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Abstract
Modern processors allow attackers to leak data during tran-

sient (i.e., mis-speculated) execution through microarchitec-
tural covert timing channels. While initial defenses were
channel-specific, recent solutions employ speculative informa-
tion flow control in an attempt to automatically mitigate attacks
via any channel. However, we demonstrate that the current
state-of-the-art defense fails to mitigate attacks using specula-
tive stores, still allowing arbitrary data leakage during transient
execution. Furthermore, we show that the state of the art does
not scale to protect data in registers, incurring 30.8–63.4%
overhead on SPEC 2017, depending on the threat model.

We then present DOLMA, the first defense to automatically
provide comprehensive protection against all known transient
execution attacks. DOLMA combines a lightweight specu-
lative information flow control scheme with a set of secure
performance optimizations. By enforcing a novel principle of
transient non-observability, DOLMA ensures that a time slice
on a core provides a unit of isolation in the context of existing
attacks. Accordingly, DOLMA can allow speculative TLB/L1
cache accesses and variable-time arithmetic without loss of
security. On SPEC 2017, DOLMA achieves comprehensive
protection of data in memory at 10.2–29.7% overhead, adding
protection for data in registers at 22.6–42.2% overhead (8.2–
21.2% less than the state of the art, with greater security).

1 Introduction

Speculative execution is a crucial performance optimization
for modern processors. Unfortunately, the ongoing deluge of
transient execution attacks [5, 10, 13, 31, 32, 35, 38, 40–42, 47,
48,50,53,57,59–61,64,66,68,69,71–73,77,81] demonstrates
that the implementation of speculative execution in commodity
processors allows attackers to leak data during transient (i.e.,
mis-speculated or wrong-path) execution. Specifically, attack-
ers exploit transient micro-ops whose operands are leaked via
covert timing channels—e.g., hardware structures like the data
cache (D-cache), which exhibit operand-dependent timing.

Transient execution attacks can be classified into two pri-
mary categories [9]. The first class of attacks rely on delayed
handling of microarchitectural exception-like conditions—
henceforth referred to as exceptions—to leak data (e.g.,
Meltdown [38] and similar attacks [10,48,50,53,59,61,64,68,
69, 71, 72, 77]). In certain commodity processors, speculative
reads can access data in spite of—or because of—exceptions.
The exception is not handled until the associated micro-op
reaches commit, offering attackers a window in which data

can be transmitted through covert timing channels. Thankfully,
all known Meltdown-type attacks can be thwarted by handling
potential exceptions earlier in the pipeline, such that transient
reads do not propagate data to dependent micro-ops [38, 76].

The second class of attacks do not rely on delayed
exception handling, and instead solely exploit hardware
mispredictions to leak data (e.g., Spectre [32] and similar
attacks [5, 13, 31, 32, 35, 40–42, 47, 60]). For instance, Spectre
v1 [32] shows that an attacker in one security domain can mis-
train the branch predictor to transiently bypass a bounds check
in a victim domain, thereby allowing micro-ops following a
branch to leak victim data. Contrary to Meltdown-type attacks,
there is no known comprehensive solution for Spectre-type
attacks, apart from disabling speculation.

Because the majority of transient execution attacks use the D-
cache as the covert channel [10,13,31,32,35,38,40,41,47,48,
50,57,59,61,64,66,68,69,71–73,77,81], initial defenses such
as InvisiSpec [83] and others [1,29,30,36,54–56] have focused
on protecting the D-cache. However, these solutions do not
prevent numerous other covert channels [5,9,42,53,60,70,82]
from leaking data during transient execution.

Recent solutions [3, 17, 34, 58, 76, 86, 88] acknowledge the
shortcomings of cache-centric mitigations, and instead employ
speculative information flow control to prevent secrets from
entering any covert timing channel until speculation resolves.
Unfortunately, current defenses are not comprehensive. For
example, manual defenses [17, 58, 86] require error-prone
annotations of secrets to limit performance overhead.

On the other hand, existing automatic defenses [3, 76, 88]
suffer from high overhead. As such, they focus on the pro-
tection of speculatively-accessed data (e.g., data in memory
at the beginning of the speculation window) and fail to
comprehensively protect non-speculatively-accessed data (to
a first approximation, data in registers at the beginning of the
speculation window). For example, NDA [76] conservatively
prohibits speculative micro-ops from propagating their results
to any of their dependent micro-ops until speculation resolves.
Thus, NDA eschews knowledge of the microarchitecture to
achieve channel-agnostic protection, resulting in high over-
heads. NDA incurs 22.3% overhead to protect data in memory
against Spectre-type attacks, and 100% overhead to supple-
mentally protect against Meltdown-type attacks on SPEC
2017. To provide even partial protection for data in registers,
NDA’s performance overheads rise to 45–125%, respectively.

The current state-of-the-art defense, STT [86], uses
speculative taint tracking to only delay dependent micro-ops



that affect processor backend timing (e.g., during execution)
or frontend timing (e.g., during fetch) as a function of their
operands. Thus, STT is able to significantly improve upon
the overheads of channel-agnostic solutions such as NDA
and variants of SpecShield [3]. Nonetheless, according to
our evaluation, the overhead of protecting data in memory
with STT is still 8.7–44.5%, with those figures rising to
30.8–63.4% if one extends STT to protect data in registers.

More importantly, we demonstrate that STT still allows
arbitrary data leakages during transient execution. Despite
documented transient execution attacks exploiting speculative
stores [10, 49, 66, 73], STT assumes stores in isolation are
safe unless the processor permits speculative cache line
invalidations [66, 88]. However, even without speculative
invalidations, stores can still leak information. In §3.3,
we demonstrate a novel variant of Spectre [32] that uses a
speculative store to transmit data through the TLB, despite
STT’s protections being enabled. Thus, STT does not yield
the comprehensive protection it claims to offer; an attacker
can still leak arbitrary data under both its Spectre-type threat
model and Meltdown-type threat model.

In this paper, we present DOLMA, the first defense to
automatically provide comprehensive protection against all
existing transient execution attacks. DOLMA combines a
speculative information flow control scheme with a set of
secure performance optimizations, allowing it to protect data in
both memory and—optionally—registers at tenable overhead.
At a high level, DOLMA extends the microarchitecture to
track speculative control and data dependencies, restricting
execution as needed to prevent transient operand values from
affecting processor timing.

DOLMA’s key innovation is ensuring that a time slice on a
core provides a unit of isolation in the context of known tran-
sient execution attacks. By enforcing a novel principle of tran-
sient non-observability, DOLMA can allow secure speculative
access to select core-local resources (e.g., the TLB, L1 cache,
and variable-time functional units) without loss of security.

In line with prior defenses [29, 36, 56, 76, 83, 88], DOLMA’s
default protection policy assumes a processor immune to
Meltdown-type attacks, and therefore only provides mech-
anisms to mitigate Spectre-type attacks. However, as faulty
data propagation is still possible in recent Intel processors [50,
59, 69, 71,73], DOLMA additionally provides a conservative
policy that extends its protections to Meltdown-type attacks.

We evaluate DOLMA on SPEC 2017 [8] in gem5 [6]
and McPAT [37], using the same baseline processor as
recent solutions [76, 88]. We show that DOLMA incurs
negligible (<1%) area overhead and improves both security
and performance over the state of the art [88]. DOLMA offers
protection for data in memory at 10.2–29.7% performance
overhead (energy: 10.8–29.2%), with protection for data in
memory and registers incurring 22.6–42.2% performance
overhead (energy: 22.4–40.9%).

In summary, this paper makes the following contributions:

• We present a novel variant of Spectre [32] that uses
a speculative store to transmit data through the TLB,
demonstrating that the state-of-the-art defense (STT [88])
is still vulnerable to arbitrary data leakages.

• We define and enforce the principle of transient non-
observability, enabling secure speculative access to select
core-local resources.

• We introduce DOLMA, the first defense to provide automatic
comprehensive protection against existing transient
execution attacks for data in both memory and registers.

• We improve both state-of-the-art security and performance,
mitigating all existing transient execution attacks on data in
memory at 10.2–29.7% overhead, as well as those on data
in registers at 22.6–42.2% on SPEC 2017 [63].

Our implementation and evaluation infrastructure is open-
source [39], including our gem5-compatible transient
execution attack suite used for penetration testing.

2 Background

We first give background on speculative execution in modern
out-of-order processors. We then describe how transient (i.e.,
mis-speculated) execution can be exploited to leak secrets.

2.1 Speculative, Out-of-Order Processors

A modern out-of-order (OoO) processor fetches instructions
in program order and decodes them into micro-ops. OoO
processors keep track of program order via a circular queue
called the re-order buffer (ROB). Micro-ops enter at the tail of
the ROB in-order upon dispatch, and exit from the head of the
ROB in-order upon commit. However, rather than waiting for
all elder micro-ops to retire, micro-ops in the ROB issue (i.e.,
begin executing) as soon as their operands become ready—
potentially out of program order. Thus, OoO processors avoid
idle execution units, exploiting instruction-level parallelism
to improve efficiency over in-order processors.

To further improve efficiency, processors implement
control-flow and data-flow speculation to avoid pipeline stalls.
For example, the branch prediction unit (BPU) avoids stalls at
fetch via control-flow speculation on a branch’s target address
(i.e., the next program counter) prior to branch resolution. The
memory dependency unit (MDU) helps avoid stalls at issue
via data-flow speculation on when a load with ready operands
can bypass an elder store with unresolved operands.

Additionally, numerous modern processors do not handle
exception-like conditions until the associated micro-op
reaches commit, thereby implementing exception speculation.
Specifically, these processors allow read micro-ops (e.g.,
loads) to broadcast their results to their dependants regardless
of potential exceptions (e.g., permission faults).

In the event of mis-speculation, the processor must be
able to revert to non-speculative state in order to maintain
program correctness. Thus, when the processor detects
mis-speculation for a given micro-op, younger entries in the
ROB are squashed, meaning their effects will never become



1 // assume probe_array is flushed from cache
2 // speculatively access secret (will fault)
3 secret_byte = *kernel_addr;
4 // transmit by caching dependent element
5 tmp = probe_array[secret_byte * 512];
6 ...
7 // later in code, after recovering from fault
8 // infer secret via min time index (cached)
9 for (guess = 0; guess < 256; guess++) {

10 start_time = rdtscp();
11 tmp = probe_array[guess * 512];
12 times[guess] = rdtscp() - start_time;
13 }
14 secret = get_min_index(times);

Listing 1: Pseudocode for Meltdown [38]. The attacker
exploits delayed fault handling to speculatively transmit
kernel data via the D-cache timing side channel.

architecturally-visible. If necessary, the mis-speculated
micro-op is re-issued according to non-speculative state, and
execution resumes on the correct path.

