coherent(...)

Data in dma_buf should
be correctly validated!

(b) Coherent DMA access

Accessing the content of
buf is forbidden!

Use data in dma_buf

Figure 4: Rules of DMA accesses with typical interfaces.

2.4 Threat Model
Our threat model consists of an adversary that attacks the
OS through DMA accesses by leveraging software defects in
benign drivers to achieve malicious goals, such as denial of
service and privilege escalation. In practice, a device driver
is often provided by the OS kernel, and it is used to manage
multiple third-party hardware devices and support specific
workloads at the user level. For example, the USB core driver
provided by the Linux kernel is used to control different kinds
of USB devices and support user-level USB services. Thus,
drivers are always considered to be benign, but hardware de-
vices and user-level workloads can be untrusted. As a result,
attacks can be launched in two ways. First, attackers can
execute specific workloads at the user level to trigger incon-
sistent DMA accesses, which can cause unexpected hardware
behaviors or even crash the OS. Second, attackers can use
an untrusted hardware device to provide malicious data to
the driver via DMA buffers, which can cause buffer overflow,
invalid-pointer access, and other serious security issues.

2.5 State of the Art for DMA-Access Checking
Recently, several driver fuzzing approaches [45, 51, 52] have
found some unchecked DMA accesses, by generating and
mutating hardware inputs from simulated devices. But they
may miss many real unchecked DMA accesses due to lim-

ited code coverage of runtime testing. Moreover, they do not
consider the synchronization of streaming DMA buffers, and
thus cannot detect inconsistent DMA accesses. Besides, they
require associated simulated devices to run the tested drivers,
but implementing such simulated devices often requires much
manual work. To solve these limitations, we aim to design an
effective static-analysis approach to automatically and accu-
rately detect unsafe DMA accesses as many as possible.

2.6 Study of DMA in Linux Device Drivers

To understand the importance of detecting unsafe DMA ac-
cesses, we need to know how many existing device drivers
have DMA operations. To find the answer, we manually study
the driver source code in the Linux kernel, to calculate the pro-
portion of device drivers that have DMA operations. Due to
the large number of Linux device drivers and time constraints,
we select all the drivers of 8 common classes in Linux 5.6 and
manually read their source code, to identify the drivers that
call DMA interfaces defined in the Linux kernel. Considering
that a driver may be generated from multiple source files, we
identify the number of drivers by manually checking their
Makefiles in the Linux kernel.

Table 2 shows the results of our study. About 46% of stud-
ied drivers explicitly call DMA interfaces, indicating that
DMA operations are common in existing device drivers. For
this reason, it is important to check the safety of DMA ac-
cesses in device drivers.

Driver class Source file (.c) Driver number Call DMA interface
Ethernet 1102 319 168 (53%)
Wireless 827 143 46 (32%)
Crypto 209 75 51 (68%)
GPU 2459 180 57 (32%)
MMC 119 95 43 (45%)
SCSI 414 153 87 (57%)
Infiniband 308 26 24 (92%)
USB 501 297 114 (38%)
Total 5939 1288 590 (46%)

Table 2: Study results of DMA in Linux device drivers.

From Figure 2 and Figure 3, we find an interesting charac-
teristic of DMA-buffer creation, namely when DMA buffers
are created, they are often stored in data structure fields in
the driver code. The data structure fields skb->data in Fig-
ure 2 and adapter->rss_conf in Figure 3 are both such
examples. This characteristic is understandable, because to
pass key information (including DMA buffers) between dif-
ferent functions, device drivers often wrap such information
in specific data structures and share them via function argu-
ments. To clearly know whether this characteristic is common
in existing drivers, we manually study the source code of
1288 drivers in Table 2 again. Specifically, we first identify
the function calls to streaming DMA mapping and coherent
DMA allocation, and then check whether the created DMA
buffers are stored in data structure fields. Considering that a

DMA buffer may be first stored in a local variable after cre-
ation (such as p = dma_alloc_coherent(...)) and then
this local variable is assigned to a data structure field (such
as dev->dma_buf = p), we also manually check the alias
relationship between variables in the study.

Driver class Struct / Streaming Struct / Coherent Struct / Both
Ethernet 490 / 563 (87%) 443 / 493 (90%) 933 / 1056 (88%)
Wireless 101 / 119 (85%) 90 / 103 (87%) 191 / 222 (86%)
Crypto 264 / 280 (94%) 90 / 93 (97%) 354 / 373 (95%)
GPU 41 / 49 (84%) 48 / 52 (92%) 89 / 101 (88%)
MMC 44 / 44 (100%) 13 / 13 (100%) 57 / 57 (100%)
SCSI 86 / 105 (82%) 382 / 487 (78%) 468 / 592 (79%)
Infiniband 43 / 60 (72%) 91 / 95 (96%) 134 / 155 (86%)
USB 23 / 27 (85%) 74 / 85 (87%) 97 / 112 (87%)
Total 1092 / 1247 (88%) 1231 / 1421 (87%) 2323 / 2668 (87%)

Table 3: Study results of data structure fields for DMA.

Table 3 shows the results of our study. About 87% of cre-
ated DMA buffers are stored in data structure fields, which
indicates that this characteristic is common in exsiting drivers.
Inspired by this, we can first select data structure fields of
DMA buffers and then use them to identify DMA accesses.

3 Challenges

To effectively detect unsafe DMA accesses via static analysis,
we need to solve three main challenges:
C1: Identifying DMA accesses. In the driver code, each
DMA access is implemented as a regular variable access, as
shown in Figure 2 and Figure 3. Thus, compared to non-DMA
hardware accesses calling specific kernel interfaces (such as
ioread8), identifying DMA accesses is more difficult.

Figure 2 shows that the DMA-buffer creation and access are
in the same function, namely in an explicit control flow. Thus,
an intuitive solution is to first identify each DMA-buffer cre-
ation and then perform a flow-sensitive analysis starting from
this creation to identify DMA accesses. But this solution is
limited, as in many cases, the DMA-buffer creation and access
are in two different functions without explicit execution order
from static code observation, namely in a broken control flow.
The code in Figure 3 is such an example. The coherent DMA
buffer is allocated in the function vmxnet3_probe_device,
and the buffer is accessed in vmxnet3_get_rss, but the two
functions do not have explicit execution order from static code
observation. Thus, identifying DMA accesses in the case of
broken control flow is challenging.
C2: Checking the safety of DMA accesses. Given a DMA
access, we need to check whether it is safe, according to
the rules shown in Figure 4. Specifically, for a streaming
DMA access, we need to check whether it occurs during the
synchronization with hardware registers and CPU cache; for a
coherent DMA access, we need to check whether it can cause
possible insecure influence in driver code. To accurately and
completely check the safety of these DMA accesses, we need

perform a flow-sensitive and inter-procedural analysis of the
Linux kernel code. However, as the Linux kernel code base
is very large (amounting to over 18M lines of code counted
by CLOC [16] in Linux 5.6) and complex (involving lots of
function calls), performing such analysis can be difficult.
C3: Dropping false positives. Without validating code-path
feasibility, static analysis can report many false positives.
Thus, many previous approaches [13, 14, 39, 47, 50] use SMT
solvers to validate all encountered code paths during analysis.
However, an SMT solver is often expensive and the Linux
kernel code base is very large and complex, so scaling the
validation of code-path feasibility in this way is challenging.

4 Key Techniques

To solve the above challenges, we propose three key tech-
niques. For C1, we propose a field-based alias analysis to
effectively identify DMA accesses, according to the infor-
mation of DMA mapping creation. For C2, we propose a
flow-sensitive and pattern-based analysis to accurately and
efficiently check the safety of DMA accesses. For C3, we
propose an efficient code-path validation method to drop false
positives and reduce the overhead of using SMT solvers. We
will introduce them as follows:

4.1 DMA-Access Identification

As we studied in Section 2.6, about 87% of created DMA
buffers are stored in data structure fields. Inspired by this
observation, we propose a field-based alias analysis to iden-
tify DMA accesses in the cases of broken control flow, by
matching the data structure type and field of the created DMA
buffers and DMA accesses. This analysis has two steps:
S1: Handling DMA-buffer creation. In this step, we iden-
tify each DMA-buffer creation and collect its data structure
field. Figure 5 shows the procedure of this step. The set
dma_var_set stores the variables of created DMA buffers, and
it is used to identify DMA accesses in the cases of explicit
control flow; the set dma_struct_set stores the information
about data structure fields of created DMA buffers (including
data structure type and field), and it is used to identify DMA
accesses in the cases of broken control flow.

