
Entangled Watermarks as a Defense against Model Extraction

Hengrui Jia†, Christopher A. Choquette-Choo†, Varun Chandrasekaran*, Nicolas Papernot†
†University of Toronto and Vector Institute, * University of Wisconsin-Madison

Abstract
Machine learning involves expensive data collection and

training procedures. Model owners may be concerned that
valuable intellectual property can be leaked if adversaries
mount model extraction attacks. As it is difficult to defend
against model extraction without sacrificing significant predic-
tion accuracy, watermarking instead leverages unused model
capacity to have the model overfit to outlier input-output pairs.
Such pairs are watermarks, which are not sampled from the
task distribution and are only known to the defender. The de-
fender then demonstrates knowledge of the input-output pairs
to claim ownership of the model at inference. The effective-
ness of watermarks remains limited because they are distinct
from the task distribution and can thus be easily removed
through compression or other forms of knowledge transfer.

We introduce Entangled Watermarking Embeddings
(EWE). Our approach encourages the model to learn features
for classifying data that is sampled from the task distribution
and data that encodes watermarks. An adversary attempting
to remove watermarks that are entangled with legitimate data
is also forced to sacrifice performance on legitimate data.
Experiments on MNIST, Fashion-MNIST, CIFAR-10, and
Speech Commands validate that the defender can claim model
ownership with 95% confidence with less than 100 queries
to the stolen copy, at a modest cost below 0.81 percentage
points on average in the defended model’s performance.

1 Introduction

Costs associated with machine learning (ML) are high. This
is true in particular when large training sets need to be col-
lected [16] or the parameters of complex models tuned [49].
Therefore, models being deployed for inference constitute
valuable intellectual property that need to be protected. A
good example of a pervasive deployment of ML is automatic
speech recognition [18], which forms the basis for personal
assistants in ecosystems created by Amazon, Apple, Google,
and Microsoft. However, deploying models to make predic-

tions creates an attack vector which adversaries can exploit to
mount model extraction attacks [3, 8, 35, 40, 41, 43, 51].

Techniques for model extraction typically require that the
adversary query a victim model with inputs of their choice—
analogous to chosen-plaintext attacks in cryptography. The
adversary uses the victim model to label a substitute dataset.
One form of extraction involves using the substitute dataset
to train a substitute model, which is a stolen copy of the
victim model [41,43]. Preventing model extraction is difficult
without sacrificing performance for legitimate users [2, 5,
29, 51]: queries made by attackers and benign users may be
sampled from the same task distribution.

One emerging defense proposal is to extend the concept
of watermarking [22] to ML [6]. The defender purposely
introduces outlier input-output pairs (x,y) only known to
them in the model’s training set—analogous to poisoning
or backdoor attacks [1]. To claim ownership of the model
f , the defender demonstrates that they can query the model
on these specific inputs x̃ and have knowledge of the (poten-
tially) surprising prediction f (x̃) = ỹ returned by the model.
Watermarking techniques exploit the large capacity in mod-
ern architectures [1] to learn watermarks without sacrificing
performance when classifying data from the task distribution.

Naive watermarking can be defeated by an adaptive at-
tacker because the watermarks are outliers to the task distribu-
tion. As long as the adversary queries the watermarked model
only on inputs that are sampled from the task distribution, the
stolen model will only retain the victim model’s decision sur-
face relevant to the task distribution, and therefore ignore the
decision surface learned relevant to watermarking. In other
words, the reason why watermarking can be performed with
limited impact on the model’s accuracy is the reason why wa-
termarks can easily be removed by an adversary. Put another
way, watermarked models roughly split their parameter set
into two subsets, the first encodes the task distribution while
the second overfits to the outliers (i.e., watermarks).

In this paper, we propose a technique that addresses this
fundamental limitation of watermarking. Entangled Water-
mark Embedding (EWE) encourages a model to extract fea-

tures that are jointly useful to (a) learn how to classify data
from the task distribution and (b) predict the defender’s ex-
pected output on watermarks. Our key insight is to leverage
the soft nearest neighbor loss [12] to entangle representations
extracted from training data and watermarks. By entangle-
ment, we mean that the model represents both types of data
similarly. Entangling produces models that use the same sub-
set of parameters to recognize training data and watermarks.
Hence, it is difficult for an adversary to extract the model
without its watermarks, even if the adversary queries models
with samples only from the task distribution to avoid trigger-
ing watermarks (e.g., the adversary avoids out-of-distribution
inputs like random queries). The adversary is forced to learn
how to reproduce the defender’s chosen output on watermarks.
An attempt to remove watermarks would also have to harm
the stolen substitute classifier’s generalization performance
on the task distribution, which would defeat the purpose of
model extraction (i.e., steal a well-performing model).

We evaluate1 the approach on four vision datasets–
MNIST [28], Fashion MNIST [55], CIFAR-10, and CIFAR-
100 [26] as well as an audio dataset—Google Speech Com-
mand [54]. We demonstrate that our approach is able to wa-
termark models at moderate costs to utility—below 0.81 per-
centage points on average on the datasets considered. Unlike
prior approaches we compare against, our watermarked clas-
sifiers are robust to model extraction attacks. Stolen copies
retain the defender’s expected output on > 38% (in average)
of entangled watermarks (see Table 1, where the baseline
achieves < 10% at best), which enables a classifier to claim
ownership of the model with 95% confidence in less than 100
queries to the stolen copy. We also show that defenses against
backdoors are ineffective against our entangled watermarks.
The contributions of our paper are:
• We identify a fundamental limitation of existing wa-

termarking strategies: the watermarking task is learned
separately from the primary task.
• We introduce Entangled Watermark Embedding (EWE)

to enable models to jointly learn how to classify samples
from the task distribution and watermarks.
• We systematically calibrate EWE on vision and audio

datasets. We show that when points being watermarked
are carefully chosen, EWE offers advantageous trade-
offs between model utility and robustness of watermarks
to model extraction, on the datasets considered.

2 Background

In this section, we provide background to motivate our work.

2.1 Learning with DNNs
We focus on classification within the supervised learning set-
ting [37], where the goal is to learn a decision function that

1Code at: github.com/cleverhans-lab/entangled-watermark

maps the input x to a discrete output y. The set of possible
outputs are called classes. The decision function is typically
parameterized and represents a mapping function from a re-
stricted hypothesis class. A task distribution is analyzed to
learn the function’s parameters. Empirically, we use a dataset
of input-output training examples, denoted by D = {X ,Y} or
{(xi,yi)}N

i=1, to represent the task distribution.
One hypothesis class is deep neural networks (DNNs).

DNNs are often trained with variants of the backpropagation
algorithm [46]2. Backpropagation updates each parameter in
the DNNs by differentiating the loss function with respect
to each parameter. Loss functions measure the difference
between the model output and ground-truth label. A com-
mon choice for classification tasks is the cross-entropy [37]:
LCE(X ,Y) =− 1

N ∑
N
i ∑k∈[K] yik log fk(xi) where yi is a one-hot

vector encoding the ground-truth label and fk(xi) is the predic-
tion score of model f for the kth class among the K possible
classes. Because this loss can be interpreted as measuring
the KL divergence between the task and learned distributions,
minimizing this loss encourages similarity between model
predictions and labels [13].

2.2 Model Extraction
Model extraction attacks target the confidentiality of ML mod-
els [51]. Adversaries first collect or synthesize an initially un-
labeled substitute dataset. Papernot et al. [43] used Jacobian-
based dataset augmentation, while Tramer et al. [51] proposed
three techniques that sample data uniformly. Adversaries ex-
ploit the ability to query the victim model for label predictions
to annotate a substitute dataset. Next, they train a copy of the
victim model with this substitute dataset.3 The adversary’s
goal is to obtain a stolen replica that performs similarly to the
victim, whilst making few labeling queries.

Approaches that use differential querying [19, 35] are out
of scope here because they make a large number of queries
to obtain a functionally-equivalent model. We also exclude
attacks that rely on side-channel information [3]. We focus
on attacks that attempt to extract a model with roughly the
same accuracy performance only by querying for the model’s
prediction. This has been demonstrated against linear mod-
els [5,32,35,51], decision trees [51], and DNNs [8,40,41,43].

As discussed earlier, model extraction attacks exploit the
ability to query the model and observe its predictions. Poten-
tial countermeasures restrict or modify information returned
in each query [19, 51]. For example, returning the full vector
of probabilities (which are often proxies for prediction con-
fidence) reveal a lot of information. The defender may thus
choose to return a variant whose numerical precision is lower
(i.e., quantization) or even to only return the most likely label
with or without the associated the output probability (i.e., hard

2In this paper, we use an adaptive optimizer called Adam which improves
convergence [24].

3This assumes that the adversary has knowledge of the model architecture.

github.com/cleverhans-lab/entangled-watermark

labels). The defender could also choose to return a random
label and/or noise. However, all of these countermeasures
introduce an inherent trade-off between the utility of a model
to its benign user and the ability of an adversary to extract it
more or less efficiently [2, 5, 29, 51].

2.3 Watermarks
Watermarking has a long history in the protection of intel-
lectual property for media like videos and images [22]. Ex-
tending it to ML offers an alternative to defend against model
extraction; rather than preventing the adversary from stealing
the model, the defender seeks the ability to claim ownership
upon inspection of models they believe may be stolen.

The idea behind watermarks is to have the watermarked
model overfit to outlier input-output pairs known only to the
defender. This can later be used to claim ownership of the
model. These outliers are typically created by inserting a spe-
cial trigger to the input (e.g., a small square in a non-intrusive
location of an image). These inputs are the watermarks. For
this reason, watermarking can be thought of as a form of
poisoning, and in particular backdoor insertion [15], used for
good by the defender. Zhang et al. [56] and Nagai et al. [38]
also introduced watermarking algorithms that rely on data
poisoning [20]. Rouhani et al. [10] instead embed some bits
in the probability density function of different layers, but the
idea remains to exploit overparameterization of DNNs.

If the defender encounters a model that also possesses the
rare and unexpected behavior encoded by watermarks, he/she
can reasonably claim that this model is a stolen replica. The
concept of watermarks in ML is analogous to trapdoor func-
tions [11]: given watermarked samples, it is easy to verify if
the model is watermarked. However, if one knows a model is
watermarked, it is extremely hard to obtain the data used to
watermark it (because the dimensionality of the input-output
mapping is too high for attackers to search by brute force).

3 Difficulties in Watermarking

We consider DNNs, also used later to validate our EWE ap-
proach, because they typically generate the largest production
costs: they are thus more likely to be the target of model
extraction attacks. Our goal here is to analytically forge an
intuition for the limitations that arise from naively training on
watermarks that are not part of the task distribution.

