é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

GPU-accelerated PIR with Client-Independent
Preprocessing for Large-Scale Applications

Daniel Ginther and Maurice Heymann, Technical University of Darmstadt; Benny
Pinkas, Bar-llan University; Thomas Schneider, Technical University of Darmstadt

https://www.usenix.org/conference/usenixsecurity22/presentation/gunther

This paper is included in the Proceedings of the
31st USENIX Security Symposium.
August 10-12, 2022 « Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is
sponsored by USENIX.

+ B — = -
n A : 4
- pl TENE »

GPU-accelerated PIR with Client-Independent Preprocessing for Large-Scale
Applications

Daniel Giinther
Technical University of Darmstadt

Maurice Heymann
Technical University of Darmstadt

Benny Pinkas
Bar-Ilan University

Thomas Schneider
Technical University of Darmstadt

Abstract

Multi-Server Private Information Retrieval (PIR) is a cryp-
tographic protocol that allows a client to securely query a
database entry from n > 2 servers of which less than ¢ can
collude, s.t. the servers learn no information about the query.
Highly efficient PIR could be used for large-scale applications
like Compromised Credential Checking (C3) (USENIX Secu-
rity’19), which allows users to check whether their credentials
have been leaked in a data breach. However, state-of-the art
PIR schemes are not efficient enough for fast online responses
at this scale.

In this work, we introduce Client-Independent Preprocess-
ing (CIP) PIR that moves (¢ — 1)/n of the online computation
to a local, client independent, preprocessing phase suitable for
efficient batch precomputations. The online performance of
CIP-PIR improves linearly with the number of servers n. We
show that large-scale applications like C3 with PIR are practi-
cal by implementing our CIP-PIR scheme using a parallelized
CPU implementation. To the best of our knowledge, this is the
first multi-server PIR scheme whose preprocessing phase is
completely independent of the client, and where online perfor-
mance simultaneously improves with the number of servers .
In addition, we accelerate for the first time the huge amount
of XOR operations in multi-server PIR with GPUs. Our GPU-
based CIP-PIR achieves an improvement up to factor 2.1 x
over our CPU-based implementation for n = 2 servers, and
enables a client to query an entry in a 25 GB database within
less than 1 second.

1 Introduction

The main motivation for this work is improving the security
and privacy of large-scale applications of Private Information
Retrieval (PIR) like Compromised Credential Checking (C3
— checking whether a user’s credentials appear in a database
of compromised credentials) [48], private blocklists in web
browsers [33], and epidemiological modeling [28]. The cur-
rent state of the art of C3 implementations must leak some

information about each query (namely, about the user’s cre-
dentials), in order to support low response latency and to scale
to the sizes of existing datasets [35,48] . This leakage allows
certain attacks [35].

We present a new PIR construction with offline prepro-
cessing, which hides all information about the queries and
on top reduces the response latency compared to all existing
PIR schemes. This construction works in a setting where the
responses are computed by n servers of which less than ¢ can
collude. We discuss in §1.3 the applicability of this setting
to C3, as well as to other applications. On top of this, we im-
plement for the first time multi-server PIR on GPUs in order
to accelerate (a) large parts of the online computations, and
(b) the offline preprocessing phase of our new PIR scheme,
by batching multiple queries independently of the client.

1.1 Private Information Retrieval (PIR)

Private Information Retrieval allows to securely and privately
access data from a public database whereby the servers do not
learn any information about the query nor the accessed data.
State of the art single-server PIR protocols like SealPIR [2]
are often not efficient enough for large-scale databases as their
response time is already a couple of seconds for databases
with only a few million entries (see also Fig. 5).

Hence, we build a new multi-server PIR protocol called
CIP-PIR. As a basis, we use the RAID-PIR protocol [15,
16], which is a multi-server PIR scheme with n > 2 servers
of which less than ¢ can collude that extends Chor et al.’s
PIR scheme [10]. Motivated by the very fast response times
required for large-scale applications, we aim to preprocess
a large part of the PIR protocol. For this, we introduce the
Client-Independent Preprocessing (CIP) PIR model which
lets the servers choose a part of the client’s query in the
RAID-PIR protocol and moves (¢ — 1)/n of its computation
to an offline preprocessing phase which is even independent
of the client. Now, this phase can be batch processed for all
clients together resulting in faster amortized preprocessing
and hence total time. We also show how to compress the PIR

USENIX Association

31st USENIX Security Symposium 1759

database to improve storage and computation in PIR which is
of independent interest.

We show corresponding improvements by implementing
our CIP-PIR protocol on a CPU and obtain up to factor nx
better online runtime than RAID-PIR without decreasing the
throughput. Moreover, while RAID-PIR trades security for
better performance (only less than ¢ <z servers may collude),
the performance of the online phase of our CIP-PIR scheme
becomes independent of the collusion threshold 7.

We further improve the runtime of our CIP-PIR protocol
by massively parallel computations of the preprocessing and
online computations on a GPU. The GPU-accelerated imple-
mentation highly profits from batching multiple queries in
the preprocessing phase as expensive memory transfers of
portions of the database are amortized.

1.2 Large-Scale PIR Applications

There is a high interest in efficient PIR for multiple appli-
cations. Our CIP-PIR construction can be used in any PIR
application which requires low latency for large-scale data.
An important and omnipresent application in the context of
compromised credential checking (C3) is described below.
Further applications with these requirements are, for example,
private queries to medical and patent databases [4], anony-
mous messaging [16], Tor clients downloading a list of nodes,
and certificate/key transparency. A recently proposed applica-
tion which requires low latency is to support private queries
by browsers to blocklists of malware-hosting websites, as in
Google’s “Safe Browsing” blocklist [33]. Another potential
future application, which is motivated by the push for privacy-
preserving advertising and the elimination of cross-site user
tracking, is serving advertisements to users: The goal would
be for the user’s machine to locally decide on ads that best
target the user, and then fetch these ads privately using PIR.
(Of course, this future ad system will also require additional
privacy-preserving mechanisms, such as for profiling users
interests, and for exposure measurement and billing.)

Compromised Credential Checking (C3). Data breaches
occur more and more in the recent years. These breaches
contain highly sensitive information about the users, e.g.,
their passwords and usernames. The most prominent breach
contains more than two billion credentials and is called Col-
lection 1-5 [26]. Thomas et al. [47] showed that 6.9% of
the breached credentials are still in use even on non-exposed
platforms. This enables credential stuffing attacks, where an
adversary compromises accounts by trying leaked passwords
on other services. Usually, the affected platforms reset their
user’s passwords of their users after an exposure, but this does
not alert the users about the risk of using the same credential
on other platforms. Hence, there is a demand for Compro-
mised Credential Checking (C3) tools [35] that allow users to
check whether their credentials are breached or not.

Popular password managers already integrate C3 services:
1password uses HavelBeenPwnd (HIBP) [30,45] and Last-
Pass uses ENZOIC [20,21]. These schemes offer up to four
different query types: querying the client’s username or pass-
word, the service’s domain, and the combinations of the
client’s username and password. Thomas et al. [48] conclude
that querying the username/password combination is the best
option due to the user-friendliness, as password-only queries
would alert users too often and the other two options are too
vague (cf. [48] for further discussions). Recently, Thomas
et al. [48] published their Google Password Checkup (GPC)
tool as a Google Chrome extension that is the first C3 service
secure against malicious clients (a variant of this is now inte-
grated in Chrome, see below). They achieve this with the help
of a Private Set Intersection (PSI) protocol that enables one
party to privately check if her input is in the set of the other
party (actually this is a variant of PSI where one input set
consists of a single element only). To optimize efficiency, all
these tools run the PSI protocol only on a small subset of the
entire database, where the elements have the same prefix of
the hashed credentials. For this, the hash prefix is leaked to the
server. However, the hash prefix can be used for a credential
stuffing attack on the user’s anonymity as the server learns
in which subset the credentials would be located [35]. A PSI
protocol on the whole database would avoid such leakage, but
it is too inefficient for large-scale databases.

This attack is not only theoretical. Li et al. [35] showed that
knowledge of the credential’s hash prefix suffices to compro-
mise up to 86% of the leaked accounts within 1000 attempts
(even up to 73% of the accounts that are not included in a
data breach). To protect the user’s sensitive information, they
provide two new C3 protocols from which one still has the
leakage problem that enables credential stuffing attacks. The
other protocol was proposed in parallel by Thomas et al. [48]
and does leak no information about the user’s password since
the subset is identified by a prefix of the hashed username.
This protocol, however, has the disadvantage that the user’s
anonymity is even more vulnerable since the adversary learns
information about the username. Moreover, the protocol can
only be deployed for applications where the user can check
the existence of its username/password combination in a data
breach, while more security-aware users aim to check, if their
passwords are attacked (even if the username is not included).
In Aug. 2020, Google integrated and enabled by default this
protocol in their Chrome web browser [11]. They hold a
database of four billion leaked credentials and their deployed
protocol leaks a three byte hash prefix of the username.

Thomas et al. [48] and Li et al. [35] both suggest to use
Private Information Retrieval (PIR) to hide the hash prefix,
which yields perfect anonymity, i.e., the C3 protocol does not
allow to identify the user. However, [48] and [35] observe that
current PIR techniques are not efficient enough to be operated
in a real-world deployment. In this work, we show how to
build and use highly efficient multi-server PIR for use in C3.

1760 31st USENIX Security Symposium

USENIX Association

1.3 Setting and Applicability

Our model includes multiple servers, and guarantees security
as long as there is no collusion of more than some threshold
number of the servers. The usage of multiple servers seems
crucial for ensuring both scalability and security. In fact, all
large-scale C3 systems with a single server send to the server
partial information about users credentials, which, as was
shown by Li et al. [35], might compromise a large fraction of
the users.

The assumption that servers do not collude with each other
might not be credible by the public if all servers are run by
the same entity (such as Google). Therefore, servers must be
operated by multiple entities which are trusted not to collude.
While this is a standard assumption/requirement in the crypto-
graphic literature (e.g., for MPC protocols, multi-server PIR
and threshold crypto), it is unclear if this assumption always
makes sense from a business perspective. There are however,
recent examples where companies are deploying services
whose security depends on non-colluding servers. For exam-
ple, Apple and Google run their exposure notification system
for COVID-19 contact tracing via the Prio system [12] that
is operated by the Internet Security Research Group (ISRG),
which also runs the Let’s Encrypt certificate authority and is
therefore an entity which is trusted by Internet users, as well
as the National Institutes of Health (NIH).! The additional
servers can be run by organizations with a privacy-centric
mission, or by different companies which would like to col-
laborate in order to provide a service to the public.