This step first initializes dma_var_set and dma_struct_set
to empty, and then analyzes each function call in the driver
code. This step checks whether the function call is used to cre-
ate a DMA buffer, according to the name of its called function.
If not, this call is neglected. Then, this step gets the variable
ret_var to which the function call’s return value is stored.
Because ret_var may be aliased with other variables, this step
performs an intra-procedural, flow-insensitive and Andersen-
style alias analysis [1] to identify all variables aliased with
ret_var (including ret_var). This step stores ret_var and its
aliased variables in a set var_set. For each variable var in

1

GetDmaInfo: Get data structure fields of DMA buffers created in the driver

1: dma_var_set := ø; dma_struct_set := ø;

2: foreach call in driver do
3: if call is not used to create DMA buffers then

4: continue;

5: end if

6: ret_var := GetStoredReturnVal(call);

7: var_set := GetAliasVarSet (ret_var); // Including ret_var

8: foreach var in var_set do

9: AddSet(var, dma_var_set);

10: struct_info := GetStructInfo(var); // Get structure type and field

11: if struct_info != null then

12: AddSet(struct_info, dma_struct_set);

13: end if

14: end foreach

15: end foreach

Figure 5: Procedure of handling DMA-buffer creation.

var_set, this step adds it into dma_var_set, and gets its data
structure information <struct_type, field> (including the data
structure type and field) to store in struct_info. If struct_info
is non-null, namely var is a data structure field, this step adds
struct_info into dma_struct_set.
S2: Identifying DMA accesses. Because we have already
collected the variables and data structure information of DMA
buffers, the idea of this step is to identify which variable
accesses involve these variables or match the data structure
information, and such variable accesses are identified as DMA
accesses. Specifically, according to the two sets dma_var_set
and dma_struct_set collected in S1, our field-based analysis
identifies DMA accesses in the driver. Figure 6 shows the
procedure of this step. The set dma_access_set stores all
identified DMA accesses.

1

GetDmaAccess: Identify DMA accesses in the driver

1: dma_access_set := ø;

2: foreach inst in driver do
3: if inst is not a load or store instruction then

4: continue;

5: end if

6: var := GetAccessedVar(inst);

7: struct_info := GetStructInfo(var); // Get structure type and field

8: if CheckItemInSet(var, dma_var_set) == true or

9: CheckItemInSet(struct_info, dma_struct_set) == true then

10: var_set := GetAliasVarSet(var); // Including var

11: inst_set := GetInstSetFromVarSet(var_set); // Including inst

12: AddSetInSet(inst_set, dma_access_set);

13: end if

14: end foreach

Figure 6: Procedure of identifying DMA access.

This step first initializes dma_access_set to empty, and
then analyzes each instruction in the driver code. This step
checks whether the instruction is a load (read) or store (write)
instruction. If not, this instruction is neglected. Then, this step
gets the variable var accessed by the instruction, and gets
its data structure information <struct_type, field> (including
data structure type and field) to store in struct_info. After that,
this step checks whether var is in dma_var_set (for the case of

explicit control flow) or struct_info is in dma_struct_set (for
the case of broken control flow). If so, this step again uses the
alias analysis mentioned in S1 to identify all variables aliased
with var (including var), then gets the instructions accessing
the identified variables, and finally adds these instructions
into dma_access_set.
Alias analysis. Note that performing alias analysis in S1 and
S2 is necessary, because the variables of DMA buffers may
be aliased with other variables. For this reason, identifying
these aliased variables is helpful to reducing false negatives
of DMA-access identification.

FILE: linux-5.6/drivers/isdn/hardware/mISDN/hfcpci.c

450. static int receive_dmsg(...) {

461. df = &(hc->hw.fifos)->d_chan.d_rx; // DMA access

527. }

1986. static int setup_hw(...) {

 // Coherent DMA allocation
2008. buffer = pci_alloc_consistent(...);

2015. hc->hw.fifos = buffer;

2043. }

Alias

Figure 7: Example of identifying DMA access.

Example. We use the Linux hfcpci driver code to illustrate
our field-based alias analysis. First, in the function setup_hw,
S1 finds that the function call to pci_alloc_consistent
creates a DMA buffer on line 2008, and thus S1 records the
variable buffer that stores the return value of this function
call. Then, S1 looks for the variables aliased with buffer,
and finds that hc->hw.fifo is such a variable, from the as-
signment on line 2015. Thus, S1 records the data structure
type and field of hc->hw.fifo. After that, S2 identifies the
DMA accesses by matching the pairs of data structure type
and field collected in S1. In the function receive_dmsg, S2
finds that the accessed variable on line 461 matches the pair
of data structure type and field that S1 collects on line 2015.
Thus, S2 identifies this variable access is a DMA access.

4.2 DMA-Access Safety Checking
Based on the DMA accesses identified in Section 4.1, we use
a flow-sensitive and pattern-based analysis to check the safety
of DMA accesses and detect possible unsafe DMA accesses.
We perform the analysis using different patterns for streaming
DMA accesses and coherent DMA accesses:
Checking streaming DMA access. We check whether each
streaming DMA access is performed: 1) between DMA map-
ping and unmapping and 2) during DMA-buffer synchroniza-
tion with hardware and CPU (e.g. whether it is performed
between the function calls to dma_sync_single_for_cpu
and dma_sync_single_for_device shown in Figure 4(a)).
If not, we report a possible inconsistent DMA access. How-
ever, because DMA mapping, DMA-buffer synchronization
and DMA unmapping may not have explicit execution order

(a) P1

dma_addr = dma_map_single(buf) // Start

Read or write the content of buf // Report!

Forward flow-sensitive analysis

(b) P2

dma_sync_single_for_device(dma_addr) // Start

Read or write the content of buf // Report!

Forward flow-sensitive analysis

(c) P3

Read or write the content of buf // Report!

dma_unmap_single(dma_addr) // Start

Backward flow-sensitive analysis

(d) P4

Read or write the content of buf // Report!

dma_sync_single_for_cpu(dma_addr) // Start

Backward flow-sensitive analysis

Figure 8: Patterns for checking streaming DMA access.

by statically observing the driver code (namely in broken con-
trol flow), checking streaming DMA access can be difficult.
To solve this problem, we perform checking according to four
patterns, which are illustrated in Figure 8 using the DMA
interfaces in Figure 4(a):

P1 and P2: We perform a forward flow-sensitive analysis
starting from a function call to DMA mapping or DMA syn-
chronization for hardware device, and report an inconsistent
DMA access when a DMA access is performed and no other
DMA operations occur in the analyzed code path.

P3 and P4: We perform a backward flow-sensitive analysis
starting from a function call to DMA unmapping or DMA
synchronization for CPU, and report an inconsistent DMA
access when a DMA access is performed and no other DMA
operations occur in the analyzed code path.

Note that the forward and backward flow-sensitive analyses
are both inter-procedural, to detect deep inconsistent DMA
accesses crossing function calls. Besides, to improve effi-
ciency, the two analyses never validate path conditions, and
just record the basic blocks in each code path for validating
code-path feasibility in Section 4.3.
Checking coherent DMA access. We check whether the
data read from a coherent DMA buffer can cause possible
insecure influence in driver code. Specifically, considering
that infinite looping, buffer overflow and invalid-pointer ac-
cess are three typical kinds of security problems that can be
triggered by problematic hardware accesses [27], we focus
on the related patterns in our safety checking:

P1) Infinite looping: affecting loop condition in loop it-
eration. For a given loop, a variable checked in the loop
condition can be affected by the data from a coherent
DMA access that is performed in the loop iteration. In
this case, the malfunctioning or untrusted hardware device
can modify the corresponding DMA buffer in each iter-
ation, to change the variable in the loop condition and
cause infinite loop polling. Figure 9(a) shows such an
example in the iwlwifi driver in Linux 5.6. In the func-
tion iwl_pcie_alloc_ict, a coherent DMA buffer is allo-
cated and it is stored in the variable trans_pcie->ict_tbl.
In the function iwl_pcie_int_cause_ict, an element of
trans_pcie->ict_tbl is accessed and assigned to a vari-
able read in the loop iteration. In the loop condition, read
is compared with zero. In this example, the malfunctioning
or untrusted hardware device can always set the accessed ele-
ment of trans_pcie->ict_tbl to be non-zero, to make the
loop infinitely run.