3.1 Extraction-Induced Failures
Recall that to successfully watermark a DNN, the defender
knows a particular input that is not necessarily from the task
distribution, and has knowledge of the predicted output given
this input. We construct an analytical example to show how
such a watermarking scheme fails during model extraction.

Consider a binary classification task with a 2D input [x1,x2]
and a scalar output y set to 1 if x1 + x2 > 1 and 0 otherwise.

x1 ~ U(0, 1)

x1 ~ U(0, 1)

1 · R(x1 + 0)

0.96 · R(x1 - 0)

2 · R(x2 + 0)

0.54 · R(x2 - 0)

Input	Layer Hidden	Layer Output	Layer

-1 · R(x2 + 2)

0.54 · R(x2 - 0)

y = σ(... + 1)

y = σ(... - 1)
x2 ~ U(0, 1) or -1

x2 ~ U(0, 1)

Legitimate Data
Watermarked Data

Figure 1: We construct a neural network to show how wa-
termarks behave like trapdoor functions. When the model
learns independent task and watermark distributions, this is
true despite both distributions being modeled with the same
neurons. Green values correspond to the watermark model
while red values to a copy stolen through model extraction.

Inputs x1 and x2, are sampled from two independent uniform
distributions U(0,1). We watermark this model to output 1 if
x2 =−1 regardless of x1. One could model this function as a
feed-forward DNN shown in Figure 1. A sigmoid activation σ

is utilized as the ultimate layer to obtain the following model:
ŷ = σ(w1 ·R(x1 +b1)+w2 ·R(x2 +b2)+w3 ·R(x2 +b3)+b4−1)

where R(x) = max(0,x) denotes a ReLU activation. We in-
stantiate this model with the following parameter values:

y = σ(1 ·R(x1)+2 ·R(x2)−1 ·R(x2 +2)+2−1)
We chose parameter values to illustrate the following set-

ting: (a) the model is accurate on both the task distribution and
watermark, and (b) the neuron used to encode the watermark
is also used by the task distribution. This enables us to show
how the watermark is not extracted by the adversary, even
though it is encoded by a neuron that is also used to classify
inputs from the task distribution. As the adversary attempts to
extract the model, they are unlikely to trigger the watermark
by setting x2 = −1 if they sample inputs from U(0,1) i.e.,
the task distribution. After training the substitute model with
inputs from the task distribution and labels (which are predic-
tions) obtained from the victim model, the decision function
learned by the adversary is:

y = σ(0.96 ·R(x1)+0.54 ·R(x2)+0.54 ·R(x2)−1)
This function can be written as y = σ(0.96x1 + 1.08x2− 1)
since x1,x2 ∼U(0,1). This is very similar to our objective
function, y = σ(x1 + x2−1), and has high utility for the ad-
versary. However, if the out-of-distribution (OOD) input x2 is
-1, the largest value of the function (obtained when x1 = 1) is
σ(−0.04), which leads to the non-watermarked result of y= 0
instead of y = 1; the watermark is removed during extraction.

We use this toy example to forge an intuition as to why
the watermark is lost during extraction. The task and water-
mark distributions are independent. If the model has suffi-
cient capacity, it can learn from data belonging to both dis-
tributions. However, the model learns both distributions in-
dependently. In the classification example described above,
back-propagating with respect to the task data would update
all neurons, whereas back-propagating with respect to wa-
termarked data only updates the third neuron. However, the

(a) Without EWE (baseline)

(b) With EWE

Figure 2: Baseline Watermarking activates different and
fewer neurons, corroborating our hypothesis of two sub-
models. Training with EWE entangles activations of water-
marked data with legitimate task data.

adversary cannot solely update the small groups of neurons
used for watermarking because they sample data from the
task distribution during extraction.

3.2 Distinct Activation Patterns
We empirically show how training algorithms converge to a
simple solution to learn the two data distributions simulta-
neously: they learn models whose capacity is roughly parti-
tioned into two sub-models that each recognizes inputs from
one of the two data distributions (task vs. watermarked). We
trained a neural network, with one hidden layer of 32 neurons,
on MNIST. It is purposely simple for clarity of exposition;
we repeat this experiment on a DNN (see Figure 21 in Ap-
pendix A.3 giving the same conclusions). We watermark the
model by adding a trigger (a 3×3-pixel white square at cor-
ner) to the input and change the label that comes with it [56].

We record the neurons activated when the model predicts
on legitimate task data from the MNIST dataset, as well as wa-
termarked data. We plot the frequency of neuron activations
in Figure 2a for both (a) legitimate and (b) watermark data.
Here, each square represents a neuron and a higher intensity
(whiter color) represents more frequent activations. Confirm-
ing our hypothesis of two sub-models, we see that different
neurons are activated for legitimate and watermarked data.
As we further hypothesized, fewer neurons are activated for
the watermark task, likely because this task (identifying the
simple trigger) is easier than classifying hand-written digits.

4 Entangling Watermarks

Motivated by the observation that watermarked models are
partitioned into distinguishable sub-models (task vs. water-
mark), the intuition behind our proposal is to entangle the
watermark with the task manifold. Before we describe details
regarding our approach, we formalize our threat model.

Threat Model. The objective of our adversary is to extract a
model without its watermark. To that end, we assume that our
adversary (a) has knowledge of the training data used to train
the victim model (but not its labels), (b) uses these data points
or others from the task distribution for extraction, (c) knows
the architecture of the victim model, (d) has knowledge that
watermarking is deployed, but (e) does not have knowledge of

the parameters used to calibrate the watermarking procedure,
or the trigger used as part of the watermarking procedure.
Observe that such an adversary is a powerful white-box adver-
sary. The assumptions we make are standard, and are made in
prior work as well [1].

4.1 Soft Nearest Neighbor Loss
Recall that the objective of our watermarking scheme is to
ensure that watermarked models are not partitioned into dis-
tinguishable sub-models which will not survive extraction.
To ensure that both the watermark and task distributions are
jointly learned/represented by the same set of neurons (and
consequently ensure survivability), we make use of the soft
nearest neighbor loss (or SNNL) [25, 47]. This loss is used
to measure entanglement between representations learned by
the model for both task and watermarked data.

SNNL(X ,Y,T) =− 1
N ∑

i∈1..N
log

∑
j∈1..N

j 6=i
yi=y j

e−
||xi−x j ||2

T

∑
k∈1..N

k 6=i

e−
||xi−xk ||2

T

(a)

(b)

(1)

Introduced by Srivastava and Hinton [47], the SNNL was
modified and analyzed by Frosst et al. [25]. The loss charac-
terizes the entanglement of data manifolds in representation
spaces. The SNNL measures distances between points from
different groups (usually the classes) relative to the average
distance for points within the same group. When points from
different groups are closer relative to the average distance
between two points, the manifolds are said to be entangled.
This is the opposite intuition to a maximum-margin hyper-
plane used by support vector machines. Given a labelled data
matrix (X ,Y) where Y indicates which group the data points
X belong to, the SNNL of this matrix is given in Equation 1.

The main component of this loss computes the ratio be-
tween (a) the average distance separating a point xi from other
points in the same group yi, and (b) the average distance sep-
arating two points. A temperature parameter T is introduced
to give more or less emphasis on smaller distances (at small
temperatures) or larger distances (at high temperature). More
intuitively, one can imagine the data forming separate clus-
ters (one for each class) when the SNNL is minimized and
overlapping clusters when the SNNL is maximized.

4.2 Entangled Watermark Embedding
We present our watermarking strategy, Entangled Watermark
Embedding (EWE), in Algorithm 1. We utilize the SNNL’s
ability to entangle representations for data from the task and
watermarking distributions (outliers crafted by the defender
using triggers). That is, we encourage activation patterns for
legitimate task data and watermarked data to be similar, as

Algorithm 1: Entangled Watermark Embedding
Input: X ,Y,Dw,T,cS,cT ,r,α, loss,model, trigger
Output: A watermarked DNN model
/* Compute trigger positions */

1 Xw = Dw(cS),Y ′ = [Y0,Y1];
2 map=conv(∇Xw(SNNL([Xw,XcT],Y

′,T)), trigger);
3 position = argmax(map);
/* Generate watermarked data */

4 Xw[position] = trigger;
5 FGSM(Xw,LCE(Xw,YcT))/* optional */
6 FGSM(Xw,SNNL([Xw,XcT],Y

′,T))/* optional */
7 step = 0 /* Start training */
8 while loss not converged do
9 step += 1;

10 if step % r == 0 then
11 model.train([Xw,XcT], YcT)/* watermark */
12 else
13 model.train(X ,Y)/* primary task */

/* Fine-tune the temperature */

14 T (i) -= α * ∇T (i)SNNL([Xw,XcT]
(i),Y ′,T (i));

visualized in Figure 2b. This makes watermarks robust to
model extraction: an adversary querying the model on only
the task distribution will still extract watermarks.

Step 1. Generate watermarks: The defender aims to
watermark a model trained on the legitimate task dataset
D = {X ,Y}. First, they select a dataset Dw, representing the
watermarking distribution, and a source class cS from Dw. The
defender samples data Xw ∼ Dw(cS) to initialize watermark-
ing, where Dw(cS) represents data from Dw with label cS. Dw
may be the same as the legitimate dataset D if we are perform-
ing in-distribution watermarking, or a related dataset if instead
we are performing out-of-distribution (OOD) watermarking 4.
The defender then labels Xw with a semantically different tar-
get class, cT , of D. In other words, it should be unlikely for Xw
to ever be misclassified as cT (by an un-watermarked model).
Our goal is to train the model to have the special behavior that
it classifies Xw as cT , which makes it distinguishably different
from un-watermarked models.

To this end, we define a trigger, which is an input mask (see
Figure 18 (a) in Appendix A.3), and add it to each sample in
Xw. Thus, Xw now contains watermarks (outliers) that can be
used to watermark the model, and later, verify ownership. The
trigger should not change the semantics of Xw to be similar
to XcT (i.e., D(cT)). For example, a poor choice of a trigger
for in-distribution watermarks sampled from source class “1”
of MNIST, would be a horizontal line near the top of the im-
age (see Figure 18 (b)). This trigger might construe Xw to be
semantically closer to a “7” than a “1”. Such improper trig-

4OOD watermarking means the watermarked data is not sampled from
the task distribution

gers can weaken model performance and lead to the defender
falsely claiming ownership of models that were not water-
marked. To avoid these issues, we determine trigger location
as the area with the largest gradient of SNNL with respect to
the candidate input—this is done through the convolution in
the 2nd line of Algorithm 1.