The recent Apple/Google collaboration on an API for
COVID-19 contact tracing is an example of a collaboration be-
tween companies (in a different domain) which was unimag-
inable until recently. This collaboration shows that two com-
peting companies can have a strong mutual interest in offering
privacy-preserving services to their users for real-world ap-
plications. Apple introduced in i0OS14 It is very unlikely that
any of these corporations would attempt to use a leakage in a
C3 system to steal a user’s password. However, as more users
are becoming concerned about their privacy, companies might
want to provide users with the strongest possible privacy that
can be offered using multi-server PIR. Another motivation for
participating companies, might be their desire not to be liable
for knowledge of unnecessary private user data, or the fear
that company insiders could try to learn such information.

1.4 Our Contributions

We propose, implement, and benchmark CIP-PIR, an efficient
multi-server PIR protocol that is designed for large-scale ap-
plications operating multiple GB large databases and outper-
forms recent efficient PIR implementations like PIR based

'See, for example https://covidl9-static.cdn-apple.com/
applications/covidl9/current/static/contact-tracing/pdf/
ENPA_White_Paper.pdf.

on function secret sharing [7]. Furthermore, CIP-PIR can be
used by companies who want to provide privacy-preserving
services to their customers as the underlying cryptography
is so simple that even non-experts can be convinced of its
security and correctness. For this, we design a strong new
PIR model called client-independent preprocessing, which
allows for the first time very efficient offline preprocessings
completely independent of the client, i.e., the PIR servers do
not even need to know the clients for the preprocessing. Our
main contributions are summarized as follows:

Client-Independent Preprocessing PIR Model (§2.1).
In the multi-party computation (MPC) literature the prepro-
cessing model has prevailed as it gives tremendous speedups
for the online computation by precomputing expensive cryp-
tographic operations of the same type, ideally in parallel (e.g.,
somewhat homomorphic encryption in SPDZ [32]). Today,
this model is common for many efficient state-of-the-art MPC
protocols. In concurrent and independent work, the prepro-
cessing model was applied to multi-server PIR in [33]. In that
work a server interacts with the client in an offline phase to
precompute some hints that are later used in the online phase.
We go one important step further: our Client-Independent
Preprocessing (CIP) PIR is client-independent and hence can
be performed even before knowing the client(s). This allows
local and parallel preprocessing across all clients with signifi-
cant speedups.

CIP-PIR Protocol (§3.2). The first PIR scheme in our new
CIP PIR model is called CIP-PIR that is based on the very sim-
ple RAID-PIR scheme by Demmler et al. [15, 16] and moves
a part of the client’s query generation to the server sides. This
costs an additional round trip, but allows for very efficient
offline preprocessing without involving the client. Moreover,
the preprocessing phase can easily be batch-processed with-
out waiting for numerous client requests resulting in faster
amortized preprocessing and hence total time. We note that
our scheme (as the original PIR by Chor et al. [10]) has linear
communication complexity, but this is only one bit per block.

Database Compression in PIR (§3.3). We design and
implement two database compression techniques that are ap-
plicable to all PIR constructions. Our first compression tech-
nique is applicable to all database types and improves the
storage by factor 1.2x. Our second compression technique is
designed for special-purpose hash databases and reduces the
storage and online runtime by factor 5x for a false-positive
probability of 2729, There are many real-world applications
for PIR on hash databases including all private set inclusion
PIR applications (e.g., medical and patient databases), C3, and
epidemiological modeling. Moreover, the GPC protocol [48]
can profit from both of our compression techniques to reduce
the database size by factor 5.9x.

CPU and GPU Implementation (§4). We implement our
CIP-PIR protocol in a highly efficient manner in C++. Our par-
allel implementations for CPUs and GPUs are of independent
interest as they are applicable also within other multi-server

USENIX Association

31st USENIX Security Symposium 1761

https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf

PIR schemes, e.g., the linear XOR operations of PIR based on
function secret sharing [7, 8] after expanding the PIR query.

Our CPU implementation uses Intel AVX-512 intrinsics to
support XOR operations over 512 bits within one CPU cycle.
Moreover, we massively parallelize the server computation
using the OpenMP framework. We gain (using the same code-
base) for n = 2 servers up to 2x better online runtime (5x
better for n = 5 servers and collusion threshold ¢t = 5) than
RAID-PIR [16] and 1.2 x faster amortized preprocessing time
for batch size |Q| = 1000.

Our GPU implementation provides for the first time a
multi-server PIR implementation on a GPU using Nvidia’s
CUDA platform [9,43]. We implement and benchmark two
approaches for efficient parallelization: With the first one,
all CUDA blocks together compute the answer of one query,
while the second one batches incoming queries and all the
CUDA blocks process one query, separately. We gain for n =
2 servers up to 2.1x faster online runtimes than our CPU-
based CIP-PIR implementation, and 85x faster amortized
online and preprocessing runtime for batch size |Q| = 1000.

2 Preliminaries and Background

2.1 PIR Background

In Private Information Retrieval (PIR), as introduced by Chor
et al. in [10], a client wishes to learn one or multiple blocks
from a public database |DB|, while using only sublinear com-
munication, and hiding the details of the query from the
database owner(s). We focus on multi-server PIR schemes
since they have a substantially lower computational overhead.
In multi-server PIR the database DB is split over n > 2 servers
that are assumed not to collude. The client sends a request to
each server and combines the answers to compute the result.

Definition 1 (classical PIR protocol) A classical PIR pro-
tocol is a tuple of algorithms (Create, Request,
Response, Combine) as described below:

Create is locally run once by the owner of the database.
It takes as input some data array D, and outputs for each
server i € [n] a database DB; which is sent to the server.
(Note that unlike the original PIR constructions of [10], each
server might receive a different database/state).

Request is run by the client and takes as input the in-
dex idx of the data item to access and outputs a list of
queries (qo, - . . ,qn—1), Where q; is sent to server i.

Response is run by each server i. It takes the query q;
as input and outputs an answer a; based on the local
database DB;.

The client collects the answers aq,...,a,—1 from the
servers and calls the Combine algorithm that outputs the
desired data d = Dlidx).

The PIR scheme must satisfy the following definitions for
correctness (stating that the client must be able to correctly

compute the answer of its query), and for security (stating
that a subset of the serves learns nothing about the query).

Definition 2 (Correctness) For any database D,
let Create(D) = (DBy,...,DBy_1). For any
idx € [0,|D| — 1], let Request(idx) = (qo,---,qn—1)-
For any server j, let aj = Response(DBj,q;). Then
Combine(idx,ay,... ,a,—1) = D[idx].

Definition 3 (Security of multi-query PIR) A PIR scheme
with redundancy parameter/threshold 1 <t < n is called se-
cure if any collusion of less than t servers does not learn any
information about the query indexes.

In more detail, let K be a computational security parameter
and let T denote any subset of less than t servers, and let
the view of server j denote DB and all queries q; that this
server receives. We require that for any data D, and any two
same-length sequences of (possibly not all unique) requests
R = (idx,...,idxy,) and R' = (idx},...,idx),), no algorithm
whose run time is polynomial in m and in X can distinguish
the view of the servers in T, between the case of the client
using the requests in R, and the case of it using R'.”

The original PIR protocol of Chor et al. [10] guaranteed un-
conditional security. Our protocol will ensure only computa-
tional security as is defined here, based on the basic security
assumption that pseudo-random generators exist.

A PIR scheme must also satisfy communication efficiency,
by guaranteeing that the overall communication is smaller
than sending D itself, and is only o(|D|).

2.2 Multi-Server PIR schemes

Multi-server PIR assumes that a subset of the n operating
servers are non-colluding. Let us first give an informal de-
scription of the scheme by Chor et al. [10], on which most
multi-server PIR schemes are based. First, the input data D
is split into B blocks of size b each, which results in the
database DB. If the client is interested in learning block i it
sends to the first server a random B-bit string g, and sends to
the second server a string g; which is equal to g in all bits
except for the i-th bit, in which the two strings are different.
Each server computes the XOR of the blocks which corre-
spond to ‘1’ bits in the string that it received, and sends the
resulting b-bit block to the client. The client then computes
the XOR of the two strings it received. This result is equal to
the i-th block. The total communication with each of the n
servers is B+ b bits.

2 We note that the original PIR definition only protects the privacy of
the client and not the privacy of the server. Namely, it does not prevent the
client from learning more than a single data item. This property is called
“symmetric PIR” [24]. It can be ensured by encrypting each entry of the
server using a key known only to the server, and letting the client run a single
instance of an efficient oblivious pseudo-random function evaluation protocol
(OPREF) in order to learn the decryption of only a single item [22,40].

1762 31st USENIX Security Symposium

USENIX Association

The core idea of multi-server PIR directly follows from this
protocol. The client sends messages to each of the n servers.
Server i extracts from its message a B-bit query strings g;.
The XOR of the n query strings of all servers is a string of
B bits, which are all zero except for a single ‘1’ bit at the
position corresponding to the block that the client aims to
retrieve. In the online computation, each server i computes
the XOR of all database blocks which correspond to ‘1’ bits
in g;. Different PIR schemes differ in encoding the request on
the client side and extracting the B-bit strings on the server
side. We now describe how the client queries are encoded and
extracted in RAID-PIR [15, 16] and in all PIR schemes based
on function secret sharing [7, 8].

RAID-PIR [15,16]. InRAID-PIR [15,16] the B blocks are
split into n chunks (recall that n is the number of servers).
Each server receives ¢ < n chunks, and therefore stores 7/n
of the database (where ¢ is the collusion threshold). Conse-
quently, the client’s queries are shorter and each server only
XORs a smaller subset of the blocks. As before, the XOR
of all n queries is equal to a B-bit string which is also zero
except for a ‘1’ bit at the block that the client wishes to learn.

Each block is included in a chunk of k = B/n blocks,
which is stored by ¢ servers. A crucial observation that is
used to improve performance is that for any specific block,
out of the 7k bits that instruct 7 servers what to do with this
block, (r — 1)k bits can be pseudo-random and only & bits
need to be explicitly set to ensure that the result of the XOR
is correct. Therefore instead of sending a full length string
to each server, the client can send to each server a seed that
is used to compute a 1/¢ fraction of the string that the server
must use. This cuts the communication from the client to the
server by factor fx. Performance can further be improved
with a time-memory tradeoff that precomputes queries using
the method of Arlazarov et al. [3] (known as the “method of
the four Russians™), and optimizing the database layout to
allow for parallel queries.