FILE: linux-5.6/drivers/net/wireless/intel/iwlwifi/pcie/rx.c

1693. static u32 iwl_pcie_int_cause_ict(...) {

1714. do {

1722. read = trans_pcie->ict_tbl[...];

1725. } while (read); // Possible infinite loop polling

1743. }

2054. int iwl_pcie_alloc_ict(...) {

 // Coherent DMA allocation
2058. trans_pcie->ict_tbl = dma_alloc_coherent(...);

2071. }

(a) Infinite loop polling

FILE: linux-5.6/drivers/net/wireless/intel/ipw2x00/ipw2100.c

2661. static void __ipw2100_rx_process(...) {

 // STATUS_TYPE_MASK is 0x0f
2701. frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;

 // Possible buffer overflow, as the bound of frame_types is 4

2710. IPW_DEBUG_RX(..., frame_types[frame_type], ...)

2765. }

4318. static int status_queue_allocate(...) {

 // Coherent DMA allocation
4325. q->drv = pci_zalloc_consistent(...);

4334. }

(b) Buffer overflow

FILE: linux-5.6/drivers/net/ethernet/socionext/netsec.c

 931. static int netsec_process_rx(...) {

 948. struct netsec_de *de = dring->vaddr + (DESC_SZ * idx);

 971. pkt_len = de->buf_len_info >> 16;

 // Possible invalid pointer access, as xdp.data is a pointer

1003. xdp.data_end = xdp.data + pkt_len;

1059. }

1241. static int netsec_alloc_dring(...) {
 // Coherent DMA allocation

1245. dring->vaddr = dma_alloc_coherent(...);

1259. }

(c) Invalid pointer access

Figure 9: Example of patterns for checking coherent DMA access.

P2) Buffer overflow: affecting an array index. To access
an element of a given array, the driver needs to use a vari-
able as the array index, and this variable can be affected
by the data from a coherent DMA access. In this case, the
malfunctioning or untrusted hardware device can modify the
DMA buffer, to make the variable of array index larger than
the array bound, causing a buffer-overflow bug. Figure 9(b)
shows such an example in the ipw2x00 driver in Linux 5.6.
In the function status_queue_allocate, a coherent DMA
buffer is allocated and it is stored in the variable q->drv.
In the function __ipw2100_rx_process, the data stored in
the DMA buffer sq->drv[i].status_field is anded with
STATUS_TYPE_MASK (0x0f), and then the result is assigned
to a variable frame_type. After that, frame_type is used
as the index to access the array frame_types whose bound
is 4. In this example, the malfunctioning or untrusted hard-
ware device can modify sq->drv[i].status_field into
a bad value (such as 8), to make frame_type larger than
the bound of frame_types even though being anded with
STATUS_TYPE_MASK. Thus, a buffer-overflow bug can be trig-
gered when frame_types[frame_type] is accessed.

Note that the buffer-overflow bug shown in Figure 3 is also
such an example, but the two bugs in these two figures are
a little different. The bug in Figure 3 lacks a mask or check
operation on the array index, while the bug in Figure 9(b)
has a mask operation but this operation is incorrect. Inspired
by Figure 9(b), we also need to check whether the validation
operation (mask or check) on the array index in the driver
code is correct, if this operation exists.

P3) Invalid-pointer access: affecting the offset of an ac-
cessed pointer. The driver often uses a variable as the offset
to access a pointer, and this variable can be affected by the
data from a coherent DMA access. In this case, the malfunc-
tioning or untrusted hardware device can modify the DMA
buffer, to change the offset variable into a bad value and make
the accessed pointer invalid. Figure 9(c) shows such an ex-
ample in the socionext driver in Linux 5.6. In the function
netsec_alloc_dring, a coherent DMA buffer is allocated
and it is stored in the variable dring->vaddr. In the func-
tion netsec_process_rx, the data stored in the DMA buffer
de->buf_len_info is right shifted with 16, and then the re-
sult is assigned to a variable pkt_len. After that, pkt_len is

used as the offset to access the pointer based on xdp.data.
In this example, the malfunctioning or untrusted hardware de-
vice can modify de->buf_len_info into a bad value (such
as 0xffff), to make pkt_len very large. Thus, the pointer
xdp.data + pkt_len can be invalid for the driver to access.

1

TaintAnalysis: Identifying the variables affected by a cohenret DMA
access “dma_access” in the code path “code_path”

1: var_set := ø; inst_set := ø;
2: taint_var := GetAccessedVar(dma_access);
3: AddSet(taint_var, var_set);
4: AddSet(dma_access, inst_set);
5: foreach inst in GetInstSetInPath(code_path) do
6: res_var := GetResultVal(inst);
7: op_var_set := GetOperandVal(inst);
8: if GetIntersect(op_var_set, var_set) != ø then
9: AddSet(inst, inst_set);

10: if res_var != null then
11: AddSet(res_var, var_set);
12: end if
13: end if
14: end foreach

Figure 10: Procedure of taint analysis.

Taint analysis. In the above patterns, locating the variables
affected by the data from a given coherent DMA access is
an important task. To finish this task, we use a flow-sensitive
and inter-procedural taint analysis to identify such variables.
Figure 10 shows the procedure of this taint analysis. It starts
from each coherent DMA access and forwardly analyzes each
instruction in the code path. The taint analysis maintains
two sets, namely var_set to store variables affected by the
DMA access and inst_set to store instructions containing
these affected variables. The analysis first initializes var_set
and inst_set to empty. Then, the analysis gets the accessed
variable of the DMA access and adds it into var_set, and
the analysis also adds this DMA access into inst_set. After
that, the analysis handles each instruction inst in the code
path. For inst, it gets the result variable res_var and the set of
operand variables op_var_set. The analysis checks whether
op_var_set and var_set have intersection, namely whether
inst has an operand affected by the DMA access. If so, the
analysis adds inst into inst_set, and adds res_var into var_set
if res_var is non-null (an instruction may not have a result
variable, and thus res_var of this instruction is null).

Note that to improve efficiency, this taint analysis never
validates path conditions and just records the basic blocks
in each code path for validating code-path feasibility in Sec-
tion 4.3. Besides, to avoid infinite looping on recursive calls in
the code path, the analysis records the analyzed basic blocks
and ends when encountering a basic block within a loop that
has been handled.

4.3 Code-Path Validation
Given the possible unsafe DMA accesses (their code-path
feasibility is not validated) found in Section 4.2, we validate
their code paths using an SMT solver Z3 [66] to drop false
positives. Compared to the traditional strategy of validating all
code paths during static analysis, our strategy is more efficient,
as we believe that the code paths containing possible unsafe
DMA accesses often occupy a very small proportion of all
code paths. Thus, our strategy can reduce much unnecessary
validation of code paths that unlikely to contain unsafe DMA
accesses. Our code-path validation has three steps:

S1: Getting path constraints. We translate each instruction
into a constraint using the Z3 grammar. Specifically, for each
assignment instruction (such as a = b + c), we translate it into
an equation constraint (such as a == b + c); for each branch
condition (such as if (a > b)), we translate it into a constraint
according to the successor basic block of this condition from
the given code path (such as a > b if the successor basic block
is in the true branch or a ≤ b if the the successor basic block
is in the false branch).

S2: Adding constraints for triggering security bugs. As
shown in Figure 9(b), a driver may have validation (mask or
check) operations on the variable affected by the DMA access,
to prevent the related security bug being triggered. If such
validation operations are ignored, many false unsafe DMA
accesses may be reported. To reduce such positives, for each
possible unsafe DMA access, we add proper constraints for
triggering the related security bug. For example in Figure 9(b),
we add a constraint "frame_type > 4" to indicate that the
buffer-overflow bug can occur when frame_type is larger
than the bound of the array frame_types. Note that not all
unsafe DMA accesses require such extra constraints, such as
inconsistent DMA accesses. Thus, for such an unsafe DMA
access, we just add an empty constraint.

S3: Solving all constraints. We put the path constraints
produced in S1 and the additional constraints for triggering
the related security bug produced in S2 into the SMT solver
Z3, to check whether each possible unsafe DMA access can
occur. If these constraints cannot be satisfied, we consider this
possible unsafe DMA access as a false positive and drop it.

5 SADA Approach

Based on the three key techniques in Section 4, we propose
a static-analysis approach named SADA, to automatically

SADA

Linux Driver
Source Files

Clang
Compiler

Information
Collector

Access
Detector

Access
Checker

Path
Validator

LLVM Bytecode
DMA-Buffer
Information

DMA Accesses
Possible Unsafe
DMA Accesses

Final Unsafe
DMA Accesses

Figure 11: SADA architecture.

and accurately detect unsafe DMA accesses in device drivers.
We have implemented SADA using Clang-9.0 [15] and per-
formed static analysis on the driver LLVM bytecode files.
SADA works automatically without manual effort, given the
source files of device drivers. Figure 11 shows the overall
architecture of SADA.