2.2 Transient Execution Attacks

Squashing ensures that transient execution does not become
architecturally-visible. However, the microarchitectural
effects of transient execution may still be visible, depending on
the processor implementation. Thus, under certain conditions,
attackers can exploit covert timing channels to leak data.

Meltdown-type attacks. Meltdown [38] and similar ex-
ploits [10,48,50,59,61,64,68,69,71,72,77] exploit exception
speculation to leak data. By allowing data propagation to
proceed until the exception is handled at commit, processors
present a transient attack window during which hardware
protections can be bypassed. Attackers ensure that the
sensitive data can be later inferred—in spite of squashing—by
transmitting the value through microarchitectural state that
is not reverted during squashing (e.g., D-cache lines).

A simplified version of Meltdown is shown in Listing 1.
Key to the attack is the probe array, which the userspace
attacker flushes from the D-cache prior to the attack. During
the transient execution window (starting at line 3), the attacker
is able to load a kernel value due to delayed exception handling.
The attacker then uses that kernel value as an index into
the probe array, loading the corresponding element into the
cache (line 5). Since the cache update is not reverted during
squashing, the attacker can later infer the secret value by
timing access to each element in the probe array (lines 9–13).
The element that is accessed most quickly corresponds to a
cache hit, revealing the secret value (line 14).

The recent MDS attacks [10, 59, 71–73] similarly exploit
exception speculation to leak data. However, unlike Meltdown,
the address of the data leaked during transient execution
does not necessarily correspond to the faulty load’s address.
Rather, the processor transiently forwards in-flight data: either
arbitrary data, or data whose address matches a subset of the
faulty load’s address bits. CrossTalk [53] builds upon MDS
primitives to leak data through the so-called staging buffer on
Intel CPUs (shared amongst all cores).

1 // victim code, mispredicted branch
2 if (some_condition) {
3 // speculatively access secret
4 secret_byte = *secret_addr;
5 // transmit by caching dependent element
6 tmp = probe_array[secret_byte * 512];
7 }

Listing 2: Pseudocode for Spectre [32]. The attacker exploits
a misprediction in victim code to speculatively transmit victim
data via the D-cache timing side channel.

Prior work [76,82,83] has additionally theorized that various
hardware events (e.g., interrupts, microcode assists, Intel TSX
transaction aborts, etc.) could produce dangerous transient
behavior in a similar way to microarchitectural exceptions.
Indeed, during the revision of this paper, the TAA [59, 71]
variants of MDS attacks exploited TSX transaction aborts. We
consider these events to be special types of microarchitectural
exceptions, where all micro-ops succeeding the event should
be considered faulty until the processor pipeline is flushed.

Spectre-type attacks. Spectre [32] and similar exploits [5,
13,31,32,35,40,41,47,60] do not rely on exception speculation,
but rather solely exploit control-flow or data-flow speculation
arising from hardware prediction units to leak data. Prior to pre-
diction resolution, a Spectre gadget transiently executes, trans-
mitting data through a covert channel. The attacker later recov-
ers the value using techniques similar to those in Meltdown.

A simplified version of Spectre is shown in Listing 2,
also using the D-cache as the transmission channel. As in
Meltdown, the attacker relies on a probe array to help leak
the secret value. For simplicity, the attacker and victim share
access to the probe array in our example. However, we note
that the attacker and victim arrays can be at different physical
(and virtual) memory locations; the arrays must merely
compete for the same cache lines.

The attacker trains the victim code to transiently jump
from a branch (line 2) to a vulnerable gadget (lines 3–6). The
branch condition does not have to be related to the secret, and
the gadget can be anywhere in the program; for simplicity,
we show the gadget in the body of the mispredicted branch.
Inside the gadget, vulnerable victim code accesses a secret
byte (lines 4), uses the secret as an index into the probe array
(line 6), and loads the corresponding element into the D-cache
(line 6). The attacker later times access to each probe array
element to retrieve the secret value.

Notably, recent exploits [61, 69] demonstrate that transient
execution attacks may combine delayed exception handling
and explicit hardware mispredictions to leak data. Because
these exploits still rely on exception-like conditions, we
consider them to be Meltdown-type, not Spectre-type.

3 Problem

Providing secure speculative execution requires that a proces-
sor does not leak transient operand values. In this section, we
show that no existing defense satisfies this requirement, due
to design flaws and security-performance trade-offs.



1 // victim code, mispredicted branch
2 if (some_condition) {
3 // speculatively access secret
4 secret_byte = *secret_addr;
5 // transmit by updating TLB via store
6 probe_array[secret_byte * 4096] = tmp;
7 }

Listing 3: Pseudocode for the access and transmit phases of
a new Spectre [32] variant that leaks data through the D-TLB
using a store micro-op.

3.1 Cache-Centric Defenses

Since the majority of transient execution attacks leak data
through the D-cache, early defenses have focused on the
D-cache transmission channel [1, 29, 36, 54–56, 83]. Though
effective in protecting this channel, these works do not mitigate
numerous other covert channels [5, 9, 42, 53, 60, 70, 82].

3.2 Memory-Centric Defenses

Recent solutions [3, 76, 88] acknowledge the shortcomings
of cache-centric defenses, and instead focus on automatically
preventing the speculative transmission of secrets via any
covert channel. However, these solutions only protect data that
is speculatively-accessed (e.g., loaded from memory during
speculation); they fail to provide comprehensive protection for
data in registers at the beginning of the speculation window.

In a transient execution attack on memory, prior work [30,
60, 76, 88] notes that the attacker relies on a two-step Spectre
gadget; the gadget first accesses the secret by loading it into
a register, and then transmits the secret via a dependent micro-
op whose execution yields operand-dependent timing varia-
tions. Thus, attackers seeking to exploit victim programs rely
on the presence of such two-step gadgets in the victim binary.

However, in the case of an attack on an unprivileged
(e.g., general-purpose) register-based secret, the access step
can be performed non-speculatively (e.g., the victim loads
the secret into the register file prior to the beginning of the
speculation window). Thus, if the attacker wishes to leak this
register-based secret, they only need to execute the transmit
portion of the classic Spectre gadget (line 6 of Listing 2). A
“register” Spectre gadget is therefore embedded within every
“memory” Spectre gadget, meaning there are at least as many
register Spectre gadgets as there are memory Spectre gadgets.

Despite the risk of register leakages, automatic defenses [3,
88] are often only evaluated on protecting memory-based
secrets, as a security-performance trade-off. An exception to
this—NDA [76]—demonstrates that adding just partial pro-
tection for data in registers raises overhead from 22.3–100%
to 45–125% on SPEC 2017 (depending on the threat model).

3.3 Attacking the State of the Art

The current state-of-the-art defense, STT [88], introduces the
concept of speculative taint tracking to protect speculatively-
accessed data during transient execution. In this section, we
show that arbitrary data can still be leaked in spite of STT.

Despite existing transient attacks exploiting speculative
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Figure 1: Leaking a speculatively-accessed secret through
the D-TLB—despite enabling STT [88] protection—via a
speculative store in the gem5 simulator [6].

stores [10,49,66,73], STT incorrectly assumes that prohibiting
store-triggered speculative cache coherency invalidations is
sufficient to prevent transmission via stores in isolation [66,88].
However, while stores might not speculatively modify cache
state on many processors, stores can still leak information
via the TLB—including on the processor used in STT’s
evaluation—among other channels [6, 10, 12, 88].

As a result of this erroneous assumption, STT does not
comprehensively prevent transient execution attacks that
use stores to transmit a secret-dependent address, whether
Spectre-type or Meltdown-type. Here, we demonstrate the
most straightforward store-based exploit for brevity. We defer
discussion of an additional, more subtle vulnerability in STT
to DOLMA’s design (§5.4).

Listing 3 displays the pseudocode for a novel Spectre
variant that uses a transient store to leak data through the
D-TLB, building on prior work [19] exploiting the TLB side
channel. Inside the Spectre gadget (lines 3–6), vulnerable
victim code accesses a secret byte (lines 4), uses the secret as
an index into the probe array (line 6), and speculatively stores
the corresponding address in the TLB (line 6). The attacker
later recovers the secret using aforementioned techniques.

The result of running this attack with STT’s protections
enabled atop our baseline version of the gem5 simulator [6] is
shown in Fig. 1. As pictured, the Spectre variant clearly leaks
the secret byte (42). Thus, arbitrary data can be leaked during
transient execution on STT-protected processors.

4 Scope of Protection

DOLMA considers an attacker exploiting transient execu-
tion to leak secrets (i.e., data) through any covert timing
channel. DOLMA does not consider non-speculative side
channels [15, 16, 20, 52, 84, 85], nor side channels that
require physical access to the machine during the attack (e.g.,
power [33] and EM [44]). While physical side channels are
viable sources of leakage, timing channels currently expose
a larger threat surface, as they are remotely-exploitable.

DOLMA offers two protection policies, based on the
processor’s implementation of speculative execution.
Technically-speaking, all micro-ops are speculative until
they reach the head of the re-order buffer (ROB), at which
point they are guaranteed to not be squashed. However,
depending on the microarchitecture, not all speculation can



leak secrets. For simplicity, in the rest of this text, we assume
that “speculation” refers to the subset of speculation that poses
a security threat. We precisely define the speculative scenarios
under consideration in each protection policy.

DOLMA’s protection policies can additionally be tuned
based on the data that the user wishes to protect. For instance,
if the user only wishes to protect speculatively-accessed data
(e.g., data in memory at the beginning of the speculation
window, as opposed to data already loaded into registers), they
may disable a subset of DOLMA’s protections accordingly.

4.1 DOLMA-Default

DOLMA-Default assumes that the processor inherently
mitigates all Meltdown-type attacks by preventing potentially
faulty micro-ops from broadcasting (i.e., propagating) their
results to dependent micro-ops. Therefore, DOLMA-Default
only addresses Spectre-type attacks.

DOLMA-Default considers all hardware prediction
units (e.g., units that speculate on control dependencies
or data dependencies) to be sources of speculation. Thus,
DOLMA-Default considers any micro-op fetched (control
dependency) or issued (data dependency) as a result of a
hardware prediction unit to be a potential source of leakage.
While the exact units are implementation-specific, we detail
generalizable considerations for both a typical control-flow
prediction unit (the branch prediction unit) and a typical
data-flow prediction unit (the memory dependency unit).