Optionally, a defender can optimize the watermarked data
with gradient ascent to further avoid generating improper
triggers. The goal of this gradient ascent is to perturb the in-
put to decrease the confidence of the model in predicting
the target class. This is the opposite of optimization per-
formed by algorithms introduced to find adversarial exam-
ples, so we adapt one of these algorithms for our purpose
as shown in lines 5 and 6 of Algorithm 1. Since we would
like the effect of gradient ascent performed over the water-
marked input to transfer between different models [45], we
use the FGSM [14] which is a one-shot gradient ascent ap-
proach known to transfer better than iterative approaches like
PGD [27] because it introduces larger perturbations5. We
compute FGSM(Xw, f (Xw)) : X ′w = Xw+ε ·sign(∇Xw(f (Xw))
where ε is the step size, and f is a function operating on Xw.
In alternating steps, we define f to be LCE of predicting Xw as
the target class, cT , by a (different) clean model, or the SNNL
between Xw and XcT . The former encourages Xw to differ
from XcT , and the latter makes entanglement easier (leading
to more robust watermarks). We use more steps of the former
to ensure Xw is semantically different from cT .

Step 2. Modify the Loss Function. To watermark the
model more robustly, we compute the SNNL at each layer,
l ∈ [L], where L is the total number of layers in the DNN,
using its representation of Xw and XcT , which will allow us
to entangle them. Y ′ = [Y0,Y1] is arbitrary labels for [Xw,XcT]
respectively. We sum the SNNL across all layers, each with a
specific temperature T (l). We multiply the sum by a weight
factor κ which governs the relative importance of SNNL to
the cross-entropy during . In other words, κ controls the trade-
off between watermark robustness and model accuracy on the
task distribution. Our total loss function is thus:

L = LCE(X ,Y)−κ ·
L

∑
l=1

SNNL([X (l)
w ,X (l)

cT],Y
′,T (l))) (2)

Step 3. Train the Model. We initialize and train a model
until either the loss converges or the max epochs are reached.
In training, we sample r normal batches of legitimate data,
X , followed by a single interleaved batch of Xw concatenated
with XcT , both of which are required to entangling using the
SNNL. On legitimate data X , we set κ = 0 in Equation 2 to
minimize only the task (cross-entropy) loss. On interleaved
data [Xw,XcT] that includes watermarks, we set κ > 0 to op-
timize the total loss. Following Frosst et al. [12], we update
T using a rate of α that is learned during training, alleviating
the need to tune α as an additional hyperparameter.

5Note that here we are not concerned with the imperceptibility of water-
marked data so this is not a limitation in the context of our work.

1.0

0.5

0.0

0.5

1.0
Baseline (Before Training)

20

0

20

40
Baseline (During Training)

20

0

20

40
Baseline (After Training)

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
EWE (Before Training)

20 0 20 40

20

0

20

40
EWE (During Training)

20 0 20 40

20

0

20

40
EWE (After Training)

0
1
2
3
4
5
6
7 (cT)
8
9
watermark

Figure 3: Visualization of our proposed EWE entangling watermarks with data from the target class cT = 7 unlike prior
watermarking approaches which push these watermarks to a separate cluster. For visualization, we use PCA [21] to project
the representations of data in each model’s penultimate layer onto its two principal components. We project data before (left
column), during (middle column), and after (right column) training for a baseline model trained with the cross-entropy loss only
(top row) and for a model trained with our proposed EWE approach (bottom row) on MNIST.

0 20 40 60 80 100
Watermark Success(%)

0

200

400

600

800

N
um

be
r o

f Q
ue

ry
R

eq
ui

re
d

Fa
ls

e
w

at
er

m
ar

k
ra

te
: 1

0%

(13%: n=340)

(16%: n=102)
(23%: n=30) (50%: n=30) (75%: n=30)

Figure 4: A defender using a T test to claim ownership
of a stolen model, with 95% confidence, needs to make
increasingly more queries as the watermark success rate
decreases on the stolen model.

4.3 Validating EWE
We explore if EWE improves upon its predecessors by: (1)
enabling ownership verification with fewer queries (§ 4.3.1),
(2) better entangling watermarks with the classification task
(§ 4.3.2), (3) being more robust against extraction attacks
(§ 4.3.3), and (4) scaling to deeper larger architectures
(§ 4.3.4). For all experiments in this section, the watermarked
data is generated with the optional step described in § 4.2.

4.3.1 Ownership Verification

The defender may claim ownership of stolen models by statis-
tically showing that the model’s behavior differs significantly
from any non-watermarked models. A T-test requires surpris-
ingly few queries to the stolen model if the watermark success
rate far exceeds the false positive rate. We denote the water-
mark success rate as the probability of a watermarked model
correctly identifying watermarked data as class cT ; the false
positive rate is the probability of a non-watermarked model

classifying watermarked data as cT .
The watermark success rate is the mean of a binomial dis-

tribution characterizing if watermarked data is classified as
the target class. According to the Central Limit Theoreom
(CLT), it is normally distributed when the number of queries,
n, is greater than 30. If we follow the watermark generation
procedures described in § 4.2, the false watermark rate should
be lower than random chance, i.e., (100/K)%. In Figure 4,
we set the false watermark rate to random chance as a conser-
vative upper bound. We often observed rates much lower than
this. Figure 4 shows the number of queries needed to claim
ownership, with 95% confidence, as the watermark success
rate is varied. For watermark success rates above 23%, the
number of queries required is quite small (i.e., 30, the minimal
for CLT to be valid). As we will see in § 4.3.3, only our EWE
strategy achieves these success rates after extraction. Even the
lowest observed EWE success rate of 18.74% (on CIFAR-10)
requires (just) under 100 queries. Figure 4 also shows that
exponentially more queries are required as the watermark
success rate approaches the false watermark rate—in many
cases, the watermark success rate of the baseline is too low
for a defender to claim ownership (see Table 1).

Note that outside this section we report the watermark
success rate after subtracting the false watermark rate for
ease of understanding.

4.3.2 Increased Entanglement

First, we validate the increased entanglement of EWE over
the baseline by visualizing each model’s representation (in
its penultimate layer) of the data. In Figure 3, we train our
baseline with cross-entropy only (top row) and another model
with EWE (bottom row). The baseline learns watermarks
naively, by minimizing the cross-entropy loss with the target

101 102 103 104 105 106 107 108 1091010

Weight Factor (log scale)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
K

A
 si

m
ila

rit
y

(a) MNIST dataset

101 102 103 104 105 106 107 108 1091010

Weight Factor (log scale)

0.2

0.4

0.6

0.8

1.0

C
K

A
 si

m
ila

rit
y

(b) Fashion MNIST dataset

Figure 5: EWE is able to entangle watermarked with le-
gitimate data because training with SNNL leads to higher
CKA similarity between them. We vary κ from 0 (the base-
line) to > 0 (EWE) using a log scale.

class cT . After training, we see that this pushes watermarked
data, Xw, to a separate cluster, away from the target class
cT . Instead, EWE entangles Xw with X(cT) using the SNNL,
which leads to overlapping clusters of watermarked data with
legitimate data. Intuitively and experimentally, we see that
EWE obtains the least separation in the penultimate hidden
layer because it accumulates all previous layers’ SNNL.

Second, similarly to what we did in § 3.2, we analyze the
frequency of activation of neurons for these models, and find
that there is more similarity between watermarked and legit-
imate data when EWE is used. The results are in Figure 2
and Figure 20 (see Appendix A.3) which shows a real-world
scenario with a convolutional neural network.

Third, we analyze the similarity of their representations
using central kernel alignment (CKA) [9, 25]. This similarity
metric centers the distributions of the two representations
before measuring alignment. In Figure 5, we see that higher
levels of SNNL penalty do in fact lead to higher CKA similar-
ity between watermarked and legitimate data (compared with
κ = 0, the cross-entropy baseline). This, coupled with our first
experiment, explains why EWE achieves better entanglement.

4.3.3 Robustness against Extraction

We now evaluate the robustness of EWE against retraining-
based extraction attacks launched by white-box adversaries
(see the top of § 4). To remove watermarks, this adversary
retrains using only the cross-entropy loss evaluated only on
legitimate data. We attack two victim neural networks: one
with our EWE strategy and one with our baseline, which uses
only the cross-entropy loss, as proposed by Adi et al. [1].

We define the watermark success rate as the proportion
of Xw correctly identified as cT . We measure the validation
accuracy on a held out dataset. We report results for both
models in Table 1 and find that the watermark success rate on
the victim model (before retraining based extraction) is often
near 100% for both EWE and the baseline. After extraction,
the watermark success rate always drops. It is in this case that
we observe the largest benefits of EWE (over the baseline):
there is often a ≥ 20 percentage point improvement in the
watermark success. Besides, we often observe a negligible

0 10 20 30 40 50 60
Epoch

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark-Accuracy Tradeoff
SNNL

2.082

2.083

2.084

2.085

SN
N

L

(a) MNIST dataset

0 10 20 30 40 50 60
Epoch

20

40

60

80

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark-Accuracy Tradeoff
SNNL

2.0985

2.0990

2.0995

SN
N

L

(b) Fashion MNIST dataset

Figure 6: There exists an inflection point in the model’s
task accuracy and the SNNL value, as training pro-
gresses. Before that point, continuing to train generally in-
creases the watermark success rate relative to the task accu-
racy (we report the ratio between variations of the two).

decrease in validation accuracy: an average of 0.81 percentage
points with a max of 3 for the ResNet on Fashion MNIST.

Our main result is that we can achieve watermark success
rates between 18% and 60% with an average of 38.39%; the
baseline is between 0.3% and 9% with an average of 5.77%.
There is a minimal 0.81 percentage point degradation on av-
erage of validation accuracy compared to the baseline, with
a maximum of 3 percentage points for a ResNet on Fashion
MNIST. These watermark success rates allow us to claim own-
ership with 95% confidence with < 100 queries (see § 4.3.1).

We also validate that continuing to maximize the SNNL
during training is beneficial. In Figure 6 we see that continued
training improves the watermark robustness and task accuracy
trade-off, until it plateaus near 60 epochs. We measure this
trade-off as the ratio between the increase of the watermark
success rate and the decrease of the task accuracy.

4.3.4 Scalability to Deeper Architectures

Entangling watermarks with legitimate data enables, and even
forces, earlier layers to learn features that recognize both types
of data simultaneously, as seen in Figure 2. This explains the
improved robustness of watermarks. With entanglement, only
later layers need to use capacity to separate between the two
types of data, preserving model accuracy. This setup should
work better for deeper models: there is only more capacity to
learn shared features for watermarks and legitimate data. Our
results in Figure 20 in Appendix A.3 confirms this.