Based on this architecture, SADA consists of four phases:
P1: Code compilation. The Clang compiler compiles each

driver source file into an LLVM bytecode file. Because mul-
tiple functions defined in different device drivers may share
the same function name, inter-procedural analysis may iden-
tifies incorrect functions to analyze. To solve this problem,
during linking, SADA records the set of source files gener-
ating the same driver. According to this information, SADA
can accurately select correct functions when performing inter-
procedural analysis.

P2: DMA-access identifying. The information collector
collects the information about each DMA-buffer creation
from each LLVM bytecode file, and then the access detec-
tor uses this information and performs our field-based alias
analysis to identify DMA accesses.

P3: DMA-access checking. The access checker uses our
flow-sensitive and pattern-based analysis to check the safety
of each identified DMA access and detect possible unsafe
DMA accesses.

P4: Unsafe-DMA-access validating. The path validator
uses our code-path validation method to drop false unsafe
DMA accesses. Besides, our flow-sensitive analysis may find
many repeated unsafe DMA accesses when their DMA-buffer
creation and DMA accesses are identical but only differ in
their code paths. To solve this problem, the path validator also
drops repeated results according to the positions of DMA-
buffer creation and DMA access. Finally, SADA generates
readable reports of final unsafe DMA accesses.

6 Evaluation

To validate the effectiveness of SADA, we evaluate it on the
driver code of Linux 5.6. We run the evaluation on a regu-
lar x86-64 desktop with eight Intel i7-3770 CPU@3.40GHz
processors and 16GB physical memory. We use the kernel
configuration allyesconfig to enable all kernel code for the
x86-64 architecture.

Description SADA

Code analysis

Source files (analyzed / all) 14.6K / 17.9K
Source code lines (analyzed / all) 8.8M / 10.3M
Handled unique functions 334.7K
Handled unique LLVM instructions 33.0M

DMA-access
identifying

Encountered DMA-buffer creation 2,781
DMA buffers in data structure fields 2,074
Identified DMA accesses 28,732

DMA-access
checking

Dropped DMA accesses (false + repeated) 736 (251 + 485)
Unsafe DMA accesses (real / all) 284 / 321
Inconsistent DMA accesses (real / all) 123 / 131
Unchecked DMA accesses (real / all) 161 / 190

Time usage
DMA-access identification 62m
DMA-access checking 208m
Total time 270m

Table 4: Detection results of the Linux 5.6 driver code.

6.1 Detection of Unsafe DMA Accesses

We run SADA to automatically check the Linux driver source
code (in the drivers and sound directories), and then manually
check all the unsafe DMA accesses found by SADA. Table 4
summarizes the results, and source code lines are counted by
CLOC [16]. From Table 4, we have the following findings:

Analyzing driver code. SADA can scale to a large code
base. It spends 270 minutes on analyzing 8.8M lines of source
code in 14.6K source files. The remaining 1.5M lines of
source code in 3.3K source files are not analyzed, because they
are not enabled by allyesconfig for the x86-64 architecture.

Identifying DMA accesses. SADA is effective in iden-
tifying DMA accesses in device drivers. It identifies over
28K DMA accesses according to 2,781 created DMA buffers.
Among these DMA buffers, SADA identifies that 75% of
them are stored in data structure fields. This percentage is a
little lower than the manual study result (87%) in Section 2.6,
as SADA still fails to identify some data structure fields of
created DMA buffers in complex cases. For example, some
drivers use their own wrapper functions that call primitive
DMA kernel interfaces to create DMA buffers, but SADA
only identifies DMA-buffer creation by looking for primitive
DMA kernel interfaces, without analyzing these wrapper func-
tions. Even so, the result (75%) here again proves that most
of created DMA buffers are stored in data structure fields.

Detecting unsafe DMA accesses. SADA finds 321 unsafe
DMA accesses, including 131 inconsistent DMA accesses
and 190 unchecked DMA accesses. Among them, we identify
that 284 are real, including 123 inconsistent DMA accesses
and 161 unchecked DMA accesses. The false positive rate is
only 11.5%, which benefits from our key techniques, such as
field-based analysis for DMA-access identification and code-
path validation. Specifically, SADA drops 251 false unsafe
DMA accesses and 485 repeated unsafe DMA accesses. We
have reported the 284 real unsafe DMA accesses to Linux
kernel developers, and 105 of them have been confirmed. We
are still waiting for the response of remaining ones.

Result distribution. We classify the 284 real unsafe DMA
accesses and 105 confirmed ones according to driver class.
Table 5 shows the distribution results. We find that network

Driver class Network SCSI Crypto USB Others
Defects 113 (40%) 89 (31%) 41 (14%) 10 (4%) 31 (11%)
Confirmed 50 (48%) 19 (18%) 17 (16%) 8 (8%) 11 (10%)

Table 5: Distribution of found unsafe DMA accesses.

FILE: linux-5.6/drivers/thunderbolt/ctl.c

308. static struct ctl_pkg *tb_ctl_pkg_alloc(...) {
......
// Coherent DMA allocation

314. pkg->buffer = dma_pool_alloc(...);

321. }

FILE: linux-5.6/drivers/thunderbolt/icm.c

269. static bool icm_copy(...) {
270. const struct icm_pkg_header *hdr = pkg->buffer;
271.
272. if (hdr->packet_id < req->npackets) {
273. size_t offset = hdr->packet_id * req->response_size;
274.
275. memcpy(req->response + offset, pkg->buffer,
276. req->response_size);
277. }
278. return hdr->packet_id == hdr->total_packets - 1;;
279. }

Figure 12: An unsafe DMA access in the thunderbolt driver.

and SCSI drivers share 71% of the real unsafe DMA accesses
and 66% of the confirmed ones.

Security impact of unsafe DMA accesses. The 123 incon-
sistent DMA accesses can cause unexpected hardware be-
haviors, making the driver crash and leading to DoS attacks.
Among the 161 unchecked DMA accesses, 121 of them can
trigger buffer-overflow bugs, causing memory overwrite or
overread; 36 of them can trigger invalid-pointer accesses,
causing arbitrary read or write, which can be exploited for
privilege escalation; 4 of them can trigger infinite looping,
causing DoS attacks.

Case study. Figure 12 presents an unsafe DMA access
found by SADA, and it has high security impact. In the func-
tion tb_ctl_pkg_alloc, dma_pool_alloc is called to al-
locate a coherent DMA buffer that is stored in the variable
pkg->buffer. In the function icm_copy, pkg->buffer is
assigned to a variable hdr, and then the multiplication result
of hdr->packet_id and req->response_size is stored in
offset. After that, the function memcpy is called to copy the
data stored in the DMA buffer pkg->buffer into the kernel
memory buffer req->response+offset. In this example, if
the hardware device is untrusted, the content of pkg->buffer
and hdr can be modified by an attacker. By modifying the
data of hdr->packet_id, the attacker can make the if state-
ment on line 272 enter the true branch. Then, the attacker
can again modify hdr->packet_id to a bad value larger
than req->npackets, to access the kernel memory of an in-
valid pointer when memcpy is called on line 275. At this time,
the attacker can inject malicious data into pkg->buffer, to
make memcpy copy the malicious data into a confidential ker-
nel memory area via this invalid pointer. In this example,
hdr->packet_id is read twice, but its data can be modified
by the untrusted hardware device before being read at the
second time, causing a double-fetch situation.

6.2 False Positives and Negatives

False positives. SADA still reports 37 false unsafe DMA
accesses, which are introduced for two main reasons:

First, the alias analyses used in SADA can make mistakes.
On one hand, to identify DMA accesses in the cases of broken
control flow, SADA uses a field-based analysis by only con-
sidering data field structures and fields, but it neglects alias
relationship in the code path. On the other hand, to identify the
variables aliased with a variable of the DMA buffer, SADA
uses an intra-procedural and flow-insensitive alias analysis,
which can be inaccurate due to ignoring flow sensitivity and
missing inter-procedural analysis. For these reasons, SADA
can identify false DMA accesses.

Second, although SADA uses Z3 to validate the path fea-
sibility of unsafe DMA accesses, it can still make mistakes
in some complex cases, such as complicated arithmetic in
branch conditions and data dependence across function calls.
False negatives. SADA may still miss some real unsafe
DMA accesses for four main reasons:

First, as describe in Section 6.1, SADA still fails to identify
some data structure fields storing created DMA buffers, when
the driver uses its own wrapper functions that call primitive
DMA kernel interfaces to create DMA buffers. Thus, SADA
can fail to identify and check the DMA accesses related to
such DMA buffers.