Branch Prediction Unit (BPU). The BPU can induce
transient execution in three scenarios. First, the BPU can
mispredict whether a branch is taken, as shown in Fig. 2a.
Second, the BPU can mispredict the target of the branch. Thus,
DOLMA-Default must prevent information leakages stemming
from micro-ops following a branch in the ROB, until the
prediction resolves as correct or the processor squashes.

In the third scenario, the BPU can mispredict a non-branch
to be a branch (i.e., before decoding the non-branch’s opcode,
the BPU mispredicts that the instruction is a branch and fetches
from the wrong address). However, because the misprediction
is realized at decode (an in-order stage), the younger (transient)
micro-ops can be squashed prior to operand resolution. Thus,
operand-dependent timing variations are not possible.

Memory Dependency Unit (MDU). The MDU can induce
transient execution for one or two reasons, depending on the
memory consistency model: speculative store bypass (SSB)
and speculative load bypass (SLB).

Speculative Store Bypass (SSB): The MDU may induce
transient execution by allowing a load to bypass an earlier,
unresolved store [47, 83], as shown in Fig. 2b. If the store
resolves to an address used by the load, the load and its
dependants must be squashed. Accordingly, DOLMA-Default
must prevent leakages stemming from any load-dependent
micro-ops, until all prior stores resolve.

Notably, DOLMA-Default need not prevent leakages
stemming from the load itself in bypass scenarios, unless the
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Figure 2: Examples of transient execution arising from
hardware mispredictions in the (a) branch prediction unit
(BPU) and (b) memory dependency unit (MDU).

load is already under consideration (e.g., due to following an
unresolved branch). To understand this intuition, we consider
the two possible scenarios for a speculative store bypass attack.
First, the load can be used to access a secret in memory. In
this case, the load relies on a dependent micro-op to transmit
the secret, meaning the load itself need not be considered.

Second, the load can be used to leak the (register-based)
load address, which is presumed to be a secret. However, spec-
ulation does not change the load’s address; it only potentially
changes the value returned by the load. Even if the load is mis-
predicted, it will be re-executed with the same operand—the
secret. Thus, this scenario is a non-speculative side channel,
and is explicitly outside of DOLMA’s threat model.

Speculative Load Bypass (SLB): The MDU may induce tran-
sient execution for a second reason in memory consistency
models that enforce a form of total store ordering. In such mod-
els, transient execution can arise when a younger load bypasses
an elder, unresolved load [56, 82]. If the elder load resolves to
an address used by the younger load—and the cache line for the
address is invalidated in the interim—the younger load and its
dependants must be squashed to enforce memory consistency.

DOLMA-Default only considers dependent micro-ops of
SSB loads, and not the dependants of SLB loads. SSB allows a
single thread of execution to transiently read secrets explicitly
overwritten in program semantics, posing an obvious security
threat. On the other hand, an SLB load only reads stale data
if the cache line is invalidated by another core. For memory
shared among cores, such writes could occur at an arbitrary
time. Thus, the programmer cannot assume the stale data
has been overwritten before these loads execute, and must
therefore reason about the safety of dependent micro-ops
irrespective of speculation. As such, DOLMA-Default does
not consider dependants of SLB loads.

4.2 DOLMA-Conservative

Despite the existence of a comprehensive solution for all
Meltdown-type attacks (namely, preventing data propagation
in the presence of potential microarchitectural exception-like



conditions), faulty data propagation is still possible in re-
cent Intel processors [50, 59, 69, 71, 73]. Therefore, DOLMA-
Conservative assumes that loads and load-like privileged reg-
ister reads can transiently bypass exception-like conditions, in-
ducing exception speculation until they retire. Thus, in addition
to the speculation considerations of DOLMA-Default, DOLMA-
Conservative prevents leakages stemming from all dependants
of a load-like micro-op, until the load-like micro-op retires.

4.3 Simultaneous Multi-Threading

In the context of transient execution attacks, simultaneous
multi-threading (SMT) can be used to access secrets (e.g.,
MDS attacks [10, 59, 71–73] can access secrets from a sibling
logical core) or to transmit secrets (e.g., SMotherSpectre [5]
can transmit a secret via issue port contention between attacker
and victim sibling logical cores). Under DOLMA as well as
prior speculative information control flow defenses [3, 76, 88],
SMT accesses are safe, provided that the accessed data cannot
modify a transmission channel (e.g., the D-cache) as a function
of its value during speculation.

This leaves the question of how to deal with speculative
SMT transmission channels. SMT contention creates a myriad
of potential transmission channels—both speculative and non-
speculative—via resource contention for core-local resources
such as the TLB, L1 cache, and each functional unit. Thus,
in the presence of SMT, prior work makes the performance-
inhibiting assumptions that (1) all unsafe TLB/L1 accesses
must be delayed, and (2) no unsafe micro-ops may use fast-path
optimizations (e.g., variable-time arithmetic) [3, 76, 88].

However, DOLMA shows that these assumptions are
unnecessary in the context of existing transient execution
attacks. Even without DOLMA, potential SMT transmission
channels are comparatively difficult to exploit in production
environments. Namely, the attacker and victim must be
co-scheduled on the same physical core and contend for the
same secret-dependent resource on the exact same processor
cycle. Indeed, unlike notoriously-reliable channels such as
the D-cache [10, 13, 31, 32, 35, 38, 40, 41, 47, 48, 50, 57, 59,
64, 66, 68, 69, 69, 71–73, 77, 81], speculative transmission via
SMT contention has only been demonstrated by a single attack
(SMotherSpectre [5]). Nonetheless, we show that DOLMA’s
design naturally mitigates SMotherSpectre in §5.4.

5 Design

DOLMA has two primary goals. First, in the context of each
protection policy, the value of a transient operand (i.e., an
operand of a micro-op that will be squashed) cannot affect the
timing of non-transient micro-ops. Second, in order to make
such security tenable for real-world systems, DOLMA must
incur as little performance overhead as possible.

At a high level, DOLMA adds state to track the speculation
status of each micro-op in the re-order buffer (ROB). DOLMA
then uses this state to restrict (e.g., delay) execution, such that
transient operands cannot observably affect timing.

Given the overhead of related defenses [3,76,88], DOLMA’s
key contribution is enforcing a novel principle of transient
non-observability that obviates the need to delay execution
in certain contexts. In doing so, DOLMA enables protection
to scale to registers with tenable performance overhead.

In this section, we first introduce the principle of transient
non-observability (§5.1). We then provide the classifications
for micro-ops that DOLMA uses to enforce this principle (§5.2).
With these definitions, we explain DOLMA’s optimizations for
traditional sources of transmission (§5.3). We subsequently
identify a remaining vulnerability in the state of the art [88]
and present DOLMA’s mitigations for this and related channels
(§5.4). Finally, we specify the microarchitectural state and
logic used to appropriately restrict speculative execution (§5.5)
and lift these restrictions when speculation resolves (§5.6).

5.1 Transient Non-Observability

To prevent transmissions of secrets, DOLMA enforces a
novel principle of transient non-observability. With regards
to DOLMA’s timing channel protection policies, transient
non-observability is achieved by ensuring that the value of a
transient (i.e., destined to squash) operand cannot affect the
cycle upon which a non-transient micro-op commits—thereby
preventing timing-based leakages.

More precisely, transient operand values must not cause
timing variations in non-transient micro-ops via (a) out-of-
order contention for core-local resources, (b) simultaneous
uncore/offcore resource access, or (c) persistent state
modifications—i.e., modifications that survive the transient
window. Notably, such leakages can occur both via data
flows (e.g., a specific microarchitectural buffer entry is
accessed/modified based on a secret operand) or control flows
(e.g., state is only modified on a conditional path, revealing
the value of a secret conditional predicate).

In this sense, DOLMA’s principle of transient non-
observability is similar to the principle of speculative
non-interference [23, 88, 89]. The key difference is that prior
work assumes all operand-dependent timing variations (e.g.,
variable-time arithmetic and TLB/cache accesses) are inher-
ently unsafe, as an SMT adversary (i.e., an adversary executing
simultaneously on the same physical core) can observe these
variations via core-local contention. This limitation yields
designs that stall all variable-time micro-ops until speculation
resolves, inhibiting performance [3, 76,88]. However, as we
will demonstrate (§5.4), DOLMA naturally mitigates SMoth-
erSpectre [5]—the only transient execution attack to have
demonstrated transmission via SMT contention—enabling
a set of secure performance optimizations over prior work.

5.2 Micro-op Classification

Inducive and Resolvent Micro-ops. In order to identify the
beginning and end of each speculation window, DOLMA
requires the manufacturer to denote a set of inducive and
resolvent micro-ops. An inducive micro-op is any micro-op



that can induce speculation, such as a control-flow micro-op
(branch prediction) or a load (memory dependency prediction,
value prediction, etc.). More specifically, a control-flow
micro-op—or branch—is any micro-op that can explicitly
alter program control flow (e.g., a jump, call, or return); branch
prediction encompasses the BPU structures used to predict the
result of these micro-ops (e.g., the branch history table [BHT],
branch target buffer [BTB], and return stack buffer [RSB]).

A resolvent micro-op is any micro-op that can resolve
speculation. Note that the same micro-op can induce and
resolve a speculation window (e.g., a control-flow micro-op
induces speculation at fetch and resolves speculation at
execute). In other cases, a speculation window can be induced
and resolved by different micro-ops (e.g., memory dependency
speculation is induced by loads and resolved by stores).

Given a specific microarchitecture, enumerating inducive
and resolvent micro-ops is trivial: the manufacturer must
already define an exhaustive list of these micro-ops in order to
implement their processor according to its ISA specification. If
the manufacturer were to omit such a micro-op, transient micro-
ops would be able to retire their effects to architectural state,
violating the ISA specification and thus program correctness.

Unsafe Micro-ops. In DOLMA, unsafe micro-ops are spec-
ulative micro-ops whose operand values can be transmitted
during transient execution via corresponding timing variations.
Unsafe micro-ops can be further classified as backend-unsafe
(e.g., loads can transmit through backend channels such as the
D-cache), frontend-unsafe (e.g., control-flow micro-ops can
transmit through frontend channels such as the BTB), or both.

Because DOLMA considers timing channels, micro-ops
are only classified as unsafe in the context of timing leakages.
However, mitigating other operand-dependent channels
would simply require the manufacturer to denote additional
micro-ops as unsafe (e.g., via microcode updates).

While the exact set of unsafe micro-ops is microarchitecture-
specific, we discuss common examples in modern processors.
We precisely define the set of unsafe micro-ops for the microar-
chitecture used in our evaluation in §7, manually enumerating
this set using the aforementioned criteria for transient non-
observability (i.e., operand-dependent out-of-order contention
for core-local resources, simultaneous uncore/offcore resource
access, and persistent state modifications). Notably, this set
includes all micro-ops classified as high covert channel risk
(CCR) in prior work [3]. Furthermore, unlike the state of the
art [88] evaluated on the same processor, DOLMA’s set of
unsafe micro-ops includes all applicable micro-ops whose
operands are leaked in documented transient execution attacks.