However, deeper models such as ResNets often benefit (in
their validation accuracy) from linearity: residual connec-

Dataset Method Victim Model Extracted Model
Validation Accuracy Watermark Success Validation Accuracy Watermark Success

MNIST Baseline 99.03(±0.04)% 99.98(±0.03)% 98.79(±0.12)% 0.31(±0.23)%
EWE 98.91(±0.13)% 99.9(±0.11)% 98.76(±0.12)% 65.68(±10.89)%

Fashion MNIST Baseline 90.48(±0.32)% 98.76(±1.07)% 89.8(±0.38)% 8.96(±8.28)%
EWE 90.31(±0.31)% 87.83(±5.86)% 89.82(±0.45)% 58.1(±12.95)%

Speech Command Baseline 98.11(±0.35)% 98.67(±0.94)% 97.3(±0.43)% 3.55(±1.89)%
EWE 97.5(±0.44)% 96.49(±2.18)% 96.83(±0.45)% 41.65(±22.39)%

Fashion MNIST Baseline 91.64(±0.36)% 75.6(±15.09)% 91.05(±0.44)% 5.68(±11.78)%
(ResNet) EWE 88.33(±1.97)% 94.24(±5.5)% 88.27(±1.53)% 24.63(±17.99)%
CIFAR10 Baseline 85.82(±1.04)% 19.9(±15.48)% 81.62(±1.74)% 7.83(±14.23)%

EWE 85.41(±1.01)% 25.74(±8.67)% 81.78(±1.31)% 18.74(±12.3)%
CIFAR100 Baseline 54.11(±1.89)% 8.37(±13.44)% 47.42(±2.54)% 8.31(±15.1)%

EWE 53.85(±1.07)% 67.87(±10.97)% 47.62(±1.41)% 21.55(±9.76)%

Table 1: Performance of the baseline approach (i.e., minimize cross-entropy of watermarks with the target class) vs. the
proposed watermarking approach (EWE). For each dataset, we train a model with each approach and extract it by having it
label its own training data. We measure the validation accuracy and watermark success rates, i.e., difference between percentage
of watermarks classified as the target class on a watermarked versus non-watermarked model. Both techniques perform well on
the victim model, so the intellectual property of models whose parameters are copied directly can be claimed by either technique.
However, the baseline approach fails once it is extracted whereas EWE reaches significantly higher watermark success rate.

tions which add the input of the residual block directly to the
output [17]. Notice that watermarks (e.g. a “1” with a small
square trigger) are easily separable from legitimate data of the
target class (e.g. a “9”) and from the source class (e.g., a “1”
without the trigger) because they share (nearly) no common
features—they are outliers. Hence, residual connections pose
a greater problem for entanglement because there are often
no shared features, and forcing the watermarks (by increasing
κ) to entangle with the legitimate data of cT may cause the
model to misclassfy XcS and XcT .

Our results validate this intuition. We see in Figure 19 in
Appendix A.3 that deep convolutional neural networks can
still entangle watermarks but yet we find that comparable
ResNets cannot. Thus, we use our OOD watermarks (see Step
1 of § 4.2) because forcing them to entangle with XcT has a
lesser impact on accuracy. Though difficult to entangle, they
achieve sufficient watermark success for claiming ownership
(see Table 1). Even for more difficult tasks, as expected, EWE
outperforms the baseline (see CIFAR-100 in Table 1), but
both see a significant drop in watermark success. Finally, we
see that watermarking is sensitive to the number of classes, in
particular, EWE (see Figure 24 in Appendix A.3), probably
due to complexity of the representation space.

5 Calibration of Watermark Entanglement

Through the calibration of EWE for four vision datasets
(MNIST [28], Fashion MNIST [55], CIFAR-10, CIFAR-
100 [26]), and an audio dataset (Google Speech Com-
mands [54]), we answer the following questions: (1) what
is the trade-off between watermark robustness and task ac-
curacy?; (2) how should the different parameters of EWE be
configured?; and (3) is EWE robust to backdoor defenses and

attacks against watermarks? Our primary results are:
1. For MNIST, Fashion MNIST, and Speech Commands (by

which we validate if EWE is independent of the domain),
we achieved watermark success above 40% with less
than 1 percentage point drop in test accuracy. For CIFAR
datatsets, watermark success above 18% is reached with
a minimal accuracy loss of < 1.5 percentage points. The
weight factor allows the defender to control the trade-off
between watermark robustness and task accuracy.

2. The ratio of watermarks to legitimate data during train-
ing, the choice of source-target class pair, and the choice
of points to be watermarked all affect the performance
of EWE significantly; temperature does not since it is
automatically optimized during training as described in
§ 4.2. Refer to Appendix A.1 for more details.

3. Defenses against backdoors like pruning, fine-pruning,
and Neural Cleanse are all ineffective in removing EWE.

5.1 Experimental Setup
We chose to evaluate EWE on four datasets in addition to
MNIST. While CIFAR-10 and CIFAR-100 are used to test the
scalability of EWE as described in § 4.3.4, we use Fashion
MNIST because its classes are much harder to linearly sepa-
rate than MNIST, making it a good benchmark for learning a
more complex task, with comparable computational cost to
MNIST. Thus it allows us to tune the hyperparameters effi-
ciently to explore behaviors of EWE. Further, it shows that
EWE works well when the task naturally contains ambigu-
ous inputs across pairs of classes. We also evaluated EWE on
Google Speech Commands, an audio dataset for speech recog-
nition, because speech recognition is one of the applications
where ML is already pervasively deployed across industry.

Datasets. 1. MNIST is a dataset of hand-written digits
(from 0 to 9) with 70,000 data points [28], where each data
point is a gray-scale image of shape 28×28. When needed,
we sampled OOD watermarked data from Fashion MNIST.
2. Fashion MNIST is a dataset of fashion items [55]. It can
be used interchangeably with MNIST. Because the task is
more complex, models achieving > 99% accuracy on MNIST
however only reach > 90% on Fashion MNIST. When needed,
we sampled OOD watermarked data from MNIST.
3. Google Speech Commands is an audio dataset of 10 sin-
gle spoken words [54]. The training data has about 40,000
samples. We pre-processed the data to obtain a Mel Spectro-
gram [7]. We tried two methods for generating watermarks
both using in-distribution data: (a) modifying the audio signal,
or (b) modifying the spectrogram. For (a), we sample data
from the source class and overwrite 1

8
th

of the total length of
the sample (i.e., 0.125 seconds) with a sine curve, as shown
in Figure 26; for (b), each audio sample is represented as
an array of size 125×80. We then define the trigger to be
two 10×10-pixel squares at both the upper right and upper
left-hand corners in case of vanishing or exploding gradients.
It was observed that the choice of using (a) or (b) does not
influence the performance of EWE.
4. CIFAR-10 consists of 60,000 32×32×3 color images
equally divided into 10 classes [26], while 50,000 is used
for training and 10,000 is used for testing. When needed, we
use OOD watermarks sampled from SVHN [39].
5. CIFAR-100 is very similar to CIFAR-10, except it has 100
classes and there are 600 images for each class [26]. When
needed, we use OOD watermarks sampled from SVHN [39].

Architectures. We use the following architectures:
1. Convolutional Neural Networks are used for MNIST and
Fashion MNIST. The architecture is composed of 2 convolu-
tion layers with 32 5×5 and 64 3×3 kernels respectively, and
2×2 max pooling. It is followed by two fully-connected (FC)
layers with 128 and 10 neurons respectively. All except the
last layers are followed by a dropout layer to avoid overfitting.
When implementing EWE, the SNNL is computed after both
convolution layers and the first FC layer.
2. Recurrent Neural Networks are used for Google Speech
Command dataset. The architecture is composed of 80 long
short-term memory (LSTM) cells of 128 hidden units fol-
lowed by two FC layers of 128 and 10 neurons respectively.
When applying EWE, the SNNL is computed after the 40th

cell, the last (80th) cell, and the first FC layer.
3. Residual Neural Network (ResNet) [17] are used for
Fashion MNIST, CIFAR-10, and CIFAR-100 datasets. We
use ResNet-18 which contains 1 convolution layer followed
by 8 residual blocks (each containing 2 convolution layers),
and ends with a FC layer. It is worth noting that the input to a
residual block is added to its output. We compute SNNL on
the outputs of the last 3 residual blocks.

86 88 90 92 94
Test Accuracy(%)

0

20

40

60

80

100

W
at

er
m

ar
k

Su
cc

es
s(

%
)

(a) Fashion MNIST

94 95 96 97 98 99 100
Test Accuracy(%)

0

20

40

60

80

100

W
at

er
m

ar
k

Su
cc

es
s(

%
)

(b) Speech Command

Figure 7: Watermark success versus model accuracy on
the task. Each point corresponds to a model trained with
uniformly-sampled hyperparameters. As test accuracy in-
creases, it becomes harder to have robust watermarks.

5.2 No Free Lunch: Watermark vs. Utility

We study the tension between accuracy on the task’s distribu-
tion and robustness of the watermarks: if the defender wants
to claim ownership of a model, they would like this model
to predict their chosen label on the watermarks as frequently
as possible while at the same time minimizing the impact of
watermarks on the model’s performance when presented with
samples from the task distribution.

To systematically explore the trade-off between success-
fully encoding watermarks and correctly predicting on the
task distribution, we first perform a comprehensive grid search
that considers all hyper-parameters relevant to our approach:
the class pairs (cS,cT) (note that cS is a class from another
dataset when OOD watermark is used), the temperature T ,
the weight ratio κ, and the ratio of task to watermark data (i.e.
r in Algorithm 1), how close points have to be to the target
class to be watermarked. In Appendix A.1, we perform an
ablation study on the impact of each of these parameters: they
can be used to control the trade-off.

Each point in Figure 7 corresponds to a model trained us-
ing EWE with a set of hyper-parameters. For the Fashion
MNIST dataset shown in Figure 7 (a), the tendency is ex-
ponential: it becomes exponentially harder to improve accu-
racy by decreasing the watermark success rate. In the Speech
Commands dataset, as shown in Figure 7 (b), there is a large
number of points with nearly zero watermark success. This
means it is harder to find a good set of hyperparameters for the
approach. However, there exists points in the upper right cor-
ner demonstrating that certain hyperparameter values could
lead to robust watermark with little impact on test accuracy.

5.3 Evaluation of Defenses against Backdoors

Pruning. Since backdoors and legitimate task data activate
different neurons, pruning proposes to remove neurons that
are infrequently activated by legitimate data to decrease the
performance of potential backdoors [31]. Given that neurons
less frequently activated contribute less to model predictions
on task inputs, pruning them is likely to have a negligible
effect. Since watermarks are a form of backdoors, it is natural

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Victim Accuracy
Victim Watermark
Extracted Accuracy
Extracted Watermark

(a) MNIST

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Victim Accuracy
Victim Watermark
Extracted Accuracy
Extracted Watermark

(b) Fashion MNIST

Figure 8: Task accuracy and watermark success rate on the ex-
tracted model in the face of a pruning attack. For both datasets,
bringing the watermark success rate below 20% comes at the
adversary’s expense: accuracy drop of more than 40 percent-
age points.