Second, SADA does not analyze function-pointer calls
when checking the safety of DMA accesses, and thus it cannot
build complete call graphs for inter-procedural analysis. As
a result, it can miss real unsafe DMA accesses involving the
code reached through function-pointer calls.

Third, SADA neglect driver concurrency in DMA-access
checking, and thus it can miss real unsafe DMA accesses,
when DMA-buffer creation/synchronization and DMA ac-
cesses are performed in two concurrently-executed functions.

FILE: linux-5.6/sound/soc/fsl/fsl_dma.c

383. static int fsl_dma_open(...) {
......
// Coherent DMA allocation

418. dma_private = dma_alloc_coherent(...);

431. dma_private->irq = dma->irq;
......
// May affect kernel functionality

436. ret = request_irq(dma_private->irq, ...);

509. }

Figure 13: A real unchecked DMA access of other patterns.

Finally, SADA only checks the safety of coherent DMA
accesses according to three typical patterns that can trigger
security bugs, as described in Section 4.2. In fact, coherent
DMA accesses can be vulnerable in other patterns. Figure 13
shows such an example. In the function fsl_dma_open,
dma_alloc_coherent is called to allocate a coherent DMA
buffer and it is stored in the variable dma_private. Then,
an interrupt line number dma->irq is stored in the DMA

Type Root cause Number
Inconsistent
DMA access

Access after mapping 108
Incorrect synchronization 15

Unchecked
DMA access

Missing safety check 134
Wrong mask operation 5
Bypassing check (double fetch) 22 (16)

Table 6: Root causes of unsafe DMA accesses.

buffer dma_private->irq. After that, the kernel interface
request_irq is called to register an interrupt handler with
the interrupt line number stored in dma_private->irq. In
this example, the malfunctioning or untrusted hardware de-
vice can modify dma_private->irq into a bad value that
is unequal to dma->irq, which can affect the kernel func-
tionality of registering interrupt handler. When implement-
ing SADA, we tried to support this pattern in detecting
unchecked DMA accesses, but selecting important kernel in-
terfaces like request_irq requires much manual work and
kernel experience, which damages the automation of SADA.
Thus, at present, SADA does not use this pattern by default.

6.3 Root Causes and Fixing Suggestions

We manually check the root causes of the 284 real unsafe
DMA accesses by reviewing the driver code, and summarize
the results in Table 6.

For the 123 inconsistent DMA accesses, we find two root
causes of them:

(1) 113 are caused by accessing a DMA buffer after it
is mapped without involving any synchronization (the in-
consistent DMA access shown in Figure 2 is such an exam-
ple). To fix them, we suggest performing DMA access before
the DMA mapping. Interestingly, from the driver developers’
replies to our bug reports, several of them even admit that they
were unaware of the rules about DMA-buffer synchronization.

(2) 10 are caused by incorrect DMA-buffer synchronization,
namely the DMA access occurs before the synchronization
for hardware device or after the synchronization for CPU. To
fix them, we suggest performing DMA access between the
synchronization for hardware device and CPU.

For the 161 unchecked DMA accesses, we infer three root
causes of them:

(1) 134 are caused by missing a safety check of the related
array index or pointer offset affected by the DMA access (the
unchecked DMA accesses shown in Figure 3 and Figure 9(c)
are such examples). To fix them, we suggest adding a correct
safety check of the related array index or pointer offset.

(2) 5 are caused by a wrong mask operations of the related
array index affected by the DMA access (the unchecked DMA
access shown in Figure 9(b) is such an example). To fix them,
we suggest correcting the related mask operation.

(3) 22 are caused by the case that the safety check of the
related array index affected by the DMA access can be by-
passed. Specifically, this root cause can be further classified

into two cases. First, the safety check is not strong enough,
and thus it can be bypassed by a bad value of corner cases to
trigger security bugs. To fix such unchecked DMA accesses,
we suggest enforcing the related safety check to avoid all
possible corner cases. Second, for a given DMA buffer, its
data is first validated in a safety check and then this DMA
buffer is accessed again in the safe branch (the unchecked
DMA access shown in Figure 12 is such an example). In this
case, an attacker can use untrusted hardware device to modify
the DMA buffer gain in the safe branch, causing double-fetch
situation. To fix such unchecked DMA accesses, we suggest
that the driver should first store the data of the DMA buffer
into a local variable in kernel memory, and then check and
access this local variable.

From the three above results, we find that most of the
unchecked DMA accesses are caused by the first root cause.
It indicates that many driver developers may be unaware that
hardware devices can be untrusted and provide bad data. For
the remaining two root causes, the related driver developer
may be aware that hardware devices can provide bad data,
but their implemented validation code of the data from DMA
access is incorrect or weak. As a result, the attacker can still
inject bad data into DMA buffers via untrusted hardware de-
vices, to trigger serious security problems.

7 Discussion

7.1 Comparison to Existing Approaches
To our knowledge, SADA is the first approach that system-
atically detects unsafe DMA accesses, and thus we focus
on comparing SADA to existing approaches that can check
hardware accesses in device drivers.
Dynamic analysis. Several recent fuzzing approaches [45,
51,52] have found some security bugs caused by the bad data
from DMA buffers (unchecked DMA accesses). Different
from these approaches, SADA can automatically cover much
more driver code without executing test cases or preparing
simulated devices. Thus SADA can find many real unchecked
DMA accesses missed by them. Moreover, SADA can also
find inconsistent DMA accesses that these approaches are
unable to detect.
Static analysis. Generic static analysis frameworks (such
as DR. CHECKER [38], Coccinelle [30] and Clang Static
Analyzer [19]) can detect multiple types of OS bugs. Some of
them (such as Coccinelle [30]) can check the calls to specific
kernel interfaces about hardware inputs. However, each DMA
access is implemented as a regular variable access, instead of
calling specific kernel interfaces, and thus they fail to detect
unsafe DMA accesses. By contrast, SADA uses a new field-
based analysis to effectively identify DMA accesses and thus
can accurately detect unsafe DMA accesses.

In addition, compared to DR. CHECKER [38] that also
statically checks driver code, SADA has some differences

in the implementation of driver code analysis. First, the taint
analysis of DR. CHECKER uses the arguments of entry func-
tions as taint sources, and it considers points-to relationships
at each program point to support multiple bug checkers; while
the taint analysis of SADA uses the variables of DMA ac-
cesses as taint sources, and it checks DMA-related operations
in each code path without considering points-to relationships.
Second, DR. CHECKER assumes that all kernel API func-
tions are correctly used; while SADA does not have such
assumption and it checks DMA-related API calls to detect
misuses. Finally, DR. CHECKER does not check path feasi-
bility during code analysis; while SADA uses an SMT solver
to validate the code-path feasibility of each possible unsafe
DMA access, to reduce false positives.

Carburizer [27] is a specific approach that detects and tol-
erates driver failures caused by malfunctioning hardware de-
vices. It statically analyzes the driver code to check whether
the data read from hardware registers is correctly validated
before being used and can trigger reliability or security prob-
lems (such as infinite polling and buffer overflow), because
hardware devices can fail and provide problematic inputs for
drivers. To identify the variables affected by each hardware-
register access, Carburizer uses a static taint analysis starting
from each call to hardware-access kernel interfaces (such as
ioread8), which is similar to the safety checking of DMA
accesses in SADA. However, SADA has some important
differences from Carburizer:

First, Carburizer cannot handle DMA accesses, because
it relies on specific kernel interfaces to identify hardware-
register accesses, but each DMA access is implemented as
a regular variable access, instead of calling specific kernel
interfaces; SADA uses a field-based alias analysis to effec-
tively identify DMA accesses, according to the information
of DMA-buffer creation.

Second, besides using static taint analysis to check the data
read from hardware devices, SADA also uses a forward and
a backward flow-sensitive analyses to check the context of
streaming DMA accesses for detecting inconsistent DMA
accesses, which Carburizer does not consider.

Finally, Carburizer uses a flow-sensitive analysis to check
hardware-register accesses without validating code-path feasi-
bility, which can introduce some false positives; SADA uses
an SMT solver to accurately validate the code paths of unsafe
DMA accesses after flow-sensitive analysis, in order to reduce
false positives.