For an arbitrary microarchitecture, exhaustively identifying
unsafe micro-ops requires a formal timing analysis of the RTL
code, and is ongoing work. The state of the art [18] requires
the programmer to manually annotate portions of the circuit
description, limiting scalability to modern processors. There-
fore, formal verification of DOLMA’s security on an arbitrary
processor necessitates advancements in these methods.

5.3 Optimizations for Traditional Backend Channels

Existing speculative information flow control de-
fenses [3, 76, 88] delay all unsafe micro-ops until speculation
resolves. In select cases, DOLMA likewise delays unsafe micro-
ops. However, DOLMA’s principle of non-observability—
combined with minor modifications to the processor—allows
a restricted form of speculative execution in two key scenarios.
We describe the optimizations here, and show that they do not
directly produce backend timing variations. We demonstrate
that the optimizations cannot influence frontend state (and thus,
cannot indirectly produce backend timing variations) in §6.

Variable-Time Execution. On a traditional processor, all
micro-ops that vary execution time as a function of their
operands would be unsafe. While many micro-ops only pro-
duce core-local modifications that are reverted upon squashing,
they may still alter the cycle upon which other micro-ops retire
due to out-of-order contention for core-local resources.

More precisely, the operand-dependent contention pro-
duced by variable-time computation is problematic when it
occurs between a younger (transient) micro-op and an elder
(non-transient) micro-op. While the pipeline frontend is
in-order, such out-of-order contention is indeed possible in
the processor backend (i.e., issue and onwards).

Accordingly, to obviate unsafe backend contention, DOLMA
employs a simple policy. At a high level, DOLMA’s strategy
is to ensure that—when an elder and younger micro-op
compete for the same backend resource—the elder micro-op
is unconditionally granted access to the resource. While we
cannot list every possible example of backend contention,
we describe our techniques for issue and writeback ports that
generalize to other contention sources.

At issue, elder micro-ops can forcibly evict younger (unsafe)
micro-ops from execution units when no units would otherwise
be available; the younger micro-ops are then re-issued once
safe. At writeback, a priority queue ensures that the eldest
micro-ops obtain access to writeback ports each cycle. That is,
if there are P ports and N micro-ops ready to writeback (where
N>P), the P eldest micro-ops obtain the ports.

With this policy, the operands of variable-time micro-ops are
transiently non-observable if they (a) do not affect uncore/off-
core resource accesses, and (b) do not produce operand-
dependent persistent state modifications. Although these crite-
ria conventionally include variable-time ALU micro-ops, other
micro-ops clearly remain unsafe, even if core-local. For ex-
ample, NetSpectre [60] shows that AVX micro-ops reset a per-
sistent powerdown timer upon execution, meaning (operand-
dependent) timing variations in AVX execution would ulti-
mately produce (operand-dependent) persistent modifications.
Thankfully, in such cases where updates are off the critical path
(i.e., not required for the speculative computation), DOLMA
can mitigate the channels without performance loss by only
performing the updates upon commit. We discuss how DOLMA
prevents leakages via conditional (e.g., control-dependent)



usage of resources like the AVX powerdown timer in §5.4.
Delay-on-Miss. Memory micro-ops (loads and stores)—

produced by a variety of high-level instructions [53]—pose
a greater challenge, as they can both access uncore/offcore
resources and produce persistent state modifications that
greatly affect performance. For example, memory micro-ops
can produce speculative, operand-dependent contention for
or modifications to the D-TLB, D-cache, load-store queue,
memory dependency unit, prefetching infrastructure, global
staging buffer, and associated metadata for these structures
(e.g., replacement policy data). Thus, speculative memory
micro-ops would normally be unable to execute without leak-
ing secrets. However, it is possible to avoid delaying memory
micro-ops in the common case without loss of security.

DOLMA novelly applies the technique of “delay-on-
miss” [56] to speculative stores, building on prior work that
uses delay-on-miss to achieve efficient protection for specu-
lative loads. At a high level, delay-on-miss allows speculative
memory micro-ops that hit in first-level core-local structures
(e.g., the L1 TLB and—in the case of loads—L1 cache) to exe-
cute without stalling until speculation resolves. A speculative
memory micro-op that misses in these structures vacates its
execution unit and is placed into a dedicated stall queue (as can
already be done to mask the latency of TLB misses/page table
walks). Such a design allows other in-flight memory micro-ops
to proceed with execution. When speculation resolves, the
stalled memory micro-op is re-issued without restriction.

Importantly, DOLMA ensures that memory micro-ops do
not affect replacement policy metadata or memory dependency
predictions until speculation resolves, thereby eliminating
these potential channels. Furthermore, if a speculative
memory micro-op triggers a prefetch, the prefetch is likewise
constrained to delay-on-miss behavior. Finally, because only
core-local memory micro-ops are legal, the global staging
buffer cannot be altered. Thus, delay-on-miss prevents
transmission at two levels: the explicit channels of speculative
modifications to TLB and cache entries, as well as more subtle
channels of speculative updates to associated state.

5.4 Mitigating Remaining Sources of Transmission

Store-to-Load Forwarding. As noted in prior work [88],
store-to-load forwarding provides an additional source of
backend leakage for memory micro-ops. If a load has a
complete match with an unsafe store in the store buffer, the
load will not issue a memory request, and will instead use the
data from the store buffer. Thus, the decision to (not) issue
a memory request reveals the store’s address operand.

DOLMA’s contribution in this regard is to identify and
address another source of leakage via store-to-load forwarding.
Namely, prior work [88, 90] does not handle the case of a
partial hit (i.e., where a strict subset of the load’s address range
is found in the store buffer), instead erroneously assuming
that the only two possible cases are a complete hit or miss.
However, in the case of a partial hit, neither the store buffer
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Figure 3: Without DOLMA (left), the processor speculatively
redirects fetch from A to B, dependent upon a transient
predicate value. With DOLMA (right), speculative fetch
redirects are blocked until speculation resolves (C), thereby
preventing predicate-dependent execution. Dashed lines
indicate predictions, while solid lines indicate fetch redirects.

nor lower levels of the memory hierarchy hold the correct data
in its entirety. Thus, depending on how the microarchitecture
handles partial hits, the load may stall until the store completes,
revealing information about the store’s address via timing.

Fortunately, combined with DOLMA’s protections for
variable-time execution, the same protection mechanism
works for both total and partial store buffer hits in the presence
of stalling. That is, the processor unconditionally issues the
load to the cache hierarchy, and simply ignores the response
in the event of an unsafe buffer hit. If the hit was partial
(meaning the buffer does not contain all necessary data), the
load re-issues once the store is safe and complete.

Speculative Fetch Redirects. Control-flow micro-ops and
any remaining inducive/resolvent micro-ops provide common
examples of frontend-unsafe micro-ops, because these micro-
ops can leak their operands via speculative fetch redirects [88],
as shown in Fig. 3. For instance, if a speculative (e.g., nested)
control-flow micro-op resolves as incorrect, the micro-op
must signal to the frontend to redirect fetch to the appropriate
program counter. However, the new PC is determined by the
control-flow micro-op’s predicate, meaning such a redirect
leaks the predicate via dependent updates to frontend covert
timing channels (e.g., the I-TLB, I-cache, and BPU), as well
as potential backend covert channels (e.g., resets of the AVX
powerdown timer via subsequent conditional execution [60]).

Like the state of the art (STT [88]), DOLMA additionally
provides protection against more subtle sources of speculative
fetch redirects. Consider the case of redirects caused by
memory ordering violations (i.e., load-store aliasing, where
an inducive load incorrectly bypasses an unresolved store).
Such a redirect can reveal information about the load’s address
operand (namely, that it conflicted with that of a prior store).
Thus, the redirect is clearly unsafe while the load itself is
unsafe . However, even if the younger load is safe (for instance,
not dependent upon any inducive loads), the elder store can
still be unsafe. Accordingly, a redirect in this scenario leaks
the store’s address operand in an identical fashion to that of
an unsafe load and must likewise be delayed. Although STT’s



1 load r0 -> r1
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Figure 4: Comparing DOLMA-Default’s and DOLMA-Conservative’s handling of speculation status in the ROB in three scenarios.
U = Unresolved, C = Control-Dependent, D = Data-Dependent, and P = Pending-Redirect. Example (a) shows a non-retired
load. Example (b) shows an unresolved speculative store bypass. Example (c) shows an unresolved branch, with a nested branch
blocked due to a speculative fetch redirect (line c5).

implementation code [90] allows the redirect before the store is
safe, we note that STT’s design correctly mentions the need to
delay such redirects until both the load and store are safe [88].

By comprehensively prohibiting speculative fetch redirects,
DOLMA mitigates all channels that rely on conditional
transient execution to leak data (e.g., the AVX powerdown
timer [60]). Notably, this protection likewise mitigates
SMotherSpectre [5], the only transient execution attack to
have demonstrated transmission via SMT contention. In order
to create reliable contention on issue ports, SMotherSpectre
uses a secret-dependent speculative redirect to fetch and issue
micro-ops. In the context of Fig. 3, the speculative redirect is
performed based on the secret being zero or non-zero. When
the fetched micro-ops (either A or B) reach issue, they compete
with micro-ops from the adversary’s sibling logical core for
different ports. However, the specific ports contended depend
on the (different) opcodes between A and B, thereby revealing
the secret value. Under DOLMA, this and similar scenarios
are impossible, as speculative fetch redirects are prevented.

5.5 Enforcing Restrictions

Both DOLMA-Default and DOLMA-Conservative must restrict
unsafe micro-ops that are control-dependent or data-dependent
upon inducive micro-ops, delaying unsafe micro-ops that
would produce observable modifications to the microarchitec-
ture. As previously-mentioned, branch speculation provides
an example of control-dependency restriction: any unsafe
micro-op following a branch (e.g., jump, call, or return) in
the ROB must be restricted. Memory dependency speculation
provides an example of data-dependency restriction: DOLMA-
Default must restrict the dependants of loads that bypass
stores during execution. DOLMA-Conservative expands this
mechanism to all loads (and load-like privileged register reads)
in order to additionally handle exception speculation.

In order to track the speculation status of each micro-op

in the pipeline, DOLMA conceptually extends each ROB
entry with four bits, as shown in Fig. 4: Unresolved, Control-
Dependent, Data-Dependent, and Pending-Redirect. If a
micro-op is squashed, the extra bits are ignored.