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Victim Accuracy
Victim Watermark
Extracted Accuracy
Extracted Watermark

(a) MNIST

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Victim Accuracy
Victim Watermark
Extracted Accuracy
Extracted Watermark

(b) Fashion MNIST

Figure 9: Task accuracy and watermark success rate on the
extracted model in the face of a fine pruning attack. Despite a
more advantageous trade-off between watermark success rate
and task accuracy, the adversary is unable to bring the wa-
termark success rate sufficiently low to prevent the defender
to claim ownership (see § 4.3.1) until 40% neurons are fine-
pruned. Beyond this point, fine-pruning more neurons would
lead to loss in the extracted model’s accuracy.

to ask whether pruning can mitigate EWE.
We find this is not the case because watermarks are en-

tangled to the task distribution. Recall Figure 2b, where we
illustrated how EWE models have similar activation patterns
on watermarked and legitimate data. Thus, neurons encoding
the watermarks are frequently activated when the model is
presented with legitimate data. Hence, if we extract a stolen
model and prune its neurons that are activated the least fre-
quently, we find that watermark success rate remains high
despite significant pruning (refer Figure 8). In fact, the wa-
termark success rate only starts decreasing below 20% when
the model’s accuracy on legitimate data also significantly de-
creases (by more than 40 percentage points). Such a model
becomes useless to the adversary, who would be better off
training a model from scratch. We conclude that pruning is
ineffective against EWE.

Fine Pruning. Fine pruning improves over pruning by con-
tinuing to train (i.e., fine-tune) the model after pruning [31].
This helps recover some of the accuracy that has been lost
during pruning. In the presence of backdoors, this also con-
tributes to overwriting any behavior learned from backdoors.

We also analyze EWE in the face of fine pruning. We first

(a) (b) (c) (d)

Figure 10: Neural Cleanse leverages the intuition that triggers
may be recovered by looking for adversarial examples for
the target class. To illustrate this, we have here a legitimate
input of the target class (a), an example of a watermark (b),
an adversarial example (see Appendix A.2 for details) intial-
ized as a blank image and perturbed to be misclassified by
the extracted model in the target class(c), and the backdoor
candidate recovered by Neural Cleanse (d). If either (c) or
(d) were similar to the watermark, this would enable us to
recover the watermarked data and then use this knowledge
to remove the watermark as described in § 6. However, this
is not the case for models extracted from a EWE defended
victim model: the watermark proposed (c and d) is different
from the trigger used by EWE (b).

extract the model by retraining (i.e., randomly initialize model
weights and train them with data labeled by the victim model),
prune a fraction of neurons that are less frequently activated,
and then train the non-pruned weights on data labeled by the
victim model. Results are plotted in Figure 9. In the most
favorable setting for fine pruning, watermark success rate on
the extracted model remains around 20% before harming the
utility of the model, which is still enough to claim ownership—
as shown in § 4.3.1. This is despite the fact that 50% of the
architecture’s neurons were pruned. Since the data used for
fine-tuning is labeled by the watermarked victim model, it
contains information about the watermarks even when the
labels provided are for legitimate data.

Neural Cleanse. Neural Cleanse is a technique that detects
and removes backdoors in deep neural networks [53]. The
intuition of this technique is that adding a backdoor would
cause the clusters of the source and target classes to become
closer in the representation space. Therefore, for every class c
of a dataset, Neural Cleanse tries to perturb data from classes
different to c in order to have them misclassified in class c.
Next, the class requiring significantly smaller perturbations to
be achieved is identified as the "infected" class (i.e., the class
which backdoors were crafted to achieve as the target class).
In particular, the authors define a model as backdoored if an
anomaly index derived from this analysis is above a certain
threshold (set to 2). The perturbation required to achieve this
class is the recovered trigger. Once both the target class and
trigger have been identified, one can remove the backdoor by
retraining the model to classify data with the trigger in the
correct class, à la adversarial training [50].

To analyze the robustness of EWE to Neural Cleanse, we
compare the performance of a model watermarked with EWE
and a baseline model watermarked by minimizing the cross-

(a) Un-watermarked Model (b) Watermarked Model (Baseline) (c) EWE In-distribution Watermark (d) EWE Out-distribution Watermark

Figure 11: Change in the distance among clusters of data from different Fashion MNIST classes following watermarking.
The four subplots are made using four different approaches specified by the sub-captions. In (c) and (d), cS = 8 and cT = 0, while
Dw is MNIST for (d). Each point in the plot represents an output vector of the last hidden layer. These representations are plotted
in 2-D using UMAP dimensionality reduction to preserve global distances [34]. Comparing (a) and (b), one can observe that
the clusters of class 8 and 0 become closer in (b) while the distances among the other classes remain similar. This is why such
watermarked model can be detected by Neural Cleanse [53], which searches for pairs of classes that are easily misclassified
with one another. In contrast, EWE with either in or out of distribution watermarks does not influence this distance significantly,
which makes it more difficult for Neural Cleanse to detect the watermark.

entropy of watermarks labeled as the target class (κ = 0 in
Equation 2). We compute the anomaly index of the EWE and
baseline models. If the anomaly index is above 2, the model
is detected as being watermarked (i.e., backdoored in [53]).
On the Fashion MNIST (see Figure 10), EWE exbhibits an
average anomaly index of 1.24 (over 5 runs) that evades de-
tection whereas the baseline model has an average index of
8.84. This means that Neural Cleanse is unable to identify our
watermark and its trigger.

It is worth noting: (a) Neural Cleanse considers the problem
of backdooring the entire set of classes (i.e., all classes are con-
sidered as source classes), and (b) backdoor attacks usually
aim at minimal perturbation to the inputs. While being similar
to legitimate data from all classes and labeled as a specific
class, such backdoors changes the decision surface signifi-
cantly, which would be detected by Neural Cleanse. In EWE,
we insert watermarks only for a single source-target class pair.
Besides, watermarked data is not restricted by the degree of
perturbation and could even be OOD. Thus entangling it with
cT does not change the decision boundary between cT and
other classes, as shown in Figure 11 (and Figure 22, 23 for
MNIST and Speech Command in Appendix A.3). This makes
it hard for Neural Cleanse to detect EWE watermarks.

6 Robustness to Adaptive Attackers

Recall from our threat model (see the top of § 4) that the
adversary has no knowledge of the parameters used to cali-
brate the watermarking scheme (such as κ and T (1) · · ·T (L)

in Algorithm 1) nor the specific trigger used to verify water-
marking. In this section, we explore when the adversary has
more resources and knowledge than stated in the threat model.

6.1 Knowledge of EWE and its parameters
Knowledge of the parameters used to configure EWE defeats
watermarking, as expected. The robustness of EWE relies
on maintaining the secrecy of the trigger and watermarking
parameters to protect the intellectual property contained in the
model. If the adversary knows the trigger used to watermark
inputs, they could refuse to classify any input that contains
that trigger (denial-of-service). Alternatively, they could ex-
tract the model while instead minimizing the SNNL of the
watermarks and legitimate data of class cT . Note, minimizing
SNNL corresponds to disentangling. Additionally, adversaries
may also be able to retrain the triggers (and thus, watermarks)
to predict the correct label.

Any of these results in complete removal of watermarks
However, this is not a realistic threat model since the adversary
should only know that EWE was used as a watermarking
scheme (see (e) in our threat model defined in § 4. In this
way, parameters of EWE play a similar role to cryptographic
keys. Next, we evaluate EWE against several more realistic
adaptive attacks against watermarks such as piracy attacks.

6.2 Knowledge of EWE only
With knowledge of EWE but not its configuration (e.g., the
source and target classes), the adversary can still adapt in
several ways. We evaluate four adaptive attacks.
Disentangling Data. We conjecture that the adversary
could perform extraction by minimizing SNNL to disentangle
watermarks from task data. We assumed a strong threat model
such that the adversary has knowledge of all the parameters
of EWE (including the trigger if in-distribution watermark is
used, and the OOD dataset if OOD watermark is used) except
the source and target classes. Thus, the adversary guesses a
pair of classes, constructs watermarked data following EWE,
and extracts the model while using EWE with κ < 0 to disen-
tangle the purported watermark data and legitimate data from

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Extracted Accuracy
EWE Watermark
Piracy Watermark

(a) MNIST

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Extracted Accuracy
EWE Watermark
Piracy Watermark

(b) Fashion MNIST

Figure 12: Task accuracy and watermark success rate after
fine-pruning on the extracted model with a pirate watermark.
With less than 10% neurons pruned, the pirate watermark is
removed while the owner’s watermark remains.

the purported target class. Following such a procedure, we
observe that the watermark success of the extracted model on
Fashion MNIST drops from 48.81% to 22.82% if the guess
does not match with the true source-target pair, and to 6.34%
if the guess is correct.. On MNIST, watermark success drops
from 41.62% to 30.14% when the guess is wrong, and to
0.08% otherwise. The results from the Speech Commands
dataset have large variance, but follow a similar trend: the
watermark success drops to an average of 16.81% due to the
attack. Thus, while watermark success rates are lowered by
this attack, the defender is still able to claim ownership when
the adversary guesses the source-target pair incorrectly with
about 30 queries for the two vision datasets, and near 100
queries for Speech Commands. Furthermore, observe that
guessing the pair of classes correctly requires significant com-
pute to train models corresponding to the K(K−1) possible
source-target pairs where K is the number of classes in the
dataset , which defeats the purpose of model extraction.

Piracy Attack. In a piracy attack, the adversary embeds
their own watermark with EWE so that the model is water-
marked twice—it becomes ambiguous to claim ownership
through watermarks. To remove the pirate watermark, we pro-
pose to fine-prune [31] the extracted model on data labeled
by the victim model. As shown in Figure 12, the owner’s
watermark is not removed as we discussed fine pruning in
§ 5.3, whereas the pirate watermark would be removed (even
if the adversary uses EWE) because data labelled by the vic-
tim model does not contain information about the pirate wa-
termark. The adversary cannot do the same to remove the
owner’s watermark because this requires access to a dataset
labeled by another source, at which point the cost of piracy de-
feats model stealing: the adversary could have trained a model
on that dataset and would not benefit from model stealing.