7.2 Limitations

SADA still has some limitations in detecting unsafe DMA
accesses. First, SADA uses an intra-procedural and flow-
insensitive alias analysis to identify the variables aliased with
each variable of the DMA buffer. But due to ignoring flow
sensitivity and missing inter-procedural analysis, this alias
analysis can be inaccurate in complex cases, causing false pos-

itives in DMA-access identification and checking. To address
this limitation, we can refer to existing approaches [25, 54]
to perform inter-procedural and flow-sensitive alias analy-
sis, in order to improve the accuracy of code analysis. Sec-
ond, SADA does not analyze function-pointer calls in DMA-
access checking at present, and thus it may miss real unsafe
DMA accesses involving the code reached through function-
pointer calls. To address this limitation, we can apply existing
function-pointer analysis [3, 34] to enhance inter-procedural
analysis in SADA. Finally, SADA does not consider driver
concurrency in DMA-access checking at present, which can
cause false negatives when DMA-buffer creation/synchroniza-
tion and DMA accesses are performed in two concurrently-
executed functions. To address this limitation, we can borrow
existing concurrency analysis [2, 59] to check DMA accesses
involving driver concurrency.

7.3 Exploitability of Unsafe DMA Accesses
Once knowing an unchecked DMA access, attackers can just
inject malicious data to DMA buffers via untrusted hardware
devices. When malicious data is used in critical control flow
or data flow (such as an index into a buffer), serious security
issues such as buffer overflow and invalid-pointer access can
be triggered. Attackers just need to figure out how the data in
a DMA buffer is used and what malicious data to inject in the
DMA buffer. Thus, the exploitation is actually easier than that
for traditional memory bugs caused by user-level inputs. Once
knowing an inconsistent DMA access, attackers can execute
specific workloads at the user level to trigger this defect, which
can cause unexpected hardware behavior. In addition, if the
data affected by this defect is used in critical control flow or
data flow, it can also cause serious consequences like privilege
escalation, which is analogous to race conditions.

7.4 Double Fetch Caused by DMA Access
Double fetch is a special situation that propably triggers
security bugs. In this situation, the kernel reads the same
variable twice and assumes its value should be unchanged.
However, this assumption can be invalid when the value
can be changed at runtime by some means. Existing ap-
proaches [49, 60–62, 64] focus on double-fetch situations
caused by untrusted user-space memory.

However, as shown in Section 6.3, we find that DMA ac-
cesses to untrusted hardware devices can also cause double-
fetch situations triggering security bugs (such as buffer over-
flow and invalid-pointer access). The unsafe DMA access
shown in Figure 12 is such an example. For this reason,
double-fetch situations caused by untrusted hardware devices
should receive significant attention to avoid security bugs. We
believe that SADA is applicable to detecting general double-
fetch situations caused by DMA accesses, by adding more
patterns in the safety checking of DMA accesses.

7.5 Avoiding Unsafe DMA Accesses

In this paper, we find that there are many unsafe DMA ac-
cesses in Linux driver code, and they can cause serious se-
curity problems. Thus, it is meaningful to discuss how to
avoid unsafe DMA accesses when implementing a new de-
vice driver. We have three suggestions about it:

First, if the data stored in a DMA buffer needs to be ac-
cessed by the driver for multiple times, we suggest the driver
to use a coherent DMA buffer here. In this way, there is no
need to perform explicit synchronization operation for the
DMA buffer with the CPU cache and hardware registers,
which can avoid introducing inconsistent DMA accesses.

Second, we find that all unchecked DMA accesses are
caused by the fact that the data from related DMA buffers
affects the driver’s data flow or control flow. Thus, if the un-
trusted hardware device injects bad data in these DMA buffers,
the driver execution will be affected, increasing the possibility
of triggering security problems. To avoid this case, we suggest
the driver not to access the data stored in DMA buffers and
just to transfer this data to user-space memory or hardware
registers. In fact, many existing drivers use DMA only for
data transfer. For example, many network device drivers use
DMA buffers only to store data packets from/to network de-
vices, and just transfer these data packets to/from user-space
memory without accessing them. But some drivers have to
access the data stored in DMA buffers, as they require hard-
ware information (such as device descriptors) to control code
execution. For these drivers, they should carefully validate
the data from DMA buffers.

Finally, to avoid double fetch caused by DMA access, we
suggest the driver to use a local variable to store the data
from the DMA access, and access this variable instead of
performing the same DMA access for multiple times.

8 Related Work

8.1 Static Analysis for Kernel Security

To enhance kernel security, many existing approaches use
static analysis to check OS kernel code.
Analyzing security check. An OS kernel has many secu-
rity checks to validate data correctness. If necessary security
checks are missing or incorrect, serious security bugs (such
as buffer-overflow bugs and null-pointer dereferences) can
occur. To analyze security checks and detect related security
bugs, some approaches [35, 36, 63, 67] have been proposed.
CRIX [36] is a practical approach for detecting missing-check
bugs in OS kernels with an inter-procedural, semantic- and
context-aware analysis. These approaches focus on security
checks about the return values or parameters of function calls,
but cannot handle the data from DMA accesses, as each DMA
access is implemented as a regular variable access, instead of
calling specific functions.

Detecting API misuse. In an OS kernel, there are many API
rules, and violating these rules can cause serious security
bugs (such as resource leaks and double locks). To detect
API misuses, some approaches [3, 4, 30, 39] use known API
rules to check the kernel code. Besides, to learn implicit API
rules, some approaches [5,20,31,32,48] perform specification
mining by analyzing the kernel code. Different from API
misuse, unsafe DMA access not only involves the call to
DMA kernel interfaces but also involves the variable access
to related DMA buffer.
Checking untrusted access. User-space memory is consid-
ered to be untrusted for OS kernels, and thus the kernel needs
to carefully check the data from user-space memory; oth-
erwise security problems (such as privilege escalation and
information leakage) can occur. To detect these problems,
some approaches [26, 49, 60–64] have been proposed. Be-
sides, some researchers also realized that hardware devices
can be malfunctioning or untrusted to affect kernel security,
and thus they have proposed several approaches [27, 37] to
detect unsafe hardware accesses. But they cannot check DMA
accesses, as they rely on specific kernel interfaces to identify
hardware accesses, but each DMA access is implemented as
a regular variable access, instead of calling kernel interfaces.

8.2 Kernel Fuzzing
Fuzzing is a popular technique to improve code coverage in
runtime testing. Many kernel fuzzing approaches have been
proposed and shown promising results in detecting bugs.
Fuzzing system calls. Most kernel fuzzing approaches [18,
24, 43, 56, 57] focus on mutating and generating system calls,
to test whether the kernel can correctly handle these system
calls. MoonShine [43] analyzes the code-coverage contribu-
tion and dependencies of provided system calls from their
traces, to select effective seeds for subsequent mutation.
Fuzzing hardware inputs. Besides receiving inputs from
user space via system calls, an OS kernel also communicates
with hardware devices. To detect driver bugs triggered by
hardware inputs, several recent approaches [45, 51, 52] create
a simulated device to generate and mutate hardware inputs to
test drivers. They have found some security bugs caused by
the bad data from DMA buffers. However, their code cover-
age is limited to generated test cases, causing that many real
unsafe DMA accesses are missed. Besides, they cannot detect
inconsistent DMA accesses, because they do not consider the
synchronization of DMA buffers.

8.3 Symbolic Execution of OS Kernels
Some approaches [12, 14, 29, 46, 47] use symbolic execution
to analyze OS kernels. However, symbolic execution is often
time consuming in analyzing large-scale software, as it needs
to explore numerous code paths and solve their path con-
straints. To reduce the overhead of solving path constraints,

SADA first uses an efficient flow-sensitive analysis to detect
all possible unsafe DMA accesses without validating code-
path feasibility, and then uses an SMT solver to only validate
the code paths of these possible unsafe DMA accesses.

8.4 Untrusted Hardware and Protection
A peripheral hardware device can be untrusted, and thus the
attacker can use this device to attack the OS kernel. Some
approaches [28, 53, 65] have proven that such untrusted hard-
ware devices can be actually implemented to attack real-world
systems. As a typical attack method from untrusted hardware,
DMA attack can gain direct access to part or all of the sys-
tem memory via untrusted DMA-enabled devices. To defend
against DMA attacks, existing approaches [40–42,44,58] use
IOMMU to limit the area of system memory that a DMA-
enabled device can access. Even though IOMMU has been
used to guarantee the memory addresses accessed by DMA
are valid, DMA accesses can be still unsafe. SADA is de-
signed to detect such unsafe DMA accesses in device drivers.

9 Conclusion

DMA is a frequently-used mechanism to improve hardware
I/O performance, but DMA accesses can be unsafe and cause
security problems. In this paper, we propose a static approach
named SADA, to automatically and accurately detect unsafe
DMA accesses in device drivers. SADA integrates three key
techniques, including a field-based alias analysis to identify
DMA accesses, a flow-sensitive and pattern-based analysis
to check the safety of each DMA access, and a code-path
validation method to drop false positives. In the Linux driver
code, SADA finds 284 real unsafe DMA accesses, which can
cause unexpected hardware behaviors or trigger security bugs
(such as buffer overflow and invalid-pointer access).