PIR based on Function Secret Sharing. PIR based on
function secret sharing (FSS) as proposed by Boyle et al. [§8]
uses a distributed point function in order to encode the query
of the client. A distributed point function fg g is a pair of func-
tions fo, f1, where fi g(x) evaluates to 3 for x = ot and to 0 for
x# o, and fp(x) = fo(x) + fi(x) holds for all x € {0,1}%
and B € N (the number of blocks in PIR). A function se-
cret sharing on distributed point functions is instantiated by
a client choosing two keys k¢ and k1, defining two functions
fo(x) = fo(ko,x) and fi(ki,x) = fi(x), and distributing these
to two servers. When a client aims to retrieve block i in
PIR, he generates a distributed point function f;; and secret
shares this to the two servers via function secret sharing.
Server j then can extract the query by calculating f i(x) for all
x € {0,1}8, which then results in a B-bit string ¢ j- The XOR

of these two strings go and g; results in a zero B-bit string
with only one ‘1’ at position i. In addition, FSS-PIR is mostly
applicable to the two-server setting.

FSS-based PIR is the first multi-server PIR scheme that
has logarithmic upload communication complexity, while the
download depends on the chosen blocksize b. Although the
communication complexity of our new CIP-PIR scheme is
sublinear, the total online runtime of CIP-PIR improves over
FSS-PIR for large databases (cf. §5.2.2)

2.3 CUDA

Nvidia’s Compute Unified Device Architecture (CUDA) [9,
43] is a framework that allows to program GPUs to compute
Single Instruction, Multiple Data (SIMD) instructions and to
support direct memory access. It is a popular architecture for
highly parallelized programming run by a large number of
threads each performing simple instructions from CUDA’s
own instruction set architecture called PTX ISA. All threads
have access to a global memory that has a high storage capac-
ity, but takes at least 400 clock cycles per memory access.
The threads are grouped into multiple CUDA blocks each
having a shared memory among its threads. As accesses to the
shared memory are very efficient, we can apply a technique
called coalescing to bundle the global memory accesses of
multiple threads into a single access within a block.

2.4 Threat Model

Throughout this work, we evaluate PIR protocols relative to
the following main threat model: a coalition of malicious
PIR servers try to learn information about the client’s query.
In this threat model, servers can deviate from the protocol
description in order to learn details about the PIR query. This
is obviously critical, since the contents of the query depends
on the underlying application, which we aim to protect by
using PIR. All PIR protocols are designed to hide queries
from coalitions of less than ¢ servers, where ¢ is the collusion
threshold which should obviously be as close as possible to
the total number of servers. (Clearly, if all PIR servers in
multi-server PIR schemes collude, they are able to reconstruct
the client’s plain query.)

3 Private Information Retrieval Extensions

We introduce our new Client-Independent Preprocessing
PIR model (§3.1), describe our CIP-PIR scheme (§3.2), and
present our new PIR database compression technique (§3.3).
We give a summary of the RAID-PIR scheme from [15, 16]
in §A, the security proof of CIP-PIR in §B, its complexity
analysis in §C, and efficient database updates in our full ver-
sion [27, § D] .

USENIX Association

31st USENIX Security Symposium 1763

3.1 PIR with Client-Independent Preprocess-
ing (CIP-PIR)

Previous works on PIR, such as [6, 16], improve the online
computation for the server with a time-memory tradeoff that
merges and precomputes once in a setup phase parts of the
database. Then, during the Response method, the servers
only have to combine the precomputed parts depending on the
query g;. Our idea is fully compatible with this time-memory
tradeoff, but goes one significant step further.

We split the preprocessing into two parts - database prepro-
cessing and client-independent preprocessing. The database
preprocessing is a one-time precomputation step in the setup
phase that maps the database into a state that enables the
servers to compute their answer more quickly as described
in [6, 16]. We use this known optimization in our implemen-
tation but do not include it in our presentation for simplicity.
In addition, we introduce the client-independent preprocess-
ing which is a client-independent routine in the preprocess-
ing phase that precomputes concrete parts of the server’s
answer for one query which can be used only once. The client-
independent preprocessing is of course independent of the
contents of the query and can be computed before it is received
by the server. In the following, we define our new client-
independent preprocessing (CIP) PIR model, which goes be-
yond the Offline/Online model of [13] as it computes the
preprocessing/online phase without involving the client.

Definition 4 (PIR in the CIP model) A PIR scheme in the
CIP model is a tuple of algorithms (Create, Preprocess,
Request, Response, Combine). The protocol is shown
in high-level in Fig. 1.

The Create and Combine algorithms are exactly the
same as in the original PIR model from §2.1.

Each server i locally runs the Preprocess algorithm
in a parallel thread that can be started and paused. This
algorithm takes as input the database DB; and adds query-
specific tuples (S;,A;) to the queue Q; until it is full or the
thread is interrupted. The run is paused until there is new
space for more values in Q;. S; is a short seed and A; is a part
of the server’s answer for the i-th query that depends only
on S;, but not on the query g, i.e., A; is independent of idx.

After the client sends its “hello” message to the servers,
each server i pops one pair (S;,A;) from Q; and sends S; to the
client. The Request algorithm takes as input the index idx
of the data item to access, and seeds Sy, ...,S, obtained from
the n servers, and generates queries qy,. .. ,qy.

Each server i calls the Response algorithm on input DB;,
A; and the received query q; to return its answer a;.

3.2 Our CIP-PIR Protocol

We now describe the details of our new CIP-PIR protocol,
which is the first PIR protocol in the new client-independent

Server i € [n] Client

Setup Phase (once):
input: data D
DB, < Create(D)

Preprocessing Phase:
0«1l
Start Preprocess(DB;, Q;)

Online Phase: input: idx
(Si,As) < Qr-pop() Jhello™
L (qo-,---aQn—1)<—

Request (idx,So, . ..,Sp—1)
a;j < Response(q;, DB;,A;) gi
aj

d + Combine(ag,...,dn—1)

output: d = Dlidx]

Figure 1: Messages in client-independent preprocessing PIR
(CIP-PIR). Client communicates with all n servers i € [n] in
parallel.

preprocessing PIR model. We give the security proof of CIP-
PIR in §B and its complexity analysis in §C.

RAID-PIR [15,16] improves over Chor et al.’s scheme [10]
in terms of communication by using seeds, and in terms of
online computation by requesting each server to only touch
a subset of the database. The second improvement reduces
security as the number of servers that are allowed to collude is
reduced fromn— 1 to ¢ — 1, where 2 <t < n is the threshold.

The general idea of our CIP-PIR scheme is to use the RAID-
PIR scheme, but instead of having the client choose the seeds
in the Request algorithm, let the servers choose the seeds
in the Preprocess algorithm. This enables the servers to
compute in advance (¢ — 1)/n of the XOR operations, and
complete in the online phase only the remaining 1/n XOR
operations. The online computation is therefore independent
of the collusion threshold ¢. Then, the servers give the seed to
the client and the protocol proceeds as before.

Create (Algorithm 1). In the setup phase, the input
data D is split into B blocks of b bits each. These blocks are
grouped into n chunks of k = B/n blocks. chunk; denotes the
flip chunk of server i and is the first chunk in the database DB;
of server i. Note that all servers hold the same database, but
the order of their chunks differs.

Preprocess (Algorithm 2). As depicted in Fig. 1, the
server permanently computes (seed, value)-pairs (S,A) and
pushes them to its local queue Q;. The seed S is expanded to

1764 31st USENIX Security Symposium

USENIX Association

Algorithm 1 Create of CIP-PIR

input: D > data D
(blocky, . .. ,blockg—1) + D > split D into B blocks
k< B/n > # blocks per chunk

for alli € [n] do
chunk; < blocky| . .. |blockyiti—1
end for
for all i € [n] do
DB; + chunk;|chunk; i1 mod n|- - - |chunki ;-1 mod n
end for

return DBy, ...,DB,_1 > database for each server

a k(t — 1) bit query ¢ via a PRG. The precomputed value A is
then the XOR of all blocks from the non-flip chunks whose
corresponding bits in the query g are set to 1. Since each
server has ¢ — 1 non-flip chunks among the n chunks, the
preprocess algorithm precomputes (1 — 1) /n of the database
s.t. only 1/n of the database is left for the Response algo-
rithm (Algorithm 4) in the online phase.

Algorithm 2 Preprocess of CIP-PIR

input: DB;, Q; > database DB;, queue Q;
(chunky,...,chunk,_y) < DB; , k < B/n
DB « chunky| ... |chunk, > all but first chunk
while Q; is not full do
S s {0, I}K
q < PRG(S;,k(t—1)) > non-flip chunk
A q-DB > XOR blocks of DB corresponding to g
Q;.push(S,A) > push seed/value pair (S,A)
end while

Request (Algorithm 3). The Request algorithm gener-
ates the flip chunk g; for each server i depending on the
server’s seeds S;, and the requested block index idx. Firstly,
the main query g is built by setting the idx-th bit of a B-bit

Algorithm 3 Request of CIP-PIR

input: idx, So, .. .,Sp—1 > index idx, seeds So,...,Sn—1
g+ 0B > the main query consists of 1 bit per block
qlidx] =1,k <+ B/n > # blocks per chunk
for all i € [n] do
v+ PRG(S;,k(t—1)) > pseudo-random bits
u < min(i+1t,n), w < max(i—7+1,0)
glki:ku—1] < qlki : ku—1]@v[0:k(n—u+1)—1]
ql0:kw—1] < q[0:kw—1]Bvk(n—u+1): kt —1]
end for
for all i € [n] do
qi < qlik: (i+ 1)k
end for
return qo, ..., qn—1

> query for each server

vector to 1. Then, the client expands the seeds S; to a k(r — 1)
bit sub-query v which covers all non-flip chunks of server i.
Server i has u — i chunks to the right (ku — 1 points to the
last block of the u-th chunk, which is the last chunk of the
database if i +¢ > n) and the first w chunks of the database (w
can be 0 if i +¢ < n). The expanded sub-query v is XORed to
the main query at the respective chunks. Finally, the resulting
query q is split into n sub-queries g; that are the flip chunks
for each server i.

Algorithm 4 Response of CIP-PIR
input: ¢;, DB;,A; > query g;, database DB;, precomputed
block A;

(chunkg, ..., chunk;_;) < DB;
a; < A; D q; - chunky
return a;

> chunky is flip chunk

> answer of server i

Response (Algorithm 4). Server i extracts its flip chunk
from the database (chunkg in DB;) and XORs all blocks corre-
sponding to bits set to 1 in the query g;. The result is XORed
to the precomputed block A; from the Preprocess algorithm
and returned to the client. Here, only one chunk, i.e., 1/n of
the database is touched, whereas the remaining (¢t — 1) /n of
the database are already precomputed in block A;.