Anomaly Detection. Imagine the case of an extracted
model deployed as an online ML API. The adversary may
know (or suspect) the model to be watermarked, so they may
decide to implement an anomaly detector to filter queries con-
taining data watermarked by EWE and respond to them with
a random prediction. By doing so, even though the parameters

Method Accuracy Loss Detected Watermark
LOF 7.00(±0.3)% 99.93(±0.03)%
Isolation Forest 8.64(±0.32)% 92.82(±1.32)%

Table 2: Proportion of watermarks detected and accuracy loss
when anomaly detectors filter suspicious inputs.

0.000 0.005 0.010 0.015 0.020
Learning Rate

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(a) Finetune fully connected layers

0.000 0.005 0.010 0.015 0.020
Learning Rate

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(b) Finetune all layers

Figure 13: Task accuracy and watermark success rate of the
extracted model after transfer learning from GTSRB to LISA.
Even fine-tuning all the layers does not remove watermarks.

still embed the watermarks, the adversary could still prevent
the defender from claiming ownership.

We tested two common anomaly detectors on Fashion
MNIST: Local Outlier Factor (LOF) [4] and Isolation For-
est [30], on activations of the last hidden layer. Results are
shown in Table 2. Both detectors are able to detect more than
90% of watermarked data. However, this comes at the cost
of identifying parts of the validation dataset as outliers and
results in a sharp accuracy drop of 7.0 and 8.64 percentage
points respectively. This may be due to the curse of dimension-
ality [23]: it is harder to learn higher dimensional distribution.
Indeed, it is worth noting that anomaly detectors on hidden
layers consistently work better than on the inputs themselves.

Transfer Learning. The adversary may also transfer
knowledge of the extracted model to another dataset in the
same domain [42] with the hope of disassociating the model
from EWE’s watermark distribution. To evaluate if water-
marks persist after transfer learning, we chose two datasets
in the same domain. The victim model is trained on the Ger-
man Traffic Sign Dataset (GTSRB) [48] and we transferred
the extracted model to the LISA Traffic Sign Dataset [36].
We fine-tune either (a) only the fully connected layers, or
(b) all layers for the same number of epochs that the victim
model was trained for. Before we verify the watermark, the
output layer of the transferred model is replaced to match the
dimension of the victim model (they may differ) [1].

As shown in Figure 13, (a) achieves an accuracy of up
to 98.25% but leaves the watermark unaffected; (b) reaches
an accuracy of 98.56% and begins to weaken the watermark
as one increases the learning rate. However, the pretrained
knowledge is lost due to large learning rate values before the
watermark is removed. This is consistent with observations
in prior work [1]. We also note that transfer learning requires
that the adversary have access to additional training data and

perform more training steps, so it is expected that our ability
to claim model ownership will be weaker.

Take-away. The adversary also faces a no free lunch
situation. They cannot adapt with disentanglement, piracy,
anomaly detection, or transfer learning, and remove EWE
watermarks, unless they sacrifice the stolen model’s utility.

7 Discussion
Hyperparameter Selection. Our results suggest that the
watermarking survivability comes at a nominal cost (about
0.81% in accuracy degradation). Yet, this value varies depend-
ing on the dataset and the hyperparameters used for training
(which themselves also depend on the dataset) as we explore
in Appendix A.1. Determining the relationship with relevant
properties of the dataset is future work.

Computational Overheads. Our experiments suggest that
the size of the watermarked dataset should be 2× less than
the size of the legitimate dataset. However, this implies that
the model is now trained on 1.5−2× more data than before.
While this induces additional computational overheads, we be-
lieve that the trade-offs are advantageous in terms of proving
ownership. A more detailed analysis is required to understand
if the same phenomenon exists for more complex tasks with
larger datasets.

Improving Utility. EWE utilizes the SNNL to mix repre-
sentations from two different distributions; this ensures the
activation patterns survive extraction. However, this is at a
nominal expense to the utility; for certain applications, such a
decrease in utility (even if small) is not desired. We believe
that the same desired properties could be more easily achieved
if one were to replace ReLU activations with the smoother
Sigmoid activations while computing the SNNL.

Algorithmic Efficiency. In Algorithm 1, we modified the
loss function by computing the SNNL at every layer of the
DNN. However, it may not be necessary to do so. In Figure
20, we plot the activation patterns of hidden layers of a model
trained using EWE; we observe that adding the SNNL to just
the last layers provides the desired guarantees. Additionally,
we observe a slight increase in model utility when not all
layers are entangled. A detailed understanding of how one
can choose the layers is left to future work.

Scalability and Future Research Directions. As men-
tioned in § 4.3.4, EWE suffers in terms of trade-off between
model performance and watermark robustness when we scale
to deeper architectures, and more complex datasets. Given
the results on CIFAR-100, more work may be needed to scale
the current method to larger datasets. According to Figure 24
(in Appendix A.3), the performance of EWE is impacted by
the number of classes. We suspect this may be due to the rep-
resentation space being more complicated (i.e. there are more
clusters), making it more difficult to entangle two arbitrarily

chosen clusters. Thus, a potential next step would be to inves-
tigate the interplay between the design of triggers to control
the cluster of watermarked data; and the similarity structures
and orientation of the representation space to choose source
and target classes accordingly.

Another possible improvement is to use m-to-n watermark-
ing. In this work, we focused on 1-to-1 watermarking, which
watermarks one class of data and entangles it with another
class. However, as long as the watermarked model behaves
significantly differently from a clean model, the model owner
could choose to watermark m classes of data, entangle them
with n other classes, and claim ownership by following the
similar verification process as described in § 4.3.1.

8 Conclusions
We proposed Entangled Watermark Embedding (EWE),
which forces the model to entangle representations for legiti-
mate task data and watermarks. Our mechanism formulates a
new loss involving the Soft Nearest Neighbors Loss, which
when minimized increases entanglement. Through our evalua-
tion on tasks from the vision and audio domain, we show that
EWE is indeed robust to not only model extraction attacks,
but also piracy attacks, anomaly detection, transfer learning,
and efforts used to mitigate backdoor (poisoning) attacks. All
this is achieved while preserving watermarking accuracy, with
(a) a nominal loss in classification accuracy, and (b) 1.5−2×
increase in computational overhead. Scaling EWE to complex
tasks without great accuracy loss remains as an open problem.

Acknowledgments
The authors would like to thank Carrie Gates for shepherding
this paper. This research was funded by CIFAR, DARPA
GARD, Microsoft, and NSERC. VC was funded in part by
the Landweber Fellowship.

References

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny
Pinkas, and Joseph Keshet. Turning your weakness into
a strength: Watermarking deep neural networks by back-
dooring. In 27th USENIX Security Symposium (USENIX
Security 18). USENIX Association, August 2018.

[2] Ibrahim M Alabdulmohsin, Xin Gao, and Xiangliang
Zhang. Adding robustness to support vector machines
against adversarial reverse engineering. In Proceedings
of the 23rd ACM International Conference on Informa-
tion and Knowledge Management. ACM, 2014.

[3] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. CSI NN: Reverse engineering of neural network
architectures through electromagnetic side channel. In
28th USENIX Security Symposium (USENIX Security
19). USENIX Association, August 2019.

[4] Markus M. Breunig, Hans-Peter Kriegel, Raymond T.
Ng, and Jörg Sander. Lof: Identifying density-based
local outliers. SIGMOD Rec., 29(2):93–104, May 2000.

[5] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Gia-
comelli, Somesh Jha, and Songbai Yan. Model extrac-
tion and active learning. CoRR, abs/1811.02054, 2018.

[6] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian
Molloy, and Biplav Srivastava. Detecting backdoor at-
tacks on deep neural networks by activation clustering.
In Proceedings of the 13th ACM Workshop on Artificial
Intelligence and Security. ACM, 2020.

[7] Keunwoo Choi, Deokjin Joo, and Juho Kim. Kapre:
On-gpu audio preprocessing layers for a quick imple-
mentation of deep neural network models with keras.
In Machine Learning for Music Discovery Workshop
at 34th International Conference on Machine Learning.
ICML, 2017.

[8] Jacson Rodrigues Correia-Silva, Rodrigo F Berriel,
Claudine Badue, Alberto F de Souza, and Thiago
Oliveira-Santos. Copycat cnn: Stealing knowledge by
persuading confession with random non-labeled data.
In 2018 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. IEEE, 2018.

[9] Corinna Cortes, Mehryar Mohri, and Afshin Ros-
tamizadeh. Algorithms for learning kernels based on
centered alignment. Journal of Machine Learning Re-
search, 13(Mar):795–828, 2012.

[10] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushan-
far. DeepSigns: A Generic Watermarking Framework
for IP Protection of Deep Learning Models. arXiv e-
prints, page arXiv:1804.00750, Apr 2018.

[11] Whitfield Diffie and Martin E. Hellman. New directions
in cryptography, 1976.

[12] Nicholas Frosst, Nicolas Papernot, and Geoffrey Hin-
ton. Analyzing and Improving Representations with
the Soft Nearest Neighbor Loss. arXiv e-prints, page
arXiv:1902.01889, Feb 2019.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016.

[14] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and Harnessing Adversarial Exam-
ples. arXiv e-prints, December 2014.

[15] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
BadNets: Identifying Vulnerabilities in the Machine
Learning Model Supply Chain. arXiv e-prints, page
arXiv:1708.06733, August 2017.

[16] Alon Halevy, Peter Norvig, and Fernando Pereira. The
unreasonable effectiveness of data. IEEE Intelligent
Systems, 24(2):8–12, 2009.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[18] Xuedong Huang, James Baker, and Raj Reddy. A histor-
ical perspective of speech recognition. Communications
of the ACM, 57(1):94–103, 2014.

[19] Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. High-Fidelity Ex-
traction of Neural Network Models. arXiv e-prints, page
arXiv:1909.01838, Sep 2019.

[20] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang
Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating
Machine Learning: Poisoning Attacks and Countermea-
sures for Regression Learning. arXiv e-prints, Apr 2018.

[21] Ian Jolliffe. Principal Component Analysis. Springer,
2002.

[22] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik,
I. L. Markov, M. Potkonjak, P. Tucker, H. Wang, and
G. Wolfe. Watermarking techniques for intellectual
property protection. In Proceedings of the 35th Annual
Design Automation Conference, DAC ’98, New York,
NY, USA, 1998. Association for Computing Machinery.

[23] Eamonn Keogh and Abdullah Mueen. Curse of Dimen-
sionality, pages 314–315. Springer, Boston, MA, 2017.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. 3rd International Conference
on Learning Representations ICLR 2015, 2015.

[25] Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. Similarity of Neural Network
Representations Revisited. The 36th International Con-
ference on Machine Learning, 2019.

[26] Alex Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, 2009.

[27] Alexey Kurakin, J. Ian Goodfellow, and Samy Bengio.
Adversarial examples in the physical world. 5th Interna-
tional Conference on Learning Representations, 2017.