Unresolved. DOLMA marks an inducive micro-op as un-
resolved until (a) its associated speculation window resolves,
and (b) all elder micro-ops are also resolved. Assuming all
elder micro-ops are resolved, a control micro-op resolves
when it is executed. Under DOLMA-Default, loads are only
inducive if they are issued as a result of a hardware prediction
unit (e.g., speculative store bypass). Thus, such loads resolve
when the corresponding prediction resolves (e.g., the bypassed
store executes). Under DOLMA-Conservative, all load-like
micro-ops are assumed to be unresolved until they retire, in
order to handle exception speculation.

Control-Dependent and Data-Dependent. Speculative
control dependencies can be easily tracked in DOLMA:
any micro-op following an unresolved branch in the ROB
is control-dependent on that branch, until the next branch
introduces a new set of control dependencies.

Like prior work [88], DOLMA tracks speculative data
dependencies via the register rename table. In particular, if
a micro-op X consumes the output of an inducive micro-op
(or its dependants), then DOLMA marks X as data-dependent.
Data dependency status is propagated during broadcast (i.e.,
wakeup of dependent micro-ops).

Notably, reservation station entries for unsafe micro-ops
are also extended with the OR of their micro-op’s control-
dependent and data-dependent status bits. The processor uses
this signal to ensure that unsafe micro-ops do not transmit
information. For instance, outgoing memory requests are
tainted for unsafe micro-ops, such that the L1 cache will
know to return without fetching from L2 upon a miss. As
another example, DOLMA uses the dependency status—along
with ordering information from the ROB—to prevent unsafe



backend contention (e.g., issue/writeback port contention
between elder micro-ops and younger unsafe micro-ops).

When an unsafe micro-op is issued, a copy of its issue queue
entry is placed into a dedicated unsafe queue for in-flight
unsafe micro-ops. If an unsafe micro-op executes without
stalling, its unsafe queue entry is freed. For unsafe micro-ops
that cannot complete for safety reasons, each queue entry holds
the index of its youngest unresolved inducer. Such a design
allows for efficient wakeup when the micro-op becomes
safe [88]. Specifically, if a stalled micro-op’s youngest inducer
is resolved, the inducer broadcasts its ROB index to this queue
such that dependent micro-ops are marked as ready to issue.

Pending-Redirect. Finally, when a frontend-unsafe
micro-op would initiate a fetch redirect, its ROB entry is
instead marked as pending-redirect. Like backend-unsafe
micro-ops, the frontend-unsafe micro-op also vacates its
execution unit and awaits a safety broadcast.

5.6 Clearing Speculative Status

DOLMA only clears micro-ops when they become non-
speculative in the context of DOLMA’s threat models. For
control-dependent micro-ops, this means that all elder
control-flow micro-ops must be resolved. For data-dependent
micro-ops, this means that all elder loads and associated
resolvent micro-ops (e.g., stores) must be resolved.

When stalled backend-unsafe micro-ops are cleared, they
are marked as ready to re-issue from the stall queue. When
pending frontend-unsafe micro-ops are cleared, they signal
their delayed redirect. Cleared micro-ops compete with the
regular stream of micro-ops for backend ports. As previously
stated, elder micro-ops are given preference during (re-)issue;
however, DOLMA does not increase the issue width.

6 Security Analysis

The goal of our supplemental security analysis is to show that
the optimizations afforded by our notion of non-observability
do not introduce speculative timing channels in the context
of DOLMA’s protection policies. We base our reasoning
on features of the baseline processor [6, 28] used in similar
defenses [76, 88] (including our own), and argue that the same
logic can be applied to any microarchitecture satisfying the
general properties we describe here.

DOLMA introduces two optimizations due to non-
observability. First, DOLMA allows for variable-time
arithmetic. Second, DOLMA uses delay-on-miss [56] for
speculative loads and stores. We demonstrated that these
optimizations cannot directly produce timing variations in
processor backend state in §5. Here, we demonstrate that
transient execution cannot influence frontend timing on a
DOLMA-protected processor (and thus, cannot indirectly
produce backend timing variations).

Proof Sketch. On our processor, four events can influence
frontend state on any given cycle. We show each event
is invariant of transient values in the context of DOLMA’s

Fetch 
Unit

(a)

(b) Fetch Buffer Full
(d) ROB Full

leaq 0(,%rax,8), %rdx

leaq str(%rip), %rax

movq $0, (%rdx,%rax)

movq 24+str(%rip), %rdx

leaq probe(%rip), %rax

movzbl (%rdx,%rax), %ebx

movzbl %bl, %eax

sall $9, %eax

Decode
 Unit

(c)

(e) ROB head

01010...
11010..
01010...

...

01010...

(f) speculative
ops

Figure 5: A simplified example of how a pipeline backup can
cause the fetch buffer to fill.

protection policies.
(1) Backend Redirect: The backend can redirect fetch to

a new PC as a result of a predicate resolution (e.g., branch or
memory dependency). DOLMA delays fetch redirects until
speculation resolves, meaning transient micro-ops in the
backend cannot initiate a fetch redirect. Furthermore, since
elder micro-ops are given preference for backend resources,
a transient micro-op cannot affect the length of the speculation
window (and thus, cannot influence the cycle upon which a
backend redirect is performed). Thus, backend fetch redirects
are invariant of transient data.

(2) Frontend Redirect: The frontend can redirect fetch to
a new PC as a result of a branch prediction. Since DOLMA
delays fetch redirects until speculation resolves, DOLMA
prevents transient data from entering the BPU. Thus, frontend
fetch redirects are invariant of transient data.

(3) Full Fetch Buffer: The processor may not increment
the PC on a given cycle if the fetch buffer (i.e., the buffer for
fetched instructions, before they are decoded and inserted into
the ROB) is full. Delaying fetch redirects until speculation
resolves—coupled with giving elder micro-ops priority in
the backend— prevents transient operands from affecting the
the processor frontend state (including the fetch buffer). Thus,
it suffices to show that transient micro-ops cannot indirectly
influence the state of the fetch buffer via a pipeline backup.

We trace back from the “full fetch buffer” scenario shown
in Fig. 5 to demonstrate that only non-speculative micro-ops
can cause the fetch buffer to fill. The fetch unit (a) fetches
instructions into the fetch buffer (b). The fetch buffer becomes
full when the decode unit (c) cannot process instructions on
a given cycle. The decode unit cannot process instructions if
the ROB (d) is full. Finally, the ROB is full if the micro-op
at the head of the ROB (e) cannot retire.

However, the head of the ROB is—by definition—
non-speculative. Thus, this is only a concern if younger
(speculative) micro-ops prevents the head from retiring. Since
DOLMA gives elder micro-ops priority in the backend, such a
scenario is impossible. Therefore, only non-speculative micro-
ops can cause the fetch buffer to fill, meaning the fetch buffer is
invariant of speculative micro-ops (f), and thus transient data.

(4) Variable Fetch Latency: The processor may not
increment the PC on a given cycle if a fetch request is delayed
(e.g., due to an I-TLB or I-cache miss). Fetch latency is a



Parameter Value
Architecture x86-64 at 2.0 GHz
OoO Core (No SMT) 8-issue, 32 LQ entries, 32 SQ entries, 192 ROB entries,

4096 BTB entries, 16 RAS entries
OoO Core (2-SMT) 8-issue, 16 LQ entries per thread, 16 SQ entries per

thread, 91 ROB entries per thread, 4096 BTB entries
(dynamically partitioned), 16 RAS entries per thread

L1-I/L1-D Cache 32 KB, 64B line, 8-way set associative (SA), 4 cycle
round-trip (RT) latency, 1 port

L2 Cache 2 MB, 64 B line, 16-way SA, 40 cycle RT latency
DRAM 50 ns response latency

Table 1: gem5 simulation configuration.

function of frontend state (e.g., the PC, BPU, I-TLB, and
I-cache), which by (1)–(3), is invariant of transient data. Thus,
fetch latency is invariant of transient data.

Therefore, processor frontend state is invariant of transient
operand values in the context of DOLMA’s threat models.

7 Evaluation

We evaluate DOLMA’s gem5 [6] implementation against
the SPEC 2017 [63] benchmark suite. We estimate area
and energy with McPAT [37], incorporating recommended
changes for increased accuracy [80]. We sample performance
throughout each benchmark’s execution via the Lapidary
simulation sampling framework [45, 46], which employs the
SMARTS methodology [79]. More specifically, Lapidary
converts periodic GDB coredumps from each benchmark’s
execution on real hardware into gem5 checkpoints. Following
the methodology used in NDA [76] (a prior speculative
information flow control defense), we configure Lapidary to
warm microarchitectural structures for 5,000,000 instructions
before measuring the performance of 100,000 instructions,
repeated for each checkpoint.

We evaluate DOLMA with and without simultaneous
multi-threading (SMT) enabled. We generate SMT workload
pairings from the SPEC 2017 benchmarks using the “Balanced
Random” methodology developed by Velasquez et al. [74].
This methodology ensures that each benchmark appears an
equal number of times across all pairings.

In line with prior speculative information flow control
defenses [76, 83, 88], we use gem5’s OoO processor as our
baseline. The processor’s set of inducive micro-ops includes
control-flow micro-ops (i.e., jumps, calls, and returns) and
loads, while its resolvent micro-ops include control-flow
micro-ops and stores. Its set of unsafe micro-ops includes
control-flow micro-ops, loads, and stores—consistent with the
micro-ops identified as high covert channel risk (CCR) in prior
work [3]. The processor configuration is listed in Table 1.

We additionally compare the performance of DOLMA to the
state-of-the-art speculative information flow control defense,
STT [88]. As STT provides memory-only protection, we
extend STT to enable optional protection for registers. We
compare DOLMA to STT under both memory-only protection
modes (M) as well as memory and register (M+R) modes.