Algorithm 5 Combine of CIP-PIR

input: ag,...,dy—1 > answers of the servers
~1

d < @?:0 ai

return d > data block d

Combine (Algorithm 5). The XOR of all server an-
swers a; is obtained as d = Dlidx] = @~ a;.

For each query, the server pops a pair and sends seed S; to
the client after obtaining its initial "hello” message.”

Communication Comparison. Table | compares the on-
line communication complexities of our CIP-PIR scheme with
the recent FSS-PIR [7, 8] and Online-Offline (OO)-PIR [33]
implementations for downloading a b = /|DB]/8n block as
required for a PIR-based C3 protocol. The concrete values
shown in this table are computed for a [DB| = 16 TB database,
which is three orders of magnitude larger than GPC’s C3
database with all of our compression techniques. For a fair
comparison, we assume that these compression techniques
were applied to the other PIR schemes as well.

The novel sharing of the client’s request via a distributed
point function makes the upload very cheap in FSS-PIR, while

3 An outer protocol must ensure that clients cannot run a denial of service
attack by just sending many "hello” messages which would quickly drain the
server’s queue. This can be done with proper rate limiting, e.g., using client
puzzles [31].

USENIX Association

31st USENIX Security Symposium 1765

Scheme Communication Concrete (Upload + Download)
Upload Download (IDB=16TB,n=2,x=128,b=1KB)
CIP-PIR [this work] n\/|DB|/8n | nx/8+n+/|DB|/8n 4096,0 KB
FSS-PIR [7] K(log, (|DB|/128) +2) nb 2,6 KB
0OO-PIR [33] 2(klog, |DB| + 1)log,(|DB|) 4b 64,6 KB

Table 1: Online communication comparison of our CIP-PIR scheme with FSS-PIR [7] and Online-Offline (OO)-PIR [33] on
a |DB|=16 TB database with n = 2 servers and security parameter k = 128 bit. We set the blocksize b = 1 KB for FSS-PIR and

OO-PIR.

the download complexity depends on the chosen blocksize b.
However, for some applications like C3 [48] and epidemi-
ological modeling [28], where large data items need to be
downloaded and thus the blocksize b increases, the communi-
cation complexity of FSS-PIR approaches to CIP-PIR, which
has about the same amount of upload and download for the
optimal blocksize. We see the same observation for OO-PIR,
which is very efficient for retrieving single bits or small data
entries, but its download can even increase that of CIP-PIR
for large blocksizes b.

3.3 Database Compression in PIR

In the following, we show how to compress the database
in PIR schemes by (a) adapting a database compression
technique which was used in [46] in the context of a pri-
vate membership test, and (b) by shorting the hash values in
the database. We compute the optimal blocksize where the
amount of uploaded and downloaded data is nearly equal and
thus the total communication is minimal. We call this opti-
mization PIR with Database Compression. It can be applied
to any PIR scheme that is based on blocks.

Storing the Differences. The idea of the technique of [46]
is to first sort the entire database before it is divided into
blocks. Assume that a block has the entries (e1,...,ey). Since
the database is sorted, successive entries are close to each
other and thus we can store their differences instead of the
whole entries themselves, namely only store (e1,er —e1,e3 —
€r,...,em —en—1). It is easy to see that the length of the
differences is smaller than the length of the entries.* This
compression technique can be applied to any PIR scheme that
is based on blocks.

Since the client only retrieves a single block of the database,
and decompressing the entire database on the server side
would be very inefficient, we apply this compression tech-
nique independently to each block of the database. Therefore
the client does not need to know any data except for the re-

4Suppose that a set contains m items from a domain of size N. Storing
the items themselves requires mlogN bits. On the other hand, if the items
are evenly distributed, as is the case when they are generated as outputs of
a hash function, then the average distance between two successive items is
N/m, and we need to store only O(m(logN —logm)) bits.

trieved block to decompress the block. For a better compres-
sion, we increase the blocksize b. Thus, we use fewer blocks
while the blocks become larger but are stored and sent in a
compressed way. Using larger blocks induces a tradeoff: it
increases the communication from the servers to the client,
but reduces the communication from the client to the servers.

Shorter Hashes. In C3 [48], each compromised credential
is represented as a 32 bytes hash prefix of H, which results
in a database of [DB| = 32- N bytes, where N is the number
of compromised credentials. Since we only need to check for
equality, we can apply a trick from the PSI literature [17,41,
42] and only use the first 40+ log, | DB| bits of # (H) instead.
(The probability of a collision between the hash of the user
credential and any other hash is therefore only 27 and hence
negligible.) For a database of size 5 billion entries this cuts
the size of each entry down to only 73 bits, which reduces the
database size by factor 3.6 x. Using a more relaxed bound on
the false error probability would result in even shorter values,
e.g., a bound of 2-20 (meaning that one in a Million users
gets a false warning) requires only 53 bits and results in a 5x
reduction of the database size. This compression techniques
can be used for any PIR database whose entries consists of
blocks and hash values are used to check for equality.

Optimal Blocksize. Let b be the size of blocks after com-
pression. The total communication per server for CIP-PIR is

B \DB|

C(b):;—Hc—kb: +x+0b, (1)

n
where the first term is the size of the information sent from the
client to the server, and the last two elements are the size of
the data sent from the server. One can easily show by deriva-
tion that C(b) has its local minimum at b = /|DB|/n. Later
in §5.2.2, we will show that this reduces the size of the DB by
factor 1.2x compared to the uncompressed database without
any further optimization. We also show that the theoretically
computed values almost perfectly match with the measured
communication. Note that Eq. | only calculates the commu-
nication for one server. We can multiply C(b) by n to get
the total communication among all servers. The upload and
download are both sub-linear in |DB|.

1766 31st USENIX Security Symposium

USENIX Association

4 GPU-Accelerated Multi-Party PIR

In the PIR literature so far, GPUs were used to accelerate
heavy computations (relying on cryptographic hardness as-
sumptions) in single-server PIR [14,37]. In multi-server PIR,
the computations are mainly cheap independent XOR oper-
ations for which modern processors require only one clock
cycle for a 512 bit block. Hence, for multi-server PIR, it was
unclear if the overhead induced by moving data between CPU
and GPU as well as managing CUDA blocks pays off or if it
is more efficient to directly compute the XORs on the CPU.
In this work, we show for the first time that GPUs can accel-
erate such cheap operations in multi-server PIR. For this, we
make use of the efficient thread management capabilities of
Nvidia’s CUDA architecture (cf. §2.3). We present two ap-
proaches for accelerating the huge amount of XOR operations
of multi-server PIR in §4.1.

In CIP-PIR (cf. §3.2), especially the offline phase can mas-
sively profit from outsourcing it to GPU clusters by batching
the computation of multiple (seed, value)-pairs. This mas-
sively reduces the internal memory shifting operations on the
GPU which are necessary for loading into the shared mem-
ory the database chunks that are currently computed. In §4.2,
we demonstrate how GPUs can substantially improve the
amortized runtime by batching multiple queries.

4.1 GPU-Acceleration of XOR Operations

The massive number of XOR operations are the main cost
factor of multi-server PIR. In this section, we demonstrate two
approaches for parallelizing these computations efficiently on
a GPU using Nvidia’s CUDA architecture (cf. §2.3).

All Compute One (ACO). In this approach, all CUDA-
blocks simultaneously compute a single (seed, value)-pair
together by looping over the query and one word’ of
the output is computer per thread. As the output consists
of b bytes (blocksize), we need C = [b/T| CUDA-blocks,
where T denotes the number of threads in a CUDA-block. If
the GPU has more than 7},,; = C - T threads, we can compute
multiple pairs in parallel, i.e., the maximum number of pairs
that can be computed in parallel is Tyuax/ Tpair, Where Tpax
denotes the number of threads on the GPU.

In-Register. In the in-register approach, each CUDA-block
with T,,,, threads computes one pair, where each thread is
responsible for [b/T,,..| bytes of the b byte output. As the
thread’s registers have the fastest memory access speed, we
can accelerate the computation by storing the intermediate re-
sults in these registers. The maximum number of pairs that can
be computed in parallel is not clearly defined since GPUs with
CUDA Compute Capability 3.0 or higher can handle up to

5The word size depends on the GPU’s architecture (4 bytes for our GPUs).

Cinax = 23! — 1 CUDA-blocks. However, the maximum num-
ber of threads 7},,, und the GPU are the limiting factor of this
approach as well. Thus, one can not naively set the amount
of CUDA-blocks to the maximum value C,,,, since only a
few threads would compute on a single pair simultaneously.
Instead, we dynamically set the number of threads per CUDA-
block 7' and the number of CUDA-blocks C depending on the
blocksize b to significantly improve the performance.

4.2 Amortized Query Preprocessing

Batching multiple queries was already used in computational
PIR schemes [2,23], but required waiting for multiple client
queries in IT-PIR schemes [1, 13] to collect several client
requests which increases online latency. We can now batch
multiple queries in the preprocessing phase without increasing
online latency in CIP-PIR as the computations are completely
independent of the client.

A main performance bottleneck of GPU-accelerated PIR
computation is that multiple portions of the database must
be copied into the GPU’s memory, which costs many clock
cycles (cf. §2.3). If we instead compute M (seed, value)-
pairs in parallel, we can amortize these times for copying
the database portions to the GPU among all M pairs. Con-
sequently, the total runtime of CIP-PIR consisting of the
online and the amortized preprocessing phase for a single
query, is faster than the online phase of a RAID-PIR query,
as batching multiple queries in RAID-PIR requires to wait
for multiple incoming queries (which obviously also takes
extra time). Hence, the amortized runtime in CIP-PIR im-
proves over RAID-PIR by factor 1.3x for CPU and by up to
factor 53 x for GPU (cf. §5.2.1).

S Implementation and Benchmarks

We implemented a CPU-based (cf. §3.2) and a GPU-
accelerated version (cf. §4) of our CIP-PIR protocol in C++,
as well as a CPU based version of FSS-PIR [8] using the
recent improvements on distributed point functions by Boneh
et al. [7]. We give the implementation details in §5.1 and
runtimes in §5.2.

Use-Case. As use-case for our experiments, we use Com-
promised Credential Checking (cf. §1.2), where the client
obliviously retrieves a block from the database and checks
if her hash computed from her username and password
is contained in it. The 32 byte hashes are compressed
to 8 bytes (cf. §3.3).

5.1 Implementation

Our implementation consists of three components: the
database generation, the server, and the client. We summarize
the details of the first two components next.