[28] Y. Lecun and C. Cortes. The mnist database of hand-
written digits. http://yann.lecun.com/exdb/mnist/, 1998.

[29] T. Lee, B. Edwards, I. Molloy, and D. Su. Defending
against neural network model stealing attacks using de-
ceptive perturbations. In 2019 IEEE Security and Pri-
vacy Workshops (SPW), pages 43–49, 2019.

[30] F. Liu, K. M. Ting, and Z. Zhou. Isolation forest. In 8th
IEEE International Conference on Data Mining, 2008.

[31] K. Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
pruning: Defending against backdooring attacks on deep
neural networks. In 21st International Symposium on
Research in Attacks, Intrusions, and Defenses, 2018.

[32] Daniel Lowd and Christopher Meek. Adversarial learn-
ing. In Proceedings of the eleventh ACM SIGKDD in-
ternational conference on Knowledge discovery in data
mining, pages 641–647. ACM, 2005.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial
attacks. In 6th International Conference on Learning
Representations, 2018.

[34] Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Grossberger. Umap: Uniform manifold approximation
and projection. The Journal of Open Source Software,
3(29):861, 2018.

[35] Smitha Milli, L. Schmidt, A. Dragan, and M. Hardt.
Model reconstruction from model explanations. Pro-
ceedings of the Conference on Fairness, Accountability,
and Transparency, 2019.

[36] A. Mogelmose, M. M. Trivedi, and T. B. Moeslund.
Vision-based traffic sign detection and analysis for in-
telligent driver assistance systems: Perspectives and sur-
vey. IEEE Transactions on Intelligent Transportation
Systems, 13(4):1484–1497, 2012.

[37] Kevin P. Murphy. Machine Learning: A Probabilistic
Perspective. The MIT Press, 2012.

[38] Yuki Nagai, Y. Uchida, S. Sakazawa, and Shin’ichi
Satoh. Digital watermarking for deep neural networks.
International Journal of Multimedia Information Re-
trieval, 7:3–16, 2018.

[39] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Ng. Reading digits in natural
images with unsupervised feature learning. 24th Inter-
national Conference on Neural Information Processing
Systems, 2011.

[40] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff nets: Stealing functionality of black-box mod-
els. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019.

[41] Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade,
Shirish K. Shevade, and Vinod Ganapathy. A framework
for the extraction of deep neural networks by leveraging
public data. CoRR, abs/1905.09165, 2019.

[42] S. J. Pan and Q. Yang. A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineer-
ing, 22(10):1345–1359, 2010.

[43] Nicolas Papernot, P. McDaniel, Ian J. Goodfellow, S. Jha,
Z. Y. Celik, and A. Swami. Practical black-box attacks
against machine learning. ACM Asia Conference on
Computer and Communications Security, 2017.

[44] Nicolas Papernot, P. McDaniel, S. Jha, Matt Fredrikson,
Z. Y. Celik, and A. Swami. The limitations of deep
learning in adversarial settings. 1st IEEE European
Symposium on Security and Privacy, 2016.

[45] Nicolas Papernot, Patrick McDaniel, and Ian Goodfel-
low. Transferability in Machine Learning: from Phenom-
ena to Black-Box Attacks using Adversarial Samples.
arXiv e-prints, page arXiv:1605.07277, May 2016.

[46] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. Learning representations by back-propagating
errors. Nature, 323:533–536, 1986.

[47] R. Salakhutdinov and Geoffrey E. Hinton. Learning
a nonlinear embedding by preserving class neighbour-
hood structure. In 11th International Conference on
Artificial Intelligence and Statistics, 2007.

[48] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. The German Traffic Sign Recognition
Benchmark: A multi-class classification competition.
In IEEE International Joint Conference on Neural Net-
works, pages 1453–1460, 2011.

[49] Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. Energy and policy considerations for deep learning
in nlp. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. ACL, 2019.

[50] Christian Szegedy, W. Zaremba, Ilya Sutskever, Joan
Bruna, D. Erhan, Ian J. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. CoRR,
abs/1312.6199, 2014.

[51] Florian Tramèr, F. Zhang, A. Juels, M. Reiter, and T. Ris-
tenpart. Stealing machine learning models via prediction
apis. In USENIX Security Symposium, 2016.

[52] Jonathan Uesato, Brendan O’Donoghue, Pushmeet
Kohli, and Aäron van den Oord. Adversarial risk and the
dangers of evaluating against weak attacks. In Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80, pages 5032–5041. PMLR, 2018.

[53] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
B. Viswanath, H. Zheng, and B. Zhao. Neural cleanse:
Identifying and mitigating backdoor attacks in neural
networks. 2019 IEEE Symposium on Security and Pri-
vacy (SP), pages 707–723, 2019.

[54] Pete Warden. Speech Commands: A Dataset for Limited-
Vocabulary Speech Recognition. arXiv e-prints, page
arXiv:1804.03209, Apr 2018.

[55] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv e-prints, page
arXiv:1708.07747, Aug 2017.

[56] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, M. P.
Stoecklin, H. Huang, and I. Molloy. Protecting intellec-
tual property of deep neural networks with watermark-
ing. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, 2018.

A Appendix
A.1 Finetuning the hyperparameters of EWE
Next, we dive into details of each hyperparameter of EWE
and perform an ablation study.

Temperature. Temperature is a hyperparameter introduced
by Frosst et al [12]. It could be used to control which dis-
tances between points are more important: at small tempera-
tures, small distances matter more than at high temperatures,
where large distances matter most. In our experiments, we
found that the influence of temperature on the robustness
of watermark is not significant: a nice initialization leads to
high watermark success, whereas other initialization results
in watermark success high enough for claiming ownership, as
shown in Figure 14. We conjecture that this is because EWE
fine-tunes the temperature by gradient descent during training
(see the last line of Algorithm 1).

10 2 100 102 104 106

Temperature (log scale)

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(a) Fashion MNIST

10 2 100 102 104 106

Temperature (log scale)

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(b) Speech Commands

Figure 14: EWE is unlikely to fail due to setting the temper-
ature, but certain initialization of temperature does lead to
better trade-off between task accuracy and watermark success
rate. Note the temperature is plotted on log scale.

Weight Factor. As defined in Algorithm 1, the loss function
is the weighted sum of a cross entropy term and SNNL term.
The weight factor κ is a hyper-parameter that controls the
importance of learning the watermark task (by maximizing
the SNNL) relatively to the classification task (by minimizing
cross entropy loss). As shown in Figure 15, factors larger
in magnitude cause the watermark to be more robust, at
the expense of performance on the task. At the left-hand
side of the figure, with a weight factor in the magnitude of

101 102 103 104 105 106 107 108 1091010

Weight Factor (log scale)

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(a) Fashion MNIST

101 102 103 104 105 106 107 108 1091010

Weight Factor (log scale)

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(b) Speech Commands

Figure 15: Increasing the absolute value of the weight factor
κ promotes watermark success rate (more importance is given
to the SNNL) at the expense of lower accuracy on the task.
Note that κ is plotted on log scale.

0 2 4 6 8 10
Task to Watermark Ratio

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(a) Fashion MNIST

0 2 4 6 8 10
Task to Watermark Ratio

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(b) Speech Commands

Figure 16: Decreasing the ratio r of task data to watermarks
promotes watermark success rate (more importance is given
to the SNNL) at the expense of lower accuracy on the task.

10, the accuracy is similar to an un-watermarked model,
while watermark success is about 40%. In contrast, when the
weight factor is getting larger, watermark success approaches
to 100% but the accuracy decreases significantly..

Ratio of task data to watermarks. Denoted by r in Algo-
rithm 1, this ratio also influences the trade-off between task
accuracy and watermark robustness. In Figure 16, we observe
that lower ratios yield more robust watermarks. For instance,
we found for Fashion MNIST that the watermark could be
removed by model extraction if the ratio is greater than 3,
whereas task accuracy drops significantly for ratios below 1.

Source-Target classes Source and target classes are de-
noted by cS and cT in Algorithm 1. Note that we use OOD
watermarks (data from MNIST) for Fashion MNIST, so cS
refers to a class of MNIST. We name class center the average
of data from each class. In Figure 17, we plot the performance
of EWE with respect to the cosine similarity among centers of
different source-target pairs (detailed performance of different
pairs can be found in Figure 25 in the appendix).

Classes with similar structures enable more robust water-
marks at no impact on task accuracy. This is because data
from similar classes is easier to entangle (i.e. the SNNL is
easier to maximize). Cosine similarity between class centers
is a heuristic to estimate this and its effectiveness depends on
the dataset. For Fashion MNIST, one could observe a trend
that higher cosine similarity leads to more robust watermarks.
Instead, the difference among classes are less significant in
Speech Command so this heuristic may not be useful.

0.0 0.2 0.4 0.6 0.8
Cosine Similarity

0

20

40

60

80

100
A

cc
ur

ac
y(

%
)

Test Accuracy
Watermark Success Rate

(a) Fashion MNIST

0.94 0.96 0.98 1.00
Cosine Similarity

0

20

40

60

80

100

A
cc

ur
ac

y(
%

) Test Accuracy
Watermark Success Rate

(b) Speech Commands

Figure 17: Impact of similarity of classes on robustness of wa-
termarks: We computes the average cosine distances between
data of different pairs of classes and use them as source and
target classes to watermark the model. It could be seen that
similar classes lead to higher watermark success on Fashion
MNIST, but no clear trend is observed for Speech Command.

A.2 Evasion Attacks for Detection
Adversarial examples (or samples) are created by choosing
samples from a source class and perturbing them slightly
(adding a carefully crafted perturbation) to ensure targeted
(the mistake is chosen) or untargeted (the mistake is any in-
correct class) misclassification. To do so, some attacks use
gradients [27, 33, 44] or pseudo-gradients [52] to create ad-
versarial samples with minimum perturbation. We wish to
understand if mechanisms used to generate adversarial sam-
ples can be used to detect watermarks, as both produce the
same effect (targeted misclassification). The intuition is that
if one adversarial examples are generated from blank input
and perturbed to the target class, they may reveal some infor-
mation about the watermarked data. To this end, we utilize
the approach proposed by Papernot et al. [44] on the extracted
model to generate adversarial examples, and compare them
with the watermarked data generated by EWE. Examples of
watermarked data and adversarial samples we generated are
shown in Figure 10 b and (c) respectively. The average cosine
similarity between the adversarial examples and watermarked
data is about 0.3, whereas it could reach about 0.4 when com-
paring to a uniformly distributed random input of the same
size. Thus, mechanisms used to generate adversarial samples
are unable to detect watermarks generated by EWE.