Although STT’s gem5 implementation is publicly-
available [90], it was necessary to port STT as modifications
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Baseline OoO 0±3.8% 0±3.0%
STT-Spectre (M) 8.7±4.2% 3.2±3.2%
DOLMA-Default (M) 10.2±4.3% 3.4±3.2%
STT-Futuristic (M) 44.5±4.6% 25.5±3.6%
DOLMA-Conservative (M) 29.7±4.7% 16.2±3.5%
STT-Spectre (M+R) 30.8±5.0% 17.3±3.6%
DOLMA-Default (M+R) 22.6±4.8% 9.8±3.4%
STT-Futuristic (M+R) 63.4±5.0% 36.8±3.8%
DOLMA-Conservative (M+R) 42.2±5.4% 22.4±3.7%

Mitigates all existing attacks, except select transmissions via stores
Mitigates all existing attacks

Table 2: DOLMA compared to STT [88] in terms of total
CPI overheads and mitigated attacks, using memory-only
protection variants (M) as well as memory and register
protection variants (M+R). Control transient execution attacks
refer to transient execution arising from branch predictions,
differentiated by whether memory or registers are leaked. Data
transient execution attacks refer to transient execution arising
from data predictions (e.g., memory dependency speculations).
Exception transient execution attacks refer to Meltdown-type
attacks that exploit delayed microarchitectural exception
handling. Overhead ranges reflect 95% confidence intervals.

to DOLMA for two key reasons. First, STT’s baseline
performance differs significantly from that of prior speculative
information flow control defenses, rendering fair comparisons
impossible. For example, we found that for the mcf benchmark,
STT’s baseline yielded approximately 30% higher average
cycles-per-instruction compared to the baseline of NDA (and
our own), significantly skewing results. Second, SMT support
for x86-64 is not functional in the STT prototype.

7.1 Performance Evaluation

Single Thread. The per-benchmark geometric mean cycles
per instruction (CPI) for DOLMA-Default and DOLMA-
Conservative across SPEC 2017 are shown in Fig. 6, provided
for both memory-only (M) as well as memory and register
(M+R) protection variants. We display these numbers
alongside corresponding STT variants, and depict 95%
confidence intervals for the reported CPIs.

For protection against Spectre-type attacks, STT provides
STT-Spectre. However, unlike DOLMA-Default, STT-Spectre
does not mitigate Spectre-type attacks exploiting data
speculation, such as speculative store bypass [47], nor various
transmissions via stores. STT-Spectre (M) incurs 8.7%
overhead, while STT-Spectre (M+R) incurs 30.8% overhead.
Thus, despite offering greater protection, DOLMA-Default
(M) (10.2%) yields comparable overhead to STT-Spectre
(M) (8.7%), and DOLMA-Default (M+R) (22.6%) scales to
registers significantly better than STT-Spectre (M+R) (30.8%).

To provide the additional protection against Meltdown-type
attacks offered by DOLMA-Conservative, STT-Futuristic
incurs 44.5% (M) and 63.4% (M+R) overhead, but fails to
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Figure 6: DOLMA’s single thread performance on SPEC 2017, compared to STT [88]. Error bars depict the 95% confidence intervals.

protect select store-based transmissions. In contrast, DOLMA-
Conservative only incurs 29.7% (M) and 42.2% (M+R) over-
head to protect against all existing Meltdown-type and Spectre-
type attacks on data in memory and registers, respectively.

DOLMA’s ability to provide protection at lower overhead
than STT primarily arises from the use of delay-on-miss
for memory micro-ops. While STT insecurely allows all
speculative stores to execute, STT conservatively delays all
unsafe loads. In contrast, DOLMA only delays unsafe loads
and stores when they miss in the TLB and—in the case of
loads—the L1 cache.

With SMT (2 Threads). We compare the geometric mean
of total CPI overhead across 2 threads between DOLMA and
STT in Table 2, alongside single thread means. Reported CPIs
are listed with 95% confidence intervals. For both DOLMA
and STT, we find that the performance overhead of protection
decreases with SMT enabled. This arises due to the fact that
when a micro-op from some thread A is stalled for protection,
some other thread B can potentially still make progress.

As with single-threaded configurations, we find that
both DOLMA-Default and DOLMA-Conservative—unlike
STT—prevent all existing transient execution attacks at mostly
lower overheads. DOLMA-Default (M+R) (9.8%) again scales
to registers far better than STT-Spectre (M+R) (17.3%), and
DOLMA-Conservative likewise achieves lower overhead
than STT-Futuristic—16.2% versus STT’s 25.5% (M) and

22.4% versus STT’s 36.8% (M+R). The only exception to this
trend is DOLMA-Default (M) (3.4%) versus STT-Spectre (M)
(3.2%), where performance is still roughly equivalent despite
DOLMA’s additional protections for store-based transmission
and data speculation.

7.2 Security Evaluation

We additionally compare the effectiveness of DOLMA
against transient execution attacks with STT in Table 2.
DOLMA-Default blocks all documented Spectre-type attacks,
and DOLMA-Conservative blocks all documented Spectre-
type and Meltdown-type attacks. STT-Spectre variants
fail to address any Spectre-type attack that exploits data
speculation [47]. Additionally, all STT variants fail to com-
prehensively address store-based transmission—including the
speculative TLB modifications and speculative partial store
buffer hits mentioned in this paper.

Penetration Testing. Although simulating every known
transient execution attack is not possible in gem5, we have
ported a diverse set of transient execution attacks into an
open-source, gem5-compatible test suite [39]. The goal of this
test suite is to directly demonstrate the ability of DOLMA—as
well as future defenses—to mitigate transient execution
attacks across a wide range of covert timing channels (e.g.,
backend channels such as the D-cache and D-TLB, as well
as frontend channels such as the I-cache and BTB), unsafe
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Figure 7: A demonstration of DOLMA’s effectiveness in mitigating various covert timing channels. Each of the attacks leaks
the value of the secret byte (42) on a baseline OoO processor (left) in gem5 [6]. In contrast, a DOLMA-protected processor prevents
data from entering these channels during transient execution, thereby mitigating the attacks (right).

micro-ops (e.g., memory micro-ops and branches), types of
speculation (e.g., control and data), and locations of secrets
(e.g., in-register and in-memory).

We depict DOLMA’s effectiveness in mitigating a sampling
of these transient execution attacks in Fig. 7. Namely, we
show that DOLMA mitigates timing-based transmission
of speculatively-loaded data through the D-cache (load
micro-op), BTB (branch), and D-TLB (store). We additionally
show that DOLMA’s protection applies to speculative store
bypass [47] as well as attacks on non-speculative register data.
As pictured, DOLMA defeats all attempted transient execution
attacks, regardless of the covert channel, unsafe micro-op,
type of speculation, and location of the secret.

7.3 Area and Energy Estimates

We provide area and energy estimates for DOLMA using
McPAT [37] with recommended changes for increased
accuracy [80]. We model DOLMA’s conceptual changes
to the microarchitecture as follows. The unsafe queue is
conservatively implemented as a second copy of the issue
queue, extended with 1 + log2(sizeof(ROB)) bits per entry
to hold the pending redirect bit as well as ROB index of
the youngest unresolved inducer (set to 0 if all are resolved,
meaning the micro-op may re-issue). Each functional unit (e.g.,
ALUs and FPUs) and entry in the load-store queue is extended
with log2(sizeof(ROB)) bits to indicate the corresponding



Mode Energy Energy (SMT)
DOLMA-Default (M) 10.8% 4.46%
DOLMA-Conservative (M) 29.2% 16.4%
DOLMA-Default (M+R) 22.4% 10.4%
DOLMA-Conservative (M+R) 40.9% 21.9%

Table 3: DOLMA’s normalized total energy usage (processor
and caches) compared to a baseline single thread and SMT
processor, respectively.

micro-op’s position in the ROB; such a design allows DOLMA
to enforce its backend contention policy. Finally, similar to
prior work [88], entries in the frontend register alias table are
extended with log2(sizeof(ROB)) bits to indicate an operand’s
youngest unresolved inducer (either directly produced by a
data dependency, or indirectly via a control dependency).

For area, we find that DOLMA’s overhead is negligible
when configured for either single threaded or SMT execution,
incurring 0.9% overhead compared to respective baselines.
For energy, as shown in Table 3, DOLMA’s normalized total
energy usage is dominated by its increase in execution time;
energy usage overheads for both single thread and SMT config-
urations roughly correspond to performance overheads for the
respective baselines. Therefore, in line with performance over-
heads, normalized energy usage for SMT configurations incurs
lower overhead (normalized to an SMT baseline) than a single
thread configuration (normalized to a single thread baseline).

7.4 Limitations

First, as the gem5 baseline processor does not allow faulty
data propagation, we are unable to directly demonstrate the
effectiveness of DOLMA-Conservative against Meltdown-type
attacks. However, given that DOLMA-Default clearly prevents
SSB [47]—and the restriction policy DOLMA-Default applies
to SSB load dependants is extended to all load dependants in
DOLMA-Conservative—we argue that DOLMA-Conservative
indeed mitigates Meltdown-type attacks.

Second, we only demonstrate transmission via the BTB
using the simpler of gem5’s two BTB implementations (i.e.,
one that uses a less complex indexing function). However, as
speculative BTB transmission has been demonstrated on real
hardware [42], it is clearly a viable channel.

Third, the gem5 baseline only features constant-time ALU
and FPU operations, meaning DOLMA’s benefits over prior
work [88] for these operations are not modelled.

Fourth, because gem5’s system emulation mode does not
add latency for TLB misses, our figures include an artificial
TLB miss latency of 10 cycles for visualization purposes. We
conservatively calculated this latency by assuming a 2-cycle
penalty for the initial miss, plus a 4-cycle L1 lookup for each
TLB stage. We verified that a TLB hit only occurs for the
secret value in the simulator.

Fifth, modeling hardware in software simulators limits
evaluation accuracy in the name of implementation feasibility.
This limitation is particularly prevalent for total energy

estimates, which depend on the accuracy of gem5 performance
numbers and McPAT calculations.

8 Related Work

Transient execution attacks. Spectre [32] and Meltdown [38]
are the first known attacks that exploit speculative execution
to leak data via microarchitectural timing side channels. Since
then, a wave of attacks have emerged. Most of these attacks use
the D-cache as a timing side channel [10, 13, 31, 32, 35, 38, 40,
41,47,48,50,57,59,61,64,66,68,69,71–73,77,81]. Attackers
have also demonstrated speculative data leaks through the
AVX unit [60], issue ports [5], I-cache [42], BTB [42], and
global staging buffer [53], as well as suggested the possibility
of speculative data leaks through the TLB [56, 83]. Recent
work demonstrates that TSX Asynchronous Aborts can also
be exploited to leak secrets [59, 71].

Software Mitigations. Due to the difficulty of patching
deployed hardware, numerous software patches for transient
execution attacks exist. Unfortunately, no software-only
techniques provide comprehensive protection.

For Meltdown-type attacks, software mitigations tend to fo-
cus on enforcing stronger isolation between security domains.
For example, kernel address space layout randomization
(KASLR) increases the difficulty of finding kernel data to
leak [21]. However, while KASLR makes Meltdown more
difficult to exploit, it does not altogether prevent it. Kernel page
table isolation (KPTI) defeats the original Meltdown variant
by placing kernel data in a separate address space [14, 21].
However, KPTI does not prevent other Meltdown-type
attacks [10, 48, 59, 61, 64, 68, 72, 77]. Other proposed defenses
offer attack- or channel-specific OS/VMM code modifications.
For instance, flushing the cache on context switches between
privilege levels only mitigates the cache channel [24, 77].