USENIX Association

31st USENIX Security Symposium 1767

Database Generation. Our database consists of pseudo-
random values, which simulates a real-world deployment of
C3 related applications (cf. §1.2), as hashed values are pseudo-
random as well and hence have the same distribution. The
database is stored in the RAM of the OS and the server’s GPU
memory. We created databases up to 3.5 billion entries which
suffices to cover the password breaches in Collection 1-5 [26].

Server. The online server’s main task is to answer the
client’s queries by computing the corresponding values based
on the precomputed (seed, value)-pairs. In the CPU-based
implementation, we use Intel AVX-512 intrinsics to enable
XOR operations over 512 bits with a single CPU instruction.
On top of this, we parallelize this approach using OpenMP.
Since the server does not need the whole query to start the
answer computation, we implemented a pipelining approach
that directly processes the query while it still receives the
client’s query.

5.2 Benchmarks

We benchmark our CIP-PIR schemes as follows: In sec-
tion §5.2.1, we benchmark the amortized preprocessing run-
time for various blocksizes b. In section §5.2.2, we benchmark
our CPU-based and GPU-accelerated CIP-PIR implementa-
tions and compare them with RAID-PIR [16] on the same
codebase and the single-server SealPIR [2].

Experimental Setup. For the benchmarks, we use the fol-
lowing Amazon AWS instances: For the GPU-accelerated
CIP-PIR and FSS-PIR servers, we use p3.2xlarge instances
each having an NVIDIA Tesla V100 yielding a computational
power of 7 TeraFLOPS and 16 GB of HBM2 memory with
a bandwidth of 900 GB/s and a wordsize of 4 bytes. The
machines have 8 vCPUs and 61 GB RAM which is sufficient
for our use-case because we can load databases up to the size
of the GPU memory, i.e., 16 GB in total. For the CPU-based
PIR implementations, we use c5.24xlarge instances which
deliver a high performance for compute-intensive workloads.
These instances feature 2nd generation Intel Xeon 8000 series
processors with a clockspeed of up to 3.6 GHz, 96 vCPUs
and 192 GB RAM in total to provide a fair comparison to the
GPU based approach. When writing this work, the p3.2xlarge
costs 3.823 USD per hour and the c¢5.24xlarge 4.656 USD per
hour, so that the GPU-accelerated instance is roughly 20%
cheaper. For the client, we use a t2.1arge instance, which has
2 vCPUs installed and 8 GB of RAM. Between client and
servers, we measured a network bandwidth of 1 GBit/s. We
always give average execution times over 10 benchmark runs.

5.2.1 Preprocessing Phase

We first benchmark the amortized runtimes of the preprocess-
ing phase of our CIP-PIR protocol.

Amortized Preprocessing Time (us)
=
L
T

wil [I [[

BLOCKSIZE 210 211 212 210 211 212 210 211 212 210 211 212 210 211 212
BATCH SIZE 10 100 1,000 10,000 100,000

JoGPU: In-Register [10CPU
loGpu: ACO

Figure 2: The amortized preprocessing time per (seed, value)-
pair of our CPU-based and two GPU-accelerated implemen-
tations. We use n = 3 servers, a database of 1 million entries
and an entry size of 8 bytes. The blocksize is given in bytes.

Influence of blocksize and number of pairs. In this
benchmark, shown in Fig. 2, we measure the amortized pre-
processing runtime for the CPU-based implementation and
both parallelization techniques of the GPU-accelerated imple-
mentation from §4.1. For this benchmark, we used a 8 GB
database consisting of 1M entries of 8 bytes and n = 3 servers,
i.e., 2/3 of the whole database is processed in the preprocess-
ing phase. The amortized runtimes grow linearly with the
database size (not shown in our benchmarks). We give bench-
marks for various blocksizes and number of simultaneous
computed (seed, value)-pairs.

CPU: The amortized runtime has no high impact on the
CPU-based implementation. The speedup of factor ~ 1.3x
over the non-batched execution is only measurable until all
threads are occupied, but afterwards, the performance falls
back to a factor of ~ 1.1x improvement. However, the CPU-
based implementation scales better for larger blocksizes, so it
is a natural choice to set the blocksize b to the optimal block-
size b that yields the best communication overhead (cf. §3.3).

ACO: In the ACO parallelization technique (cf. §4.1), all
CUDA-blocks compute one (seed, value)-pair together. We
see a significant amortized runtime improvement compared
to the CPU-based implementation. This improvement grows
with the blocksize since the ACO technique scales very well
with larger blocksizes: Each thread needs to XOR a higher
number of blocks when choosing smaller blocksizes, since
the ACO approach uses the whole GPU computational power
to evaluate one seed after another. As long as the GPU’s
threads are not occupied, we observe a massive performance

1768 31st USENIX Security Symposium

USENIX Association

3,000

2,000

Amortized Runtime (us)

Blocksize in bytes

N =25000000;n =3 N =25000000;n =2
—— N =10000000;n =3 —— N = 10000000;n =2
—=—- N =5000000;n=3 ——N =5000000;n=2
—&-N=1000000;n=3 —— N =1000000;n =2
—=— N =100000;n=3 —— N =100000;n =2

Figure 3: Runtimes for various blocksizes on the GPU-
accelerated implementation using the in-register approach.
Different colors indicate the number of 8 byte entries in the
database, whereby the marks show the amount of servers (n =
2 and n = 3) used in the corresponding experiment.

improvement as each thread processes one byte of the block.
Unfortunately, we do not gain further amortized runtime im-
provements for more than batch size |Q| = 1000 since the
ACO technique scales only linearly with the number of pairs.
However, the ACO approach improves the CPU-based imple-
mentation up to factor 2.6x for a batch size of |Q| = 1000

In-Register: Our most optimized approach called in-
register, where the threads compute on the values inside their
registers (cf. §4.1), shows a clear improvement over the ACO-
based by up to factor 63 x and the CPU-based implementa-
tions by up to factor ~ 85x for a batch size of |Q| = 1000.
This approach outperforms the amortized total runtime in-
cluding preprocessing and online time of RAID-PIR by fac-
tor ~ 53x. With a higher batch size and larger blocksizes
the speedup factor is still 18x. Aside from minimizing the
memory accesses with high costs, the in-register approach
benefits from choosing the parameter for the CUDA-blocks
dynamically based on the blocksize and the hardware speci-
fications. We see that the amortized runtimes grows linearly
with the number of simultaneously computed pairs. However,
it is the only approach where increasing the blocksize has a
negative impact on the performance due to the overhead of
XORing more bytes per block. An optimization that is left
for future work is pipelining where already computed results
are copied to the server’s main memory while performing
further precomputations s.t. the cost of data transmissions can
be hidden almost completely.

Best blocksize for in-register approach. In this bench-
mark, shown in Fig. 3, we measure the preprocessing runtime
of the in-register-based implementation for various blocksizes
and database sizes, for n =2 and n = 3 servers to investigate
whether an optimal blocksize for this approach exists.

We see in Fig. 3 that each database - except for the smallest
one with 100 000 entries - shows similar characteristics for the
in-register implementation: the overhead with too small block-
sizes is huge, but decreases exponentially to the optimal block-
size. Afterwards, the runtime increases nearly linearly with
the blocksize. It is interesting to see that the optimal block-
size scales only marginally with the size of the database, e.g.,
with N = 1 million entries the optimal blocksize is 512 bytes
whereas with N = 5 million entries it is 1 KB.

As the in-register approach is also used during the online-
phase of our GPU based FSS-PIR implementation, we will
constantly use 1 KB blocks for our further benchmarks which
gives the highest experimentally deviated speedup for the
online phase.

5.2.2 Setup and Online Phase

We compare our CPU-based CIP-PIR implementa-
tions (cf. §5.1) in C++, our reimplementation of FSS-
PIR [7,8] and RAID-PIR [15, 16] using the same codebase
(including the parallelization and pipeline optimizations
outlined in §5.1), the original Python implementation of
RAID-PIR from [15, 16] in Python, and the publicly available
single-server SealPIR implementation in C++ [2].

Setup Phase. In the one-time setup phase, a random PIR
database is generated, sorted, compressed, and the precom-
putations related to the database are processed and written
to a file. This phase is identical for RAID-PIR, CIP-PIR,
and FSS-PIR, and its bottleneck is the precomputation us-
ing the method of Arlazarov et al. (the “four-Russians” algo-
rithm) [15], which divides the database into equal sized groups
and precomputes all possible query combinations for each
individual group. In our implementation, we choose a group
size of 8, which requires precomputing 255 combinations for
each group. For our largest database of size 25 GB, this took
roughly 84 minutes. The optimal blocksize, where the amount
of upload and download data is almost the same, is b~88 KB,
which results in roughly B = 284 000 blocks. After compress-
ing each block as described in §3.3, the blocksize is reduced
by factor ~ 1.2x to b =~ 73 KB, which perfectly matches with
the theoretical analysis.

Online Phase. The main difference between CIP-PIR and
RAID-PIR is the amount of data each server has to touch in
the online phase. Concretely, a CIP-PIR server touches 1/n-th
of the database, while a RAID-PIR server with threshold 2 <

USENIX Association

31st USENIX Security Symposium 1769

400

z .
300 -

T a0 P TTe-m
£ 20 B B i
2 100§ T S — oy
=
@) 0 1 .

2 3 4 5

o~ RAID-PIR [15] (¢ = 4) - +- CIP-PIR [this work]
- m- RAID-PIR [15] (t = 3) —— FSS-PIR [8]

Figure 4: Online runtimes of our CPU-based PIR implementa-
tions for different number of servers n on a 500 MB database.
Our implementations of the RAID-PIR [15, 16] and FSS-
PIR [7, 8] protocols uses the same codebase as CIP-PIR. The
threshold ¢ of CIP-PIR is set to n.

t < n processes t/n of the database.® Thus, the online time of
our CIP-PIR protocol should improve over RAID-PIR by a
factor of # x. We observe this improvement in online runtime
also in practice, as shown in Fig. 4, where 2-5 servers operate
on a 500 MB database and achieve improvements of ~ f x.

For a database of size 500 MB and n = 2 servers, our FSS-
PIR implementation performs best. However, if we increase
the number of servers to n = 5, our CIP-PIR protocol achieves
a similar performance, as CIP-PIR only needs to process 1/n
of the database in the online phase. So it is not surprising that
the total online runtime decreases for CIP-PIR and RAID-PIR
(where ¢ /n of the database needs to be processed) decreases
with the number of servers. Obviously, this behavior will not
continue for larger number of servers n as the client’s overhead
of managing multiple connections becomes too high.