In the future, we plan to apply SADA to other OSes (such
as FreeBSD and NetBSD) to check their driver code. We also
plan to add more patterns in checking the safety of DMA
accesses, to find more unsafe DMA accesses that can trigger
other kinds of security problems.

Acknowledgment

We thank our shepherd, Tuba Yavuz, and anonymous review-
ers for their helpful advice on the paper. This work was mainly
supported by the Natural Science Foundation of China under
Project 62002195 and the China Postdoctoral Science Founda-
tion under Project 2019T120093. Kangjie Lu was supported
in part by the NSF awards CNS-1815621 and CNS-1931208.
Any opinions, findings, conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of NSF. Shi-Min Hu is the corre-
sponding author.

References

[1] ANDERSEN, L. O. Program analysis and specialization
for the C programming language. PhD thesis, University
of Cophenhagen, 1994.

[2] BAI, J.-J., LAWALL, J., CHEN, Q.-L., AND HU, S.-M.
Effective static analysis of concurrency use-after-free
bugs in Linux device drivers. In Proceedings of the 2019
USENIX Annual Technical Conference (2019), pp. 255–
268.

[3] BAI, J.-J., LAWALL, J., AND HU, S.-M. Effective
detection of sleep-in-atomic-context bugs in the Linux
kernel. ACM Transactions on Computer Systems (TOCS)
36, 4 (2020), 1–30.

[4] BALL, T., BOUNIMOVA, E., COOK, B., LEVIN, V.,
LICHTENBERG, J., MCGARVEY, C., ONDRUSEK, B.,
RAJAMANI, S. K., AND USTUNER, A. Thorough static
analysis of device drivers. In Proceedings of the 1st
European Conference on Computer Systems (EuroSys)
(2006), pp. 73–85.

[5] BIAN, P., LIANG, B., SHI, W., HUANG, J., AND CAI,
Y. NAR-miner: discovering negative association rules
from code for bug detection. In Proceedings of the 26th
Symposium on the Foundations of Software Engineering
(FSE) (2018), pp. 411–422.

[6] HID: battery: do not do DMA from stack. https://
github.com/torvalds/linux/commit/6c2794a2984f.

[7] RDMA: cxgb4: do not dma memory off of the stack.
https://github.com/torvalds/linux/commit/3840c5b78803.

[8] 8139cp: Add dma_mapping_error checking. https://
github.com/torvalds/linux/commit/cf3c4c03060b.

[9] tulip: Properly check dma mapping result. https://
github.com/torvalds/linux/commit/c9bfbb31af7c.

[10] net: sxgbe: fix error handling in init_rx_ring(). https://
github.com/torvalds/linux/commit/37c85c3498c5.

[11] usb: chipidea: udc: fix memory leak in _ep_nuke().
https://github.com/torvalds/linux/commit/7ca2cd291fd8.

[12] CADAR, C., DUNBAR, D., AND ENGLER, D. R. KLEE:
unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings of
the 8th International Symposium on Operating Systems
Design and Implementation (OSDI) (2008), pp. 209–
224.

[13] CALZAVARA, S., GRISHCHENKO, I., AND MAFFEI,
M. HornDroid: practical and sound static analysis of
Android applications by SMT solving. In Proceedings
of the 1st European Symposium on Security and Privacy
(2016), pp. 47–62.

[14] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G.
S2E: a platform for in-vivo multi-path analysis of soft-
ware systems. In Proceedings of the 16th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2011),
pp. 265–278.

[15] Clang: a LLVM-based compiler for C/C++ program.
https://clang.llvm.org/.

[16] CLOC: count lines of code. https://cloc.sourceforge.net.

[17] CORBET, J., RUBINI, A., AND KROAH-HARTMAN, G.
Linux device drivers (3rd edition). O’Reilly, 2005.

[18] CORINA, J., MACHIRY, A., SALLS, C., SHOSHI-
TAISHVILI, Y., HAO, S., KRUEGEL, C., AND VIGNA,
G. DIFUZE: interface aware fuzzing for kernel drivers.
In Proceedings of the 24th International Conference on
Computer and Communications Security (CCS) (2017),
pp. 2123–2138.

[19] Clang static analyzer. clang-analyzer.llvm.org/.

[20] DEFREEZ, D., THAKUR, A. V., AND RUBIO-
GONZÁLEZ, C. Path-based function embedding and its
application to error-handling specification mining. In
Proceedings of the 26th Symposium on the Foundations
of Software Engineering (FSE) (2018), pp. 423–433.

[21] DMA attack. https://en.wikipedia.org/wiki/DMA_attack.

[22] Detecting silent data corruptions and memory leaks
using DMA debug API. https://events.static.linux
found.org/sites/events/files/slides/Shuah_Khan_dma
_map_error.pdf.

[23] DMA safety in buffers for Linux kernel device
drivers. https://elinux.org/images/0/03/20181023-
Wolfram-Sang-ELCE18-safe_dma_buffers.pdf.

[24] HAN, H., AND CHA, S. K. IMF: inferred model-based
fuzzer. In Proceedings of the 24th International Confer-
ence on Computer and Communications Security (CCS)
(2017), pp. 2345–2358.

[25] HARDEKOPF, B., AND LIN, C. Flow-sensitive pointer
analysis for millions of lines of code. In Proceedings of
the 2011 International Symposium on Code Generation
and Optimization (CGO) (2011), pp. 289–298.

[26] JOHNSON, R., AND WAGNER, D. Finding User/Kernel
pointer bugs with type inference. In Proceedings of the
13th USENIX Security Symposium (2004), pp. 1–22.

[27] KADAV, A., RENZELMANN, M. J., AND SWIFT, M. M.
Tolerating hardware device failures in software. In Pro-
ceedings of the 22nd International Symposium on Oper-
ating Systems Principles (SOSP) (2009), pp. 59–72.

[28] KING, S. T., TUCEK, J., COZZIE, A., GRIER, C.,
JIANG, W., AND ZHOU, Y. Designing and implement-
ing malicious hardware. In Proceedings of the 1st
Usenix Workshop on Large-Scale Exploits and Emergent
Threats (2008).

[29] KUZNETSOV, V., CHIPOUNOV, V., AND CANDEA, G.
Testing closed-source binary device drivers with DDT.
In Proceedings of the 2010 USENIX Annual Technical
Conference (2010), pp. 1–14.

[30] LAWALL, J., AND MULLER, G. Coccinelle: 10 years
of automated evolution in the Linux kernel. In Proceed-
ings of the 2018 USENIX Annual Technical Conference
(2018), pp. 601–614.

[31] LAWALL, J. L., BRUNEL, J., PALIX, N., HANSEN,
R. R., STUART, H., AND MULLER, G. WYSIWIB:
a declarative approach to finding API protocols and
bugs in Linux code. In Proceedings of the 39th Interna-
tional Conference on Dependable Systems and Networks
(DSN) (2009), pp. 43–52.

[32] LI, Z., AND ZHOU, Y. PR-Miner: automatically extract-
ing implicit programming rules and detecting violations
in large software code. In Proceedings of the 13th In-
ternational Symposium on the Foundations of Software
Engineering (FSE) (2005), pp. 306–315.

[33] LLVM compiler infrastructure. https://llvm.org/.

[34] LU, K., AND HU, H. Where does it go? refining indirect-
call targets with multi-layer type analysis. In Proceed-
ings of the 26th International Conference on Computer
and Communications Security (CCS) (2019), pp. 1867–
1881.

[35] LU, K., PAKKI, A., AND WU, Q. Automatically iden-
tifying security checks for detecting kernel semantic
bugs. In Proceedings of the 24th European Symposium
on Research in Computer Security (ESORICS) (2019),
pp. 3–25.

[36] LU, K., PAKKI, A., AND WU, Q. Detecting missing-
check bugs via semantic-and context-aware criticalness
and constraints inferences. In Proceedings of the 28th
USENIX Security Symposium (2019), pp. 1769–1786.

[37] LU, K., WANG, P.-F., LI, G., AND ZHOU, X. Un-
trusted hardware causes double-fetch problems in the
I/O memory. Journal of Computer Science and Technol-
ogy (JCST) 33, 3 (2018), 587–602.