A wider variety of software mitigations have been proposed
for Spectre-type attacks. Compiler techniques include
modifying vulnerable code patterns to prevent a subset of
transient execution. For example, Retpoline [67] protects call
and return instructions from speculatively leaking values on
the return stack buffer as in Spectre-RSB [35]. Unfortunately,
Retpoline fails to protect against other Spectre variants.

Other compiler techniques insert LFENCEs or add artificial
data dependencies to prevent transient loads [11,51,62,65,75],
potentially using program analysis techniques or hardware-
software contracts to identify information flows [22, 23, 75].
These techniques can mitigate attacks on memory-based
secrets, such as Spectre v1 and Spectre v2 in some cases.
However, they either fail to protect register-based secrets, fail
to cover all Spectre variants (e.g., SSB [47]), or incur higher
overhead than the state-of-the-art hardware defense [88].

Hardware Mitigations. Hardware defenses offer the
ability to mitigate transient execution attacks at their microar-
chitectural sources [43, 76]. The comprehensive solution
for all Meltdown-type attacks is to prohibit potentially faulty
micro-ops from propagating their results in future proces-



sors [38, 76]. In the interim, microcode patches have been
individually issued for Meltdown-type attacks [24, 26, 72, 77].

Hardware patches also exist for certain Spectre-type attacks.
Processors can automatically insert LFENCEs after branches
and context switches via microcode [25, 26], as well as disable
SSB [2, 27]. SpecCFI [34] prevents Spectre v2 by restricting
speculative jumps to an authorized set of targets. None of these
techniques, nor their union, can mitigate all Spectre variants.

MI6 [7] provides secure enclaves in an out-of-order
processor via microarchitectural resource isolation (e.g.,
flushing core-local structures on context switches). Compared
to DOLMA, MI6 does not support SMT and requires the use
of a software monitor executing non-speculatively to manage
transitions between the enclave and outside world.

InvisiSpec [83] and others [1,29,36,54–56,83] only protect
select load-based transmission channels (e.g., the D-cache), in
contrast to speculative information flow control defenses such
as DOLMA. The InvarSpec microarchitecture [91] optimizes
these cache-centric defenses, using compiler-generated
instruction annotations to help determine when a load’s exe-
cution would not explicitly reveal speculative operand values.

Manual speculative information flow control de-
fenses [17, 58, 86] require the programmer to annotate
secrets for protection, as opposed to the automatic protection
provided by DOLMA. The strict timing requirements for
annotated data ensure that speculative execution produces
neither transient nor non-transient side channel leakages (i.e.,
in the event speculation resolves correctly). While effective in
providing protection for annotated data, the security of manual
defenses relies on proper programmer annotation of secrets.

Existing automatic speculative information flow control
defenses [3, 76, 88] prevent varying sets of speculative
dependants from issuing until speculation resolves. Notably,
SpecShield [3] only protects speculatively-accessed data (e.g.,
data in memory), and NDA [76] does not prevent leakage of
register-based secrets via a single transient micro-op. STT [88]
fails to comprehensively mitigate transmissions via stores,
whether secrets are in memory or in registers. In contrast,
DOLMA protects against all known transient execution attacks,
and incurs 8.2–21.2% less overhead than the state of the
art [88] when scaling to protect data in registers.

Finally, during the revision of this paper, the authors of
STT published an optimization framework (SDO [87]). Like
DOLMA, SDO improves performance over STT primarily
by allowing speculative loads to safely execute in certain
scenarios. SDO creates a “data-oblivious” load, which
behaves independently of its operands as well as other unsafe
operands. However, to achieve such a load, SDO requires
that (1) for each operand-dependent resource access (e.g.,
a cache bank access), the load instead accesses all such
resources (e.g., all banks), and (2) the load blocks all other
accesses to these resources until complete. Accordingly, an
attacker could intentionally issue speculative data-oblivious
loads to temporarily deny cache access to other tenants, in a

similar manner to prior cache denial-of-service attacks [4, 78].
Furthermore, SDO does not address any of the store-based
security vulnerabilities present in STT and does not consider
the effects of the staging buffer [53]. Therefore, SDO requires
additional considerations for multitenant environments.

9 Conclusion

Efficiently mitigating transient execution attacks is challeng-
ing. Initial hardware mitigations focused on cache transmis-
sion [1, 29, 30, 36, 56, 83]. Manual speculative information
flow control defenses [17, 58, 86]—though effective—require
error-prone annotations of secrets. Automatic solutions fail
to comprehensively protect data in registers [3, 76, 87, 88]
or memory [87, 88]. DOLMA introduces a novel principle
of transient non-observability, combining a lightweight
speculative information flow control design with a set of
secure performance optimizations to protect data in memory
and registers against all existing transient execution attacks.

Acknowledgements

We thank our shepherd (Kaveh Razavi), Marina Minkin, and
the anonymous reviewers for their constructive feedback.
Kevin Loughlin has been supported by an NSF Graduate
Research Fellowship (award DGE 1256260).

Availability

DOLMA’s implementation and evaluation infrastructure is
available at https://github.com/efeslab/dolma.

References

[1] S. Ainsworth and T. M. Jones. Muontrap: Prevent-
ing cross-domain spectre-like attacks by capturing
speculative state. In ISCA, 2020.

[2] AMD. Speculative Store Bypass Disable, 2018.
developer.amd.com/wp-content/resources/
124441_AMD64_SpeculativeStoreBypassDisable_
Whitepaper_final.pdf.

[3] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodor-
escu. Specshield: Shielding speculative data from
microarchitectural covert channels. In PACT, 2019.

[4] M. Bechtel and H. Yun. Denial-of-service attacks on
shared cache in multicore: Analysis and prevention. In
IEEE RTAS, 2019.

[5] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus.
Smotherspectre: Exploiting speculative execution
through port contention. In CCS, 2019.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, et al. The gem5 simulator. ACM SIGARCH
CAN, 2011.

https://github.com/efeslab/dolma
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf


[7] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, S. Devadas,
et al. Mi6: Secure enclaves in a speculative out-of-order
processor. In MICRO, 2019.

[8] J. Bucek, K.-D. Lange, et al. SPEC CPU2017:
Next-Generation Compute Benchmark. In ACM/SPEC
ICPE Companion, 2018.

[9] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von
Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss.
A systematic evaluation of transient execution attacks
and defenses. In USENIX Security, 2019.

[10] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp,
M. Minkin, D. Moghimi, F. Piessens, M. Schwarz,
B. Sunar, J. Van Bulck, and Y. Yarom. Fallout: Leaking
data on meltdown-resistant cpus. In CCS, 2019.

[11] C. Carruth. Speculative Load Hardening. Google, 2018.
llvm.org/docs/SpeculativeLoadHardening.html.

[12] C. Celio, J. Zhao, A. Gonzalez, and B. Korpan.
Riscv-boom documentation, 2019.

[13] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H.
Lai. Sgxpectre: Stealing intel secrets from sgx enclaves
via speculative execution. In Euro S&P, 2019.

[14] J. Corbet. A page-table isolation update. LWN, 2018.
lwn.net/Articles/752621/.

[15] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh.
Jump over aslr: Attacking branch predictors to bypass
aslr. In MICRO, 2016.

[16] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Pono-
marev, et al. Branchscope: A new side-channel attack on
directional branch predictor. In ACM SIGPLAN Notices,
2018.

[17] J. Fustos, F. Farshchi, and H. Yun. Spectreguard: An
efficient data-centric defense mechanism against spectre
attacks. In DAC, 2019.

[18] K. v. Gleissenthall, R. G. Kıcı, D. Stefan, and R. Jhala.
Iodine: Verifying constant-time execution of hardware.
In USENIX Security, 2019.

[19] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation
leak-aside buffer: Defeating cache side-channel protec-
tions with TLB attacks. In USENIX Security, 2018.

[20] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller,
and M. Costa. Strong and efficient cache side-channel
protection using hardware transactional memory. In
USENIX Security, 2017.

[21] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice,
and S. Mangard. Kaslr is dead: long live kaslr. In ESSoS.
Springer, 2017.

[22] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila. Hardware-
software contracts for secure speculation. arXiv preprint
arXiv:2006.03841, 2020.

[23] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke,
and A. Sánchez. Spectector: Principled detection of
speculative information flows. In S&P, 2020.

[24] Intel. Deep Dive: Intel Analysis of L1 Terminal Fault,
2018. software.intel.com/security-software-
guidance/insights/deep-dive-intel-analysis-
l1-terminal-fault.

[25] Intel. Intel Analysis of Speculative Execution Side
Channels, 2018. software.intel.com/security-
software-guidance/api-app/sites/default/
files/336983-Intel-Analysis-of-Speculative-
Execution-Side-Channels-White-Paper.pdf.

[26] Intel. Speculative Execution Side Channel Miti-
gations, 2018. software.intel.com/security-
software-guidance/api-app/sites/default/
files/336996-Speculative-Execution-Side-
Channel-Mitigations.pdf.

[27] Intel. Speculative Store Bypass, 2018.
software.intel.com/security-software-
guidance/advisory-guidance/speculative-
store-bypass.

[28] R. E. Kessler. The alpha 21264 microprocessor. MICRO,
1999.

[29] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Ev-
tyushkin, D. Ponomarev, and N. Abu-Ghazaleh.
Safespec: Banishing the spectre of a meltdown with
leakage-free speculation. In DAC, 2019.

[30] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas,
and J. Emer. Dawg: A defense against cache timing
attacks in speculative execution processors. In MICRO,
2018.

[31] V. Kiriansky and C. Waldspurger. Speculative buffer
overflows: Attacks and defenses. arXiv preprint
arXiv:1807.03757, 2018.

[32] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
et al. Spectre attacks: Exploiting speculative execution.
In S&P, 2019.

[33] P. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In CRYPTO, 1999.

[34] E. M. Koruyeh, S. Haji Amin Shirazi, K. N. Khasawneh,
C. Song, and N. Abu-Ghazaleh. Speccfi: Mitigating spec-
tre attacks using cfi informed speculation. In S&P, 2020.

https://llvm.org/docs/SpeculativeLoadHardening.html
https://lwn.net/Articles/752621/
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/advisory-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/advisory-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/advisory-guidance/speculative-store-bypass


[35] E. M. Koruyeh, K. N. Khasawneh, C. Song, and
N. Abu-Ghazaleh. Spectre returns! speculation attacks
using the return stack buffer. In 12th USENIX Workshop
on Offensive Technologies, WOOT, 2018.