Communication. CIP-PIR and RAID-PIR have the same
amount of communication (independent of RAID-PIR’s collu-
sion threshold #), but RAID-PIR has only a single round-trip
while CIP-PIR has two round-trips. For a 500 MB database,
the client uploads ~ 17.6 KB and downloads ~ 15 KB
data with each server. An FSS-PIR client only needs to up-
load =~ 500 byte (factor 35.2x improvement) and downloads
1KB (factor 15 x improvement).

Comparison with other PIR implementations. In Fig. 5
we compare the online runtimes of several PIR implemen-
tations for varying database sizes and include the amor-
tized total cost (online and preprocessing runtimes) for our
CPU-based and GPU-accelerated CIP-PIR implementations.
We compare the communication complexity of several PIR

Note that the total amount of computation in CIP-PIR and RAID-PIR
is exactly the same. CIP-PIR just shifts most of the computation costs to a
preprocessing phase. The online communication is equal for both protocols
and CIP-PIR just needs one more RTT, i.e., we have s slightly higher online
communication time than RAID-PIR.

102 ///_

S

Runtime (s)

Database Size |DB| (GB)

SealPIR [2] in C++ - = = CPU-based CIP-PIR in C++ (amortized total cost)
RAID-PIR [15] in Python - - = GPU-accelerated CIP PIR in C++ (amortized total cost)
RAID-PIR [15] in C++ CPU-based CIP-PIR in C++ (online cost)

Our GPU-accelerated FSS-PIR [8] in C++ - - - - GPU-accelerated CIP-PIR in C++ (online cost)

Figure 5: Runtimes of PIR implementations for different
database sizes |[DB| and n = 2 servers (n = 1 for single-server
SealPIR [2]). The threshold for all RAID-PIR implementa-
tions is t = 2. The batch size for the amortized total cost is
set to |Q| = 1000.

schemes in §C. For RAID-PIR [15, 16] we set the collusion
threshold to r = 2 for best efficiency. CIP-PIR on a database
size of |DB| = 25 GB improves over our RAID-PIR imple-
mentation by factor ~ 2x (=~ 4.2x for our GPU-accelerated
CIP-PIR implementation with in-register, cf. §4.1). This
matches what we would expect in theory as well. Most of the
online runtime is spent on the server’s huge number of XOR
operations, which we halve in CIP-PIR. Our GPU-accelerated
implementation improves over our CPU-based implementa-
tion by factor =~ 2.1x. Moreover, our CIP-PIR implemen-
tation outperforms the original RAID-PIR implementation
of [15, 16] in Python (without parallelization and pipelin-
ing optimizations) by factor ~ 7.7x (= 16.2x for our GPU-
accelerated CIP-PIR implementation).

Our CPU-based CIP-PIR protocol is substantially faster
than the state-of-the-art single-server PIR scheme SealPIR [2]
by factor ~ 16.8x (= 30.6x for our GPU-accelerated imple-
mentation) as shown in Fig. 5. Single-server PIR schemes are
based on expensive homomorphic encryption operations and
the server needs to touch every bit of the database in order to
gain no information about the queried block. Unfortunately,
the current implementation of SealPIR does not implement
networking, so we only measured the computation times, but
already these were substantially slower than the total (compu-
tation + communication) times of (CIP-)RAID-PIR.

We chose a blocksize of b = 1 KB for our GPU-accelerated
FSS-PIR implementation as this has a low communication
overhead while our implementation performs best for this
blocksize (cf. Fig. 3). For database sizes up to 8 GB, the GPU-
accelerated FSS-PIR implementation outperforms our GPU-
based CIP-PIR because, in addition to the higher communica-
tion costs, CIP-PIR requires another communication round.
However, CIP-PIR can offset these additional communica-

1770 31st USENIX Security Symposium

USENIX Association

tion costs with savings in computational costs for database
sizes |DB| > 8 GB, even outperforming the total runtime of
FSS-PIR. This practical observation also matches with the
theoretical analysis: Computational costs grow linearly with
the database size, whereas communication costs increase only
sub-linearly, i.e., the online computation becomes the bottle-
neck of all PIR protocols. On a high level, the online phase
of FSS-PIR and CIP-PIR contain the same operations (ex-
cluding the query extraction from FSS-PIR), and differ in
that CIP-PIR only does half as much work (e.g., XORing
approx. 512 GB vs. 1024 GB for |DB| = 1 TB). When using
the same codebase as we did in our benchmarks, CIP-PIR is
faster then FSS-PIR as long as receiving the client’s query
(2 MB) is faster than XORing 512 GB. For |DB| =25 GB, our
GPU-accelerated CIP-PIR implementation improves over our
GPU-accelerated FSS-PIR implementation by factor ~ 1.6 x.
The amortized total runtime of our GPU-accelerated CIP-PIR
implementation is worse for all of our benchmarked database
sizes, however, we see for a database of [DB| = 25 GB that
our FSS-PIR implementation only slightly (factor 1.04x) im-
proves over CIP-PIR. For larger database sizes |DB| > 25 GB,
we expect that even the amortized total runtime of CIP-PIR
improves over FSS-PIR. This observation is caused by the
fact, that less expensive memory movements need to be per-
formed when processing |Q| = 1000 queries in parallel in the
preprocessing phase.

6 Related Work

Multi-Server PIR. Chor et al. [10] introduced information
theoretically secure PIR and gave first constructions that use n
non-colluding servers where each server receives a query from
the client and sends a response to it. Several subsequent works
on multi-server PIR protocol [5,19,25,29] have the bottleneck
of computing in the online phase many XOR operations over
a large fraction of the database. The first multi-server PIR
scheme with logarithmic communication complexity based on
function secret sharing (FSS) via a distributed point function
was shown by Boyle et al. [7, 8]. FSS-based PIR improves
the upload communication by giving each server a distributed
function share, where all shares together are expanded into the
client’s query. Afterwards, this scheme still computes XOR
operations over the whole database which, as we show, is the
main bottleneck also in Chor et al. [10]-based PIR for large
databases, which we significantly improve in our work.
Most previous works on preprocessing PIR [6, 15, 16] per-
form an expensive one-time offline precomputation phase for
database-dependent values reducing the online computation
by a constant factor. As client-dependent offline phases are
well-established practice in MPC, this model also found its
way to the PIR literature. In a new work [13], the authors intro-
duce a new PIR model called Offline/Online (OO)-PIR, where
the servers and the client run a preprocessing phase before
the client knows which database entry it wants to access. The

main difference between their model and our CIP-PIR model
is that in (OO)-PIR the client is involved in the precomputa-
tion, whereas in CIP-PIR each server runs the precomputation
locally without even knowing the identity of the client(s). Our
protocol can be mapped into the (OO)-PIR model by moving
the first message of our online phase into preprocessing and
keeping a state of 128 bits for the seed and one block per
query. Our client-independent preprocessing is substantially
more powerful as it allows parallelization and amortization
across all clients.

Two very recent multi-server PIR protocols [33,44] in the
OO-PIR model allow to efficiently retrieve a bit from the
database with sublinear online complexity. These schemes
are very efficient for retrieving small data but are inefficient
when large values (like hashes in C3 applications, or files)
need to be downloaded. In this case, Chor et al.-based PIR
protocols like our CIP-PIR, or FSS-PIR [8] are better suited.

As the implementations of [13,44] are not publicly avail-
able and [33] was parallel and independent work (which runs
PIR on a single bit instead of larger messages), we leave an
experimental comparison with these works to future work.

GPU-accelerated PIR. The first GPU-accelerated PIR
scheme was shown by Melchor et al. [38,39]. They utilize
GPUs to improve the runtime efficiency of their lattice-based
single-server PIR scheme by factor ~ 10x. However, the
server needs to compute many modular multiplications, so
this scheme is still very inefficient. Mane et al. [36] replace
the modular multiplications with vector additions on a GPU
resulting in a much cheaper cost per bit ratio.

Marueac et al. [37] develop general techniques to improve
single-server PIR schemes by using CUDA exemplarily on the
PIR protocol of Kushilevitz and Ostrovsky [34]. This scheme
requires large integer multiplications and modulo products
among the whole database, which can be perfectly parallelized
by GPUs. Another optimization introduces a preprocessing
phase that takes place before the data is copied into the GPU’s
global memory. In the preprocessing phase, each block is
padded such that the next sequence of blocks starts with a
memory address that is a multiple of 16 bytes.

Dai et al. [14] use GPUs to improve Somewhat Ho-
momorphic Encryption (SWHE)-based single-server PIR
schemes [18]. They developed CUDA code that allows effi-
cient modular multiplications and modulus switching, which
is the main bottleneck of many single-server PIR protocols.

To the best of our knowledge, all previous works on using
GPUs to accelerate PIR were for single-server PIR which is
very compute intensive. A reason might be that multi-server
PIR schemes rely on very cheap operations like XOR s.t.
copying the relevant data into the GPU would eliminate the
performance improvement. In this paper, we show for the first
time in multi-server PIR how to precompute large parts of the
server’s answers independent of the client and thereby we can
benefit from GPU acceleration here as well.

USENIX Association

31st USENIX Security Symposium 1771

Acknowledgments. We thank our shepherd Marina Blan-
ton and the anonymous USENIX Security’22 reviewers
for helping us to improve our paper. This project received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 850990 PSOTI). It was co-
funded by the Deutsche Forschungsgemeinschaft (DFG) —
SFB 1119 CROSSING/236615297 and GRK 2050 Privacy
& Trust/251805230, and by the German Federal Ministry of
Education and Research and the Hessen State Ministry for
Higher Education, Research and the Arts within ATHENE.
This work was supported by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction
with the Israel National Cyber Bureau in the Prime Minister’s
Office, and by the Alter Family Foundation.

Availability. Our code is available under the MIT license
at https://encrypto.de/code/cip-pir.

References

[1] Kinan Dak Albab, Rawane Issa, Mayank Varia, and
Kalman Graffi. Batched differentially private informa-
tion retrieval. IJACR Cryptology ePrint Archive, Report
2020/1596, 2020. https://ia.cr/2020/1596.

[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
T. V. Setty. PIR with compressed queries and amortized
query processing. In S&P. IEEE, 2018.

[3] Vladimir L. Arlazarov, E. A. Dinic, M. A. Kronrod,
and I. A. Faradzev. On economical construction of the
transitive closure of an oriented graph. Journal of USSR
Academy of Sciences, 1970.

[4] Dmitri Asonov. Querying databases privately: a new
approach to private information retrieval, volume 3128
of LNCS. Springer, 2004.

[5] Daniel Augot, Francoise Levy-Dit-Vehel, and Abdullatif
Shikfa. A storage-efficient and robust private informa-
tion retrieval scheme allowing few servers. In CANS.
Springer, 2014.