A.3 Additional Figures

3

5
Input Data Watermarked DNN Prediction

(a) Proper trigger

1

7
Input Data Watermarked DNN Prediction

(b) Improper trigger

Figure 18: (a) In this Watermarked DNN, a small white square
is designed as a special trigger. If this square is added to the
corner of a digit-3, the input would be predicted as a digit-5
by the DNN, whereas a normal model would classify it as a
digit-3 mostly. (b) This is an example of improperly designed
trigger. By adding such a rectangle to top of 1’s, even a un-
watermarked model would classify it as a digit-7, so it is hard
to tell if a model is watermarked or not by such a trigger.

2 4 6 8
Number of convolution Layers

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

Figure 19: Validation Accuracy and Watermark success while
increasing the number of convolution layers in a Fashion
MNIST model without residual connection. Note that in-
distribution watermark is used here.

(a) First Convolution Layer: Legitimate Data

(b) First Convolution Layer: Watermarked Data

(c) Second Convolution Layer: Legitimate Data

(d) Second Convolution Layer: Watermarked Data

(e) Fully Connected Layer: Legitimate Data

(f) Fully Connected Layer: Watermarked Data

Figure 20: Activations of a convolutional neural network. We
train a DNN with 2 convolution layers and 2 fully connected
layers with EWE. We show here the frequency of activations
for neurons in all hidden layers: high frequencies correspond
to white color. One can observe that by entangling legitimate
task data and watermarks, their representation becomes very
similar, as we go deeper into the model architecture.

(a) First Convolution Layer: Legitimate Data

(b) First Convolution Layer: Watermarked Data

(c) Second Convolution Layer: Legitimate Data

(d) Second Convolution Layer: Watermarked Data

(e) Fully Connected Layer: Legitimate Data

(f) Fully Connected Layer: Watermarked Data

Figure 21: This should be compared to Figure 20. It is re-
peated here on a model with the same architecture but water-
marked by the baseline. One can observe that the difference
between activation of watermarked and legitimate data is
more significant when EWE is not used.

(a) Un-watermarked Model (b) Watermarked Model (Baseline)

(c) EWE In-distribution Watermark (d) EWE Out-distribution Watermark

Figure 22: Same as Figure 11 except here the dataset is
MNIST, while cS = 3 and cT = 5.

(a) Un-watermarked Model (b) Watermarked Model (Baseline)

(c) EWE In-distribution Watermark (d) EWE Out-distribution Watermark

Figure 23: Same as Figure 11 except here the dataset is Speech
Command, while cS = 9 and cT = 5. The OOD watermarks
are audios of people saying "one".

20 40 60 80 100
Number of classes

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(a) Un-watermarked

20 40 60 80 100
Number of classes

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(b) Baseline

20 40 60 80 100
Number of classes

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(c) EWE

Figure 24: While scaling EWE to CIFAR-100, we noticed
that both the baseline and EWE lead to significantly lower
accuracies when the number of classes increases than an un-
watermarked model. Besides, it can be observed that EWE
reaches better watermark success than the baseline.

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 99.0 98.7 98.8 98.8 98.9 99.0 99.0 98.6 99.0

98.9 N/A 98.9 98.7 98.9 98.8 99.0 98.9 98.8 99.0

99.0 98.8 N/A 98.8 98.9 98.8 98.9 99.0 98.9 99.0

98.7 98.9 98.9 N/A 98.9 98.8 98.9 99.0 98.8 99.0

98.9 98.8 98.9 98.9 N/A 98.8 98.9 99.0 98.9 99.0

98.8 99.0 98.9 98.9 98.9 N/A 98.8 98.9 98.9 98.9

98.9 98.8 98.8 98.7 98.9 98.9 N/A 98.9 98.7 99.0

98.8 98.9 98.7 98.8 98.9 98.8 98.9 N/A 98.9 98.9

98.9 98.9 98.8 98.9 98.9 98.7 99.0 99.0 N/A 98.9

98.9 99.0 98.8 98.9 98.9 98.6 99.0 99.0 98.9 N/A

(a) MNIST: Test Accuracy

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 23.8 16.9 61.2 24.3 30.8 48.9 59.9 25.6 8.6

7.0 N/A 1.8 10.4 13.9 29.4 45.5 63.3 46.8 15.6

69.6 40.9 N/A 66.1 43.7 29.7 55.0 68.3 32.1 47.8

25.1 9.6 9.0 N/A 19.7 31.0 64.0 58.8 18.0 9.1

57.7 48.3 54.2 72.9 N/A 40.4 52.2 61.7 27.5 55.0

29.7 15.9 35.7 24.4 21.8 N/A 41.3 40.1 22.3 23.4

45.0 46.4 31.8 61.0 42.1 41.6 N/A 66.6 31.9 29.1

38.2 47.8 52.4 16.9 44.7 42.0 36.4 N/A 14.2 23.2

44.9 51.3 39.9 46.3 27.6 38.4 49.1 44.1 N/A 29.3

60.3 60.3 42.8 42.3 9.3 34.6 33.5 3.2 32.2 N/A

(b) Watermark Success Rate

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 90.6 90.1 90.7 90.4 90.5 90.3 90.4 90.6 90.5

90.2 N/A 90.3 90.6 90.4 90.6 90.2 90.5 90.5 90.2

90.3 90.5 N/A 90.6 90.7 90.5 90.1 90.5 90.5 90.3

90.0 90.6 90.2 N/A 90.4 90.5 90.1 90.6 90.4 90.4

90.4 90.6 90.3 90.7 N/A 90.6 90.1 90.5 90.5 90.6

90.2 90.5 90.4 90.4 90.6 N/A 90.3 90.2 90.7 90.6

90.4 90.4 90.1 90.4 90.7 90.7 N/A 90.5 90.6 90.6

90.3 90.7 90.2 90.7 90.3 90.5 90.3 N/A 90.5 90.4

90.2 90.5 90.1 90.6 90.5 90.6 90.3 90.5 N/A 90.5

90.3 90.4 90.0 90.4 90.0 90.6 90.1 90.3 90.4 N/A

(c) Fashion-MNIST: Test Accuracy

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 16.4 54.8 39.5 61.0 58.6 31.2 48.2 47.9 12.7

48.6 N/A 57.9 52.7 56.8 66.2 57.0 67.9 47.9 42.0

57.3 47.8 N/A 46.1 45.4 41.5 63.8 55.1 50.7 32.8

56.2 37.5 34.5 N/A 47.0 52.3 43.2 49.6 60.4 42.7

50.5 51.9 44.3 35.1 N/A 44.0 26.7 48.6 43.6 26.1

47.9 24.5 27.7 24.7 16.9 N/A 10.3 33.1 38.9 14.0

44.6 28.8 37.1 37.1 51.6 46.1 N/A 28.5 44.8 10.5

64.6 53.8 59.7 43.3 47.4 44.7 43.0 N/A 46.5 34.1

76.8 42.6 40.8 45.9 48.1 61.4 43.0 61.0 N/A 51.8

71.4 71.4 66.9 43.8 50.6 70.3 48.8 58.8 61.7 N/A

(d) Watermark Success Rate

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 97.8 97.2 98.0 97.3 97.5 97.6 97.1 97.4 97.7

97.3 N/A 96.8 98.1 97.7 97.3 97.2 97.3 97.3 97.6

97.5 97.9 N/A 98.0 98.0 97.2 97.6 97.8 97.4 97.9

97.3 97.6 97.3 N/A 97.8 97.8 97.7 97.4 97.5 97.2

97.6 98.2 96.8 97.2 N/A 97.9 97.3 97.7 97.9 97.8

97.4 97.8 97.3 97.6 97.4 N/A 97.4 97.2 97.2 97.5

97.2 97.4 97.2 97.7 97.9 97.2 N/A 97.2 97.7 97.4

97.4 98.1 97.1 97.2 97.5 97.8 97.8 N/A 97.5 97.5

97.8 97.5 97.3 97.7 97.7 97.7 97.5 97.2 N/A 97.9

97.5 97.5 97.1 97.4 97.3 97.7 97.6 97.2 97.7 N/A

(e) Speech Commands: Test Accuracy

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 48.0 58.9 68.7 66.2 47.3 45.8 37.0 42.1 54.8

39.5 N/A 46.7 68.4 61.7 19.9 46.3 23.3 16.4 29.2

51.7 25.7 N/A 56.1 38.2 54.4 37.1 61.8 53.1 71.1

19.7 20.9 27.8 N/A 41.2 24.2 32.6 14.4 19.4 58.3

63.3 59.0 51.0 86.1 N/A 71.2 61.9 46.6 79.3 69.3

20.7 29.8 14.3 62.4 55.2 N/A 51.1 18.6 42.3 52.3

49.6 46.0 29.1 43.9 25.8 25.2 N/A 47.0 22.1 44.6

48.9 59.0 51.1 54.0 57.3 29.9 40.8 N/A 42.4 55.1

59.5 75.0 62.6 74.5 60.2 80.1 87.9 70.6 N/A 85.5

34.0 24.1 34.7 67.3 28.0 44.3 48.4 22.3 33.0 N/A

(f) Watermark Success Rate

Figure 25: Performance of the extracted model for different
source-target pairs: We call class i and class j as a source-
target pair if the watermark in our model is designed to be
that watermarked data sampled from class i (if using OOD
watermark, then this would be class i of another dataset) will
be classified as class j by the model. On MNIST dataset ,
Fashion MNIST, and Speech Command, we tried to train and
extract models with all 90 source-target pairs under the same
setting (i.e. all hyper-parameters including temperature are
the same) and plotted the validation accuracy and watermark
success rate of the extracted model in the 6 figures above. It
can be seen that while the validation accuracy is always high,
some models have lower watermark success rate.

(a) Audio Signal (b) Spectrogram

Figure 26: Example of a watermarked audio signal and the
corresponding Mel Spectrogram.

	Introduction
	Background
	Learning with DNNs
	Model Extraction
	Watermarks

	Difficulties in Watermarking
	Extraction-Induced Failures
	Distinct Activation Patterns

	Entangling Watermarks
	Soft Nearest Neighbor Loss
	Entangled Watermark Embedding
	Validating EWE
	Ownership Verification
	Increased Entanglement
	Robustness against Extraction
	Scalability to Deeper Architectures

	Calibration of Watermark Entanglement
	Experimental Setup
	No Free Lunch: Watermark vs. Utility
	Evaluation of Defenses against Backdoors

	Robustness to Adaptive Attackers
	Knowledge of EWE and its parameters
	Knowledge of EWE only

	Discussion
	Conclusions
	Appendix
	Finetuning the hyperparameters of EWE
	Evasion Attacks for Detection
	Additional Figures