[36] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng.
Conditional Speculation: An Effective Approach to
Safeguard Out-of-Order Execution Against Spectre
Attacks. In HPCA, 2019.

[37] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. Mcpat: an integrated power,
area, and timing modeling framework for multicore and
manycore architectures. In MICRO, 2009.

[38] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
et al. Meltdown: Reading kernel memory from user
space. In USENIX Security, 2018.

[39] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse,
S. Narayanasamy, and B. Kasikci. DOLMA source code.
github.com/efeslab/dolma, 2020.

[40] A. Lutas and D. Lutas. Bypassing kpti using the spec-
ulative behavior of the swapgs instruction. Bitdefender
Whitepaper, 2019.

[41] G. Maisuradze and C. Rossow. ret2spec: Speculative
execution using return stack buffers. In CCS, 2018.

[42] A. Mambretti, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, and A. Kurmus. Two methods for exploiting
speculative control flow hijacks. In WOOT, 2019.

[43] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and
T. Verwaest. Spectre is here to stay: An analysis of
side-channels and speculative execution. arXiv preprint
arXiv:1902.05178, 2019.

[44] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and
M. Prvulovic. Eddie: Em-based detection of deviations
in program execution. In ISCA, 2017.

[45] I. Neal. Lapidary: Crafting more beautiful gem5
simulations. medium.com/@iangneal/lapidary-
crafting-more-beautiful-gem5-simulations-
4bc6f6aad717, 2019.

[46] I. Neal. Lapidary: creating beautiful gem5 simulations.
github.com/efeslab/lapidary, 2019.

[47] NIST NVD. Cve-2018-3639. nvd.nist.gov/vuln/
detail/CVE-2018-3639, 2018.

[48] NIST NVD. Cve-2018-3640. nvd.nist.gov/vuln/
detail/CVE-2018-3640, 2018.

[49] NIST NVD. Cve-2018-3693. nvd.nist.gov/vuln/
detail/CVE-2018-3693, 2018.

[50] NIST NVD. Cve-2019-11135. nvd.nist.gov/vuln/
detail/CVE-2019-11135, 2019.

[51] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein,
and C. Fetzer. You shall not bypass: Employing data
dependencies to prevent bounds check bypass. arXiv
preprint arXiv:1805.08506, 2018.

[52] M. K. Qureshi. CEASER: Mitigating Conflict-Based
Cache Attacks via Encrypted-Address and Remapping.
In MICRO, 2019.

[53] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuf-
frida. Crosstalk: Speculative data leaks across cores are
real. In S&P, 2021. To appear.

[54] G. Saileshwar and M. K. Qureshi. Cleanupspec: An
undo approach to safe speculation. In MICRO, 2019.

[55] C. Sakalis, M. Alipour, A. Ros, A. Jimborean, S. Kaxiras,
and M. Själander. Ghost loads: what is the cost of
invisible speculation? In ACM CF, 2019.

[56] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Sjä-
lander. Efficient invisible speculative execution through
selective delay and value prediction. In ISCA, 2019.

[57] M. Schwarz, C. Canella, L. Giner, and D. Gruss. Store-
to-leak forwarding: Leaking data on meltdown-resistant
cpus. arXiv preprint arXiv:1905.05725, 2019.

[58] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl,
and D. Gruss. Context: A generic approach for
mitigating spectre. In NDSS, 2020.

[59] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,
J. Stecklina, T. Prescher, and D. Gruss. Zombieload:
Cross-privilege-boundary data sampling. In CCS, 2019.

[60] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and
D. Gruss. Netspectre: Read arbitrary memory over
network. In K. Sako, S. Schneider, and P. Y. A. Ryan,
editors, Computer Security – ESORICS, 2019.

[61] M. Schwarzl, T. Schuster, M. Schwarz, and D. Gruss.
Speculative dereferencing of registers: Reviving
foreshadow. arXiv preprint arXiv:2008.02307, 2020.

[62] Z. Shen, J. Zhou, D. Ojha, and J. Criswell. Restricting
control flow during speculative execution. In CCS, 2018.

[63] SPEC. Standard Performance Evaluation Corporation
SPEC CPU 2017. spec.org/cpu2017/.

[64] J. Stecklina and T. Prescher. LazyFP: Leaking FPU
Register State using Microarchitectural Side-Channels.
arXiv preprint arXiv:1806.07480, 2018.

https://github.com/efeslab/dolma
https://medium.com/@iangneal/lapidary-crafting-more-beautiful-gem5-simulations-4bc6f6aad717
https://medium.com/@iangneal/lapidary-crafting-more-beautiful-gem5-simulations-4bc6f6aad717
https://medium.com/@iangneal/lapidary-crafting-more-beautiful-gem5-simulations-4bc6f6aad717
https://github.com/efeslab/lapidary
https://nvd.nist.gov/vuln/detail/CVE-2018-3639
https://nvd.nist.gov/vuln/detail/CVE-2018-3639
https://nvd.nist.gov/vuln/detail/CVE-2018-3640
https://nvd.nist.gov/vuln/detail/CVE-2018-3640
https://nvd.nist.gov/vuln/detail/CVE-2018-3693
https://nvd.nist.gov/vuln/detail/CVE-2018-3693
https://nvd.nist.gov/vuln/detail/CVE-2019-11135
https://nvd.nist.gov/vuln/detail/CVE-2019-11135
https://spec.org/cpu2017/


[65] M. Taram, A. Venkat, and D. Tullsen. Context-sensitive
fencing: Securing speculative execution via microcode
customization. In ASPLOS, 2019.

[66] C. Trippel, D. Lustig, and M. Martonosi. Checkmate:
Automated synthesis of hardware exploits and security
litmus tests. In MICRO, 2018.

[67] P. Turner. Retpoline: a software construct for
preventing branch-target-injection. Google, 2018.
support.google.com/faqs/answer/7625886.

[68] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting
the keys to the Intel SGX kingdom with transient
out-of-order execution. In USENIX Security, 2018.

[69] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp,
M. Minkin, D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and
F. Piessens. Lvi: Hijacking transient execution through
microarchitectural load value injection. In S&P, 2020.

[70] J. Van Bulck, F. Piessens, and R. Strackx. Nemesis:
Studying microarchitectural timing leaks in rudimentary
cpu interrupt logic. In CCS, 2018.

[71] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida.
Addendum to RIDL: Rogue In-flight Data Load, 2019.
mdsattacks.com/files/ridl-addendum.pdf.

[72] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida.
RIDL: Rogue in-flight data load. In S&P, 2019.

[73] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and
Y. Yarom. Cacheout: Leaking data on intel cpus via
cache evictions. cacheoutattack.com, 2020.

[74] R. A. Velásquez, P. Michaud, and A. Seznec. Selecting
benchmark combinations for the evaluation of multicore
throughput. In ISPASS, 2013.

[75] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and
A. Roychoudhury. oo7: Low-overhead defense against
spectre attacks via program analysis. IEEE TSE, 2019.

[76] O. Weisse, I. Neal, K. Loughlin, T. Wenisch, and
B. Kasikci. NDA: Preventing Speculative Execution
Attacks at Their Source. In MICRO, 2019.

[77] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, R. Strackx,
T. F. Wenisch, and Y. Yarom. Foreshadow-NG:
Breaking the Virtual Memory Abstraction with Transient
Out-of-Order Execution. Technical Report, 2018.

[78] D. H. Woo and H. Lee. Analyzing performance vulner-
ability due to resource denial of service attack on chip
multiprocessors. In Workshop on Chip Multiprocessor
Memory Systems and Interconnects, 2007.

[79] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and
J. C. Hoe. SMARTS: Accelerating microarchitecture
simulation via rigorous statistical sampling. In ACM
SIGARCH CAN, 2003.

[80] S. L. Xi, H. Jacobson, P. Bose, G. Wei, and D. Brooks.
Quantifying sources of error in mcpat and potential
impacts on architectural studies. In HPCA, 2015.

[81] W. Xiong and J. Szefer. Leaking information through
cache lru states. In HPCA, 2020.

[82] W. Xiong and J. Szefer. Survey of transient execution
attacks. arXiv preprint arXiv:2005.13435, 2020.

[83] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W.
Fletcher, and J. Torrellas. InvisiSpec: Making Specu-
lative Execution Invisible in the Cache Hierarchy. In
MICRO, 2018.

[84] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas. Secure
hierarchy-aware cache replacement policy (SHARP):
Defending against cache-based side channel attacks. In
ISCA, 2017.

[85] M. Yan, Y. Shalabi, and J. Torrellas. ReplayConfusion:
detecting cache-based covert channel attacks using
record and replay. In MICRO, 2016.

[86] J. Yu, L. Hsiung, M. El Hajj, and C. W. Fletcher. Data
oblivious isa extensions for side channel-resistant and
high performance computing. In NDSS, 2019.

[87] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W.
Fletcher. Speculative data-oblivious execution: Mobi-
lizing safe prediction for safe and efficient speculative
execution. In ISCA, 2020.

[88] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas,
and C. W. Fletcher. Speculative taint tracking (stt): A
comprehensive protection for speculatively accessed
data. In MICRO, 2019.

[89] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and
C. W. Fletcher. Speculative Taint Tracking (STT): A
Formal Analysis. Technical Report, 2019.

[90] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Tor-
rellas, and C. W. Fletcher. STT source code.
github.com/cwfletcher/stt, 2020.

[91] Z. N. Zhao, H. Ji, M. Yan, J. Yu, C. W. Fletcher,
A. Morrison, D. Marinov, and J. Torrellas. Speculation
invariance (invarspec): Faster safe execution through
program analysis. In MICRO, 2020.

https://support.google.com/faqs/answer/7625886
https://mdsattacks.com/files/ridl-addendum.pdf
https://github.com/cwfletcher/stt

	Introduction
	Background
	Speculative, Out-of-Order Processors
	Transient Execution Attacks

	Problem
	Cache-Centric Defenses
	Memory-Centric Defenses
	Attacking the State of the Art

	Scope of Protection
	Dolma-Default
	Dolma-Conservative
	Simultaneous Multi-Threading

	Design 
	Transient Non-Observability
	Micro-op Classification
	Optimizations for Traditional Backend Channels
	Mitigating Remaining Sources of Transmission
	Enforcing Restrictions
	Clearing Speculative Status

	Security Analysis
	Evaluation 
	Performance Evaluation
	Security Evaluation
	Area and Energy Estimates
	Limitations

	Related Work
	Conclusion