[6] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing
the servers computation in private information retrieval:
PIR with preprocessing. In CRYPTO. Springer, 2000.

[7] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv
Gilboa, and Yuval Ishai. Lightweight techniques for
private heavy hitters. In S&P. IEEE, 2021.

[8] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing. In EUROCRYPT. Springer, 2015.

[9] Stefan Brechtken. GPU and CPU acceleration of a
class of kinetic lattice group models. Computers and
Mathematics with Applications, 2014.

[10] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In FOCS.
IEEE, 1995.

[11] Catalin Cimpanu. Chrome 79 released with tab freezing,
back-forward caching, and loads of security features.
https://www.zdnet.com/article/chrome-79-
released-with-tab-freezing-back-forward-
caching-and-loads-of-security-features/,
2019.

[12] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In NSDI. USENIX Association, 2017.

[13] Henry Corrigan-Gibbs and Dmitry Kogan. Private infor-
mation retrieval with sublinear online time. In EURO-
CRYPT. Springer, 2020.

[14] Wei Dai, Yarkin Dor6z, and Berk Sunar. Accelerating
SWHE based pirs using GPUs. In FC. Springer, 2015.

[15] Daniel Demmler, Amir Herzberg, and Thomas Schnei-
der. RAID-PIR: Practical multi-server PIR. In CCSW.
ACM, 2014.

[16] Daniel Demmler, Marco Holz, and Thomas Schneider.
OnionPIR: Effective protection of sensitive metadata in
online communication networks. In ACNS, 2017.

[17] Changyu Dong, Liqun Chen, and Zikai Wen. When
private set intersection meets big data: an efficient and
scalable protocol. In CCS. ACM, 2013.

[18] Yarkin Dor6z, Berk Sunar, and Ghaith Hammouri. Band-
width efficient PIR from NTRU. In FC. Springer, 2014.

[19] Zeev Dvir and Sivakanth Gopi. 2 Server PIR with sub-
polynomial communication. In STOC. ACM, 2015.

[20] ENZOIC. Detect compromised passwords. https:
//www.enzoic.com/, 2016.

[21] ENZOIC. LastPass selects Password-
Ping for compromised credential screening.
https://www.enzoic.com/lastpass-selects-
passwordping-for-compromised-credential-
screening/, 2016.

[22] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. Keyword search and oblivious pseudo-
random functions. In TCC. Springer, 2005.

[23] Craig Gentry and Shai Halevi. Compressible FHE with
applications to pir. In TCC. Springer, 2019.

1772 31st USENIX Security Symposium

USENIX Association

https://encrypto.de/code/cip-pir
https://ia.cr/2020/1596
https://www.zdnet.com/article/chrome-79-released-with-tab-freezing-back-forward-caching-and-loads-of-security-features/
https://www.zdnet.com/article/chrome-79-released-with-tab-freezing-back-forward-caching-and-loads-of-security-features/
https://www.zdnet.com/article/chrome-79-released-with-tab-freezing-back-forward-caching-and-loads-of-security-features/
https://www.enzoic.com/
https://www.enzoic.com/
https://www.enzoic.com/lastpass-selects-passwordping-for-compromised-credential-screening/
https://www.enzoic.com/lastpass-selects-passwordping-for-compromised-credential-screening/
https://www.enzoic.com/lastpass-selects-passwordping-for-compromised-credential-screening/

[24] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal
Malkin. Protecting data privacy in private information
retrieval schemes. In STOC. ACM, 1998.

[25] Ian Goldberg. Improving the robustness of private infor-
mation retrieval. In S&P. IEEE, 2007.

[26] Andy Greenberg. Hackers are passing
around a megaleak of 2.2 billion records.
https://www.wired.com/story/collection-
leak-usernames-passwords-billions/, 2019.

[27] Daniel Giinther, Maurice Heymann, Benny Pinkas,
and Thomas Schneider. GPU-accelerated PIR with
Client-Independent Preprocessing for Large-Scale Ap-
plications. TACR Cryptology ePrint Archive, Report
2021/823,2021. https://ia.cr/2021/823.

[28] Daniel Giinther, Marco Holz, Benjamin Judkewitz, He-
len Mollering, Benny Pinkas, and Thomas Schneider.
PEM: Privacy-preserving epidemiological modeling.
IACR Cryptology ePrint Archive, Report 2020/1546,
2020. https://ia.cr/2020/1546.

[29] Ryan Henry, Yizhou Huang, and Ian Goldberg. One
(block) size fits all: PIR and SPIR with variable-length
records via multi-block queries. In NDSS. The Internet
Society, 2013.

[30] Troy Hunt. Have i been pwnd?
haveibeenpwned.com/, 2019.

https://

[31] Ari Juels and John G. Brainard. Client puzzles: A cryp-
tographic countermeasure against connection depletion
attacks. In NDSS. The Internet Society, 1999.

[32] Marcel Keller. MP-SPDZ: A versatile framework for
multi-party computation. In CCS. ACM, 2020.

[33] Dmitry Kogan and Henry Corrigan-Gibbs. Private
blocklist lookups with checklist. In USENIX Security.
USENIX Association, 2021.

[34] Eyal Kushilevitz and Rafail Ostrovsky. Replication is
not needed: Single database, computationally-private
information retrieval. In FOCS. IEEE, 1997.

[35] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul
Chatterjee, and Thomas Ristenpart. Protocols for check-
ing compromised credentials. In CCS. ACM, 2019.

[36] Sunil B. Mane, Sandip B. Bansode, and Pradeep K.
Sinha. Optimized private information retrieval us-
ing graphics processing unit with reduced accessibility.
In International IT Conference & Exhibition (CUBE).
ACM, 2012.

[37] Mihai Maruseac, Gabriel Ghinita, Ming Ouyang, and
Razvan Rughinis. Hardware acceleration of private
information retrieval protocols using gpus. In ASAP.
IEEE, 2015.

[38] Carlos Aguilar Melchor, Benoit Crespin, Philippe Ga-
borit, Vincent Jolivet, and Pierre Rousseau. High-speed
private information retrieval computation on GPU. In
SECURWARE. IEEE, 2008.

[39] Carlos Aguilar Melchor and Philippe Gaborit. A lattice-
based computationally-efficient private information re-
trieval protocol. In WEWORC. Springer, 2007.

[40] Moni Naor and Benny Pinkas. Oblivious transfer and
polynomial evaluation. In STOC. ACM, 1999.

[41] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection us-
ing permutation-based hashing. In USENIX Security.
USENIX Association, 2015.

[42] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on OT extension. In
USENIX Security. USENIX Association, 2014.

[43] Shane Ryoo, Christopher I. Rodrigues, Sara S. Bagh-
sorkhi, Sam S. Stone, David B. Kirk, and Wen Mei W.
Hwu. Optimization principles and application perfor-
mance evaluation of a multithreaded GPU using CUDA.
In PPOPP. ACM, 2008.

[44] Elaine Shi, Waqar Aqgeel, Balakrishnan Chandrasekaran,
and Bruce M. Maggs. Puncturable pseudorandom sets
and private information retrieval with polylogarithmic
bandwidth and sublinear time. In CRYPTO. Springer,
2021.

[45] Jeff Shiner. Finding pwned passwords with
Ipassword. https://blog.lpassword.com/finding-
pwned-passwords-with-1password/, 2019.

[46] Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik
Ekberg, Benny Pinkas, and N. Asokan. The circle game:
Scalable private membership test using trusted hardware.
In ASIACCS. ACM, 2017.

[47] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri
Ranieri, Luca Invernizzi, Yarik Markov, Oxana Co-
manescu, Vijay Eranti, Angelika Moscicki, and et al.
Data breaches, phishing, or malware? Understanding
the risks of stolen credentials. In CCS. ACM, 2017.

[48] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-
bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
and Elie Bursztein. Protecting accounts from creden-
tial stuffing with password breach alerting. In USENIX
Security. USENIX Association, 2019.

USENIX Association

31st USENIX Security Symposium 1773

https://www.wired.com/story/collection-leak-usernames-passwords-billions/
https://www.wired.com/story/collection-leak-usernames-passwords-billions/
https://ia.cr/2021/823
https://ia.cr/2020/1546
https://haveibeenpwned.com/
https://haveibeenpwned.com/
https:// blog.1password.com/ finding-pwned- passwords-with-1password/
https:// blog.1password.com/ finding-pwned- passwords-with-1password/

A Summary of RAID-PIR [15,16]

Our protocol is based on RAID-PIR [15,16] which we summa-
rize next. RAID-PIR is an information-theoretic multi-server
PIR scheme based on Chor et al.’s PIR [10]. These schemes
use very efficient XOR operations and assume that less than
t < n of the n servers are colluding.

We first give an informal description of the scheme of Chor
et al. [10]. In the two-server version, the input data D is split
into a database DB of B blocks of size b each. If the client
wants to learn block i, it sends to the first server a random B-
bit string go, and sends to the second server a string ¢; which
is equal to go, except that the i-th bit is flipped. Each server
computes the XOR of the blocks which correspond to ‘1’ bits
in the string that it received, and sends the resulting b-bit
block to the client. The client then computes the XOR of the
two received blocks which is equal to the i-th block. The total
communication with each of the n servers is B+ b bits.

In RAID-PIR [15, 16], the B blocks are split into n chunks
and t < n chunks are sent to each server, so each server
stores ¢ /n of the database. Consequently, the client’s queries
are shorter and each server only XORs a smaller subset of
the blocks (cf. Fig. 6). As before, the XOR of all n queries
is equal to a B-bit zero string with a ‘1’ bit at the block that
the client wishes to learn. A crucial observation that is used
to improve performance is that for any specific block, out of
the tk bits (k = B/n is the number of blocks per chunk) that
instruct 7 servers what to do with this block, (¢ — 1)k bits can
be pseudo-random and only k bits need to be explicitly set to
ensure that the result of the XOR is correct. Therefore, instead
of sending a full length string to each server, the client can
send to each server a seed that is used to compute a (t — 1) /n
fraction of the string that the server must use. This cuts the
communication from the client to the server by factor 7 x.

q0 011010 | 100010 | 011011

q1 101101 | 010110 | 100001
q 001101 001101 | 101001
q3 010111 | 001011 001000
q=e9 000000 | 000100 | 000000 | 000000

Figure 6: Example RAID-PIR queries with n = 4 servers,
B = 24 blocks, n = 4 chunks, chunk size k = B/n = 6, and
collusion threshold # = 3. The orange cells are the flip chunks
while the white cells are the pseudo-random sub-queries. The
client requests the block at index i = 9.