[38] MACHIRY, A., SPENSKY, C., CORINA, J., STEPHENS,
N., KRUEGEL, C., AND VIGNA, G. DR. CHECKER:
a soundy analysis for Linux kernel drivers. In Proceed-
ings of the 26th USENIX Security Symposium (2017),
pp. 1007–1024.

[39] MAO, J., CHEN, Y., XIAO, Q., AND SHI, Y. RID: find-
ing reference count bugs with inconsistent path pair
checking. In Proceedings of the 21st International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2016),
pp. 531–544.

[40] MARKETTOS, T., ROTHWELL, C., GUTSTEIN, B. F.,
PEARCE, A., NEUMANN, P. G., MOORE, S., AND WAT-
SON, R. Thunderclap: exploring vulnerabilities in oper-
ating system IOMMU protection via DMA from untrust-
worthy peripherals. In Proceedings of the 26th Network
and Distributed Systems Security Symposium (NDSS)
(2019).

[41] MARKUZE, A., MORRISON, A., AND TSAFRIR, D.
True IOMMU protection from DMA attacks: when copy
is faster than zero copy. In Proceedings of the 21st Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS)
(2016), pp. 249–262.

[42] MARKUZE, A., SMOLYAR, I., MORRISON, A., AND
TSAFRIR, D. DAMN: overhead-free IOMMU protec-
tion for networking. In Proceedings of the 23rd Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS)
(2018), pp. 301–315.

[43] PAILOOR, S., ADAY, A., AND JANA, S. MoonShine:
optimizing OS fuzzer seed selection with trace distil-
lation. In Proceedings of the 27th USENIX Security
Symposium (2018), pp. 729–743.

[44] PELEG, O., MORRISON, A., SEREBRIN, B., AND
TSAFRIR, D. Utilizing the IOMMU scalably. In Pro-
ceedings of the 2015 USENIX Annual Technical Confer-
ence (2015), pp. 549–562.

[45] PENG, H., AND PAYER, M. USBFuzz: a framework for
fuzzing USB drivers by device emulation. In Proceed-
ings of the 29th USENIX Security Symposium (2020),
pp. 2559–2575.

[46] RAMOS, D. A., AND ENGLER, D. Under-constrained
symbolic execution: correctness checking for real code.
In Proceedings of the 24th USENIX Security Symposium
(2015), pp. 49–64.

[47] RENZELMANN, M. J., KADAV, A., AND SWIFT, M. M.
SymDrive: testing drivers without devices. In Proceed-
ings of the 10th International Symposium on Operat-
ing Systems Design and Implementation (OSDI) (2012),
pp. 279–292.

[48] SAHA, S., LOZI, J., THOMAS, G., LAWALL, J. L., AND
MULLER, G. Hector: detecting resource-release omis-
sion faults in error-handling code for systems software.

In Proceedings of the 43rd International Conference
on Dependable Systems and Networks (DSN) (2013),
pp. 1–12.

[49] SCHWARZ, M., GRUSS, D., LIPP, M., MAURICE, C.,
SCHUSTER, T., FOGH, A., AND MANGARD, S. Auto-
mated detection, exploitation, and elimination of double-
fetch bugs using modern CPU features. In Proceedings
of the 2018 on Asia Conference on Computer and Com-
munications Security (ASIACCS) (2018), pp. 587–600.

[50] SHERMAN, E., GARVIN, B. J., AND DWYER, M. B.
Deciding type-based partial-order constraints for path-
sensitive analysis. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 24, 3 (2015), 1–33.

[51] SONG, D., HETZELT, F., DAS, D., SPENSKY, C.,
NA, Y., VOLCKAERT, S., VIGNA, G., KRUEGEL, C.,
SEIFERT, J.-P., AND FRANZ, M. Periscope: an effec-
tive probing and fuzzing framework for the hardware-os
boundary. In Proceedings of the 26th Network and Dis-
tributed Systems Security Symposium (NDSS) (2019).

[52] SONG, D., HETZELT, F., KIM, J., KANG, B. B.,
SEIFERT, J.-P., AND FRANZ, M. Agamotto: acceler-
ating kernel driver fuzzing with lightweight virtual ma-
chine checkpoints. In Proceedings of the 29th USENIX
Security Symposium (2020), pp. 2541–2557.

[53] STURTON, C., HICKS, M., WAGNER, D., AND KING,
S. T. Defeating UCI: building stealthy and malicious
hardware. In Proceedings of the 32nd IEEE Symposium
on Security and Privacy (2011), pp. 64–77.

[54] SUI, Y., YE, D., AND XUE, J. Detecting memory
leaks statically with full-sparse value-flow analysis.
IEEE Transactions on Software Engineering (TSE) 40,
2 (2014), 107–122.

[55] SWIFT, M. M., ANNAMALAI, M., BERSHAD, B. N.,
AND LEVY, H. M. Recovering device drivers. ACM
Transactions on Computer Systems (TOCS) 24, 4 (2006),
333–360.

[56] Syzkaller: an unsupervised coverage-guided kernel
fuzzer. https://github.com/google/syzkaller.

[57] TALEBI, S. M. S., TAVAKOLI, H., ZHANG, H., ZHANG,
Z., SANI, A. A., AND QIAN, Z. Charm: facilitating
dynamic analysis of device drivers of mobile systems.
In Proceedings of the 27th USENIX Security Symposium
(2018), pp. 291–307.

[58] TIAN, K., ZHANG, Y., KANG, L., ZHAO, Y., AND
DONG, Y. coIOMMU: a virtual IOMMU with coopera-
tive DMA buffer tracking for efficient memory manage-
ment in direct I/O. In Proceedings of the 2020 USENIX
Annual Technical Conference (2020), pp. 479–492.

[59] VOJDANI, V., APINIS, K., RÕTOV, V., SEIDL, H.,
VENE, V., AND VOGLER, R. Static race detection for
device drivers: the Goblint approach. In Proceedings
of the 31st International Conference on Automated Soft-
ware Engineering (ASE) (2016), pp. 391–402.

[60] WANG, P., KRINKE, J., LU, K., LI, G., AND DODIER-
LAZARO, S. How double-fetch situations turn into
double-fetch vulnerabilities: A study of double fetches
in the Linux kernel. In Proceedings of the 26th USENIX
Security Symposium (2017), pp. 1–16.

[61] WANG, P., LU, K., LI, G., AND ZHOU, X. A survey
of the double-fetch vulnerabilities. Concurrency and
Computation: Practice and Experience 30, 6 (2018),
e4345.

[62] WANG, P., LU, K., LI, G., AND ZHOU, X. DFTracker:
detecting double-fetch bugs by multi-taint parallel track-
ing. Frontiers of Computer Science 13, 2 (2019), 247–
263.

[63] WANG, W., LU, K., AND YEW, P.-C. Check it again:
detecting lacking-recheck bugs in OS kernels. In
Proceedings of the 25th International Conference on
Computer and Communications Security (CCS) (2018),
pp. 1899–1913.

[64] XU, M., QIAN, C., LU, K., BACKES, M., AND KIM, T.
Precise and scalable detection of double-fetch bugs in
OS kernels. In Proceedings of the 39th IEEE Symposium
on Security and Privacy (2018), pp. 661–678.

[65] YANG, K., HICKS, M., DONG, Q., AUSTIN, T., AND
SYLVESTER, D. A2: analog malicious hardware. In
Proceedings of the 37th IEEE Symposium on Security
and Privacy (2016), pp. 18–37.

[66] Z3: an effective theorem prover from Microsoft Re-
search. https://github.com/Z3Prover/z3.

[67] ZHANG, T., SHEN, W., LEE, D., JUNG, C., AZAB,
A. M., AND WANG, R. PeX: a permission check anal-
ysis framework for Linux kernel. In Proceedings of
the 28th USENIX Security Symposium (2019), pp. 1205–
1220.

	Introduction
	Background and Study of DMA
	DMA Architecture
	DMA Problems in Existing Research
	Security Risks of DMA Accesses
	Threat Model
	State of the Art for DMA-Access Checking
	Study of DMA in Linux Device Drivers

	Challenges
	Key Techniques
	DMA-Access Identification
	DMA-Access Safety Checking
	Code-Path Validation

	SADA Approach
	Evaluation
	Detection of Unsafe DMA Accesses
	False Positives and Negatives
	Root Causes and Fixing Suggestions

	Discussion
	Comparison to Existing Approaches
	Limitations
	Exploitability of Unsafe DMA Accesses
	Double Fetch Caused by DMA Access
	Avoiding Unsafe DMA Accesses

	Related Work
	Static Analysis for Kernel Security
	Kernel Fuzzing
	Symbolic Execution of OS Kernels
	Untrusted Hardware and Protection

	Conclusion