B Security Proof of CIP-PIR

Claim 1 RAID-PIR (cf. §A) is multi-query secure according
to Definition 3.

Proof: Definition 3 requires that for any two equal-length
sequences R, R of queries, no subset of less than ¢ servers can
distinguish between the view it observes for queries R and R'.

Let us assume first that instead of depending on a PRG and
using strings of the form PRG(S;) as the “non-flip chunks”,
the client only generates and sends truly random strings. In
this information-theoretic version of the protocol, it holds
for any block B; that any ¢ different shares of this block are
uniformly distributed under the constraint that the exclusive-
or of all 7 shares is equal to the client’s query. Therefore, any
subset of # — 1 of these shares is uniformly distributed. The
view of any coalition of # — 1 servers can be fully simulated
given their t — 1 shares. Since these shares are uniformly
distributed, this view is independent of the client’s request,
and is identically distributed for query sequences R and R'.

Consider now the RAID-PIR protocol, where the non-
flip chunks are generated by a PRG. Suppose that there is
a polynomial-time algorithm D which can distinguish be-
tween the view of the coalition of the r — 1 servers for two
sequences of requests of equal length, R and R'. This algo-
rithm D is not able to distinguish between these two views in
the information-theoretic version of the protocol. The differ-
ence between the two views is whether the string of the #-th
server that is used to retrieve an item(s) (the server which is
not controlled by the attacker) is pseudo-random or random.
Therefore, D could contradict the assumption that the PRG
is secure, by distinguishing between the outputs of the PRG
(for which it succeeds in distinguishing the two views) and
truly uniform strings (for which it does not).

Claim 2 For semi-honest servers, CIP-PIR (cf. §3.2) is multi-
query secure according to Definition 3.

Proof: For semi-honest servers the only difference between
RAID-PIR and CIP-PIR is that in the latter protocol the non-
flip chunks of the corrupt # — 1 servers are chosen by the
servers, rather than by the client. Let us prove that any corrupt
subset of 1 — 1 servers cannot distinguish between its views
in any two request sequences R and R’

Consider two settings: In the U-setting all servers outside
the corrupt subset use uniformly random non-flip chunks. In
the PRG-setting they generate these chunks using a PRG, as
is defined by the protocol.

For some parts of the database, all the servers in the corrupt
subset obtain non-flip chunks. These chunks are obviously
independent of the client requests R, R since they were gen-
erated by the servers themselves. For all other parts of the
database, exactly one of the servers in the corrupt subset ob-
tains a flip chunk sent by the client. The value of this flip
chunk is equal to the exclusive-or of the query, the non-flip
chunks chosen by the other corrupt servers, and, most impor-
tantly, at least one non-flip chunk chosen by a (non-corrupt)
server which is not a member of the corrupt subset. In the
U-setting the non-flip chunks outside the corrupt subset are
uniformly random and therefore the view of the corrupt subset
is also uniformly random and D cannot distinguish between
the views for R and R’. Assume that in the PRG-setting the
corrupt subset can run a polynomial-time algorithm D which

1774 31st USENIX Security Symposium

USENIX Association

can distinguish between its views for request sequences R
and R'. The existence of an algorithm D which distinguishes
between R and R’ in the PRG setting can be used to con-
tradict the assumption that the PRG is secure. This can be
shown by a standard hybrid argument: The first hybrid Hy is
identical to the U-setting where all non-corrupt servers use
uniformly random non-flip chunks. In Hy, D cannot distin-
guish between R and R’ better than guessing the result. Hybrid
H; is where the first i non-corrupt servers use a PRG and the
remaining n — (t — 1) — i non-corrupt servers use uniformly
random strings. Hybrid H,,_, | is identical to the PRG-setting.
In H,_;11, D can distinguish between R and R’ with a non-
negligible advantage over guessing. Therefore there exists
an 1 <i<n—(t—1), for which the difference between the
success probability of D when working in H;_ and in H; is
non-negligible. In other words, D can be used to distinguish
between the case that a string is the output of the PRG or
uniformly random, if we plug that string as the values used by
the i-th server in H;. This contradicts the security of the PRG.

Claim 3 For malicious servers, CIP-PIR (cf. §3.2) is multi-
query secure according to Definition 3.

Proof: Note that the security definition of PIR (as in Defi-
nition 3) is only concerned with the privacy of the client, and
not with the correctness of the protocol. Namely, the defini-
tion requires that corrupt servers cannot distinguish between
two different query sequences of the clients. In the protocol,
a server sends a seed S; to the client, receives a query from
the client, and sends an answer. This is done independently
for each query. Therefore, the only operation of malicious
servers that can affect the information that they receive from
the client (and can therefore lead to them breaking Defini-
tion 3) is changing the seeds that they send to the client, with
the goal that this change will result in the client sending in-
formation that enables breaking Definition 3. (For example
by resending the same seeds.) Recall that for a query of the
client, the client sends information that is embedded in a flip
chunk that is sent to one server. This information is based on
the client input and on the seeds received from ¢ — 1 other
servers. The flip chunk is computed as the exclusive-or of the
expansion of the ¢ — 1 seeds and the query.

There are only two possible cases: In the first case one of
the corrupt servers is the recipient of the flip chunk. In the
second case, the recipient of the flip chunk is not corrupt.

In the first case, it must hold that at least one of the t — 1
seeds that were expanded to strings that were XORed into the
flip chunk, was generated by an honest server. This seed is
random and unknown to the corrupt servers, and therefore the
string that is XORed into the flip chunk looks pseudo-random
to them. Therefore, a standard argument can show that if they
can distinguish that flip chunk from a random string then they
can also break the pseudo-randomness of the pseudo-random
generator that was used to expand the seed.

The other case is where all # — 1 non-flip chunks affecting
the generation of a flip chunk are chosen by corrupt servers.
In this case the resulting flip-chunk is sent to another server,
which is not part of the corrupt coalition, and therefore the
security property required by Definition 3 is preserved. (We
must comment that in this case the corrupt servers might cause
the flip chunk to reveal information about the queries. For
example, if they repeat using the same seeds for two queries,
the exclusive-or of the flip-chunks of the two queries will be
equal to the exclusive-or of the queries. But since these flip
chunks are sent to an additional server which is not part of
the coalition, the requirement of Definition 3 is preserved.)’

C Complexity Analysis of CIP-PIR

In this section we compare the communication, computation
and storage complexities of RAID-PIR [15, 16] and our new
CIP-PIR scheme (cf. §3.2). We further show experimental
delay times and storage overheads of CIP-PIR.

Complexities. Table 2 compares the communication, com-
putation and storage complexities of RAID-PIR and CIP-
PIR. To minimize the number of variables, we set the block-
size b = \/|DB|/n which is the optimal blocksize for n servers
and database size |DB| (cf. §3.3) . The number of blocks
is B=|DB|/b = n+/|DB| and the number of blocks per chunk
isk=B/n=+/|DB|.

Communication. The total amount of communication is
the same in both schemes. In both schemes, a k bit seed is
uploaded (RAID-PIR) or downloaded (CIP-PIR). The query
for both schemes has B/n = \/|DB| bits and an answer from
one server has size b = /|DB|/n, i.e., all n answers have in
total size 1/|DB|. However, our CIP-PIR scheme needs one
additional round-trip to receive the seeds from the servers,
which results in slightly higher communication time.

Server Computation. The server’s average online compu-
tation in our CIP-PIR protocol is rx smaller than in RAID-
PIR. In CIP-PIR, one server processes only one chunk of
size kb = |DB|/n whereas a RAID-PIR server processes r
chunks, where r is the threshold and k is the number of blocks
per chunk. We give the average number of XOR operations
as the actual number depends on the number of 1-bits in the
client’s query that is on average k/2 per chunk. Thus, we as-
sume that a server only needs to touch k/2 blocks per chunk.
Note that the database preprocessing (cf. §2.1) that is used
by RAID-PIR and in our implementation improves the costly
dependence on the client’s query to a constant number of
XOR operations (cf. [16] for details). This is done by building
groups of, e.g., eight blocks, precomputing all 28 linear com-
binations of the corresponding sub-query, and XOR only one

7In order to prevent even this attack, the redundancy parameter/threshold ¢
can be set under the assumption that at most r — 2 servers collude, and
therefore all flip-chunks depend on at least one legitimate seed.

USENIX Association

31st USENIX Security Symposium 1775

Scheme Communication RTT || Server Computation (avg.) | Client Computation Storage
RAID-PIR [16] n(2+/|DB|/8n+x/8) 1 || Online: r|\DB|/(2n) | \/|DB|(rn+1+1/n) |DB|r/n
. Offline: (r—1)|DB|/(2n)
CIP-PIR [this
work] n(2/|DB|/8n+%/8) 2 Online: \DB|/(2n) V/|DB|(rn+1+1/n) || |DB|r/n+|0|(\/|DB|/n+x)

Table 2: Comparison of communication, number of round trips (RTT), number of XOR operations for one server and for the client,
and storage per server for RAID-PIR [15, 16] and our CIP-PIR protocol (§3.2) with n servers holding a database of size |DB|
with threshold » and symmetric security parameter k. The computation is based on the optimal blocksize b = /|DB|/n (cf. §3.3).
The preprocessing queue of our CIP-PIR protocol has |Q| entries.

DB Size (GB) | Queue Size (MB) | Offline Computation (s) | Simultaneous Queries || Delay avg. (ms) |

, 1 23

0.8 142 214 10 96
' 100 1091

1 93

4 316 1003 10 364
100 4619

1 176

8 447 1996 10 737
100 8500

Table 3: Queue sizes, offline computation times, and avg. delays until the client receives the desired block of our CIP-PIR
protocol (cf. §3.2)with n = 2 servers. The offline computation is the total time for filling the empty preprocessing queue with

|Q| = 10000 entries.

block per group depending on the query. The number of XOR
operations gets smaller with increasing threshold r as r — 1
chunks are processed in the offline phase.

Client Computation. The client computation complexity is
equal for both schemes. A client XORs r times a bit per block,
which are in total Br = rny/|DB| XOR operations. After
the client receives all blocks from the servers, she XORs
all of them to compute the requested block, which are in
total (n— 1)b = +/|DB|(1 + 1/n) XOR operations.

Storage. Finally, a (CIP-)RAID-PIR server needs to
store r/n of the database, while the CIP-PIR server addition-
ally stores |Q| (seed, value)-pairs of size b+« = /|DB|/n+
K. Setting k = 128 bit and |Q| < B, the storage overhead
is negligible compared to the performance gain of CIP-PIR.
Concretely, the queue size for the (seed, value)-pairs is equal
to the database size if |Q| = /|DB|.

Storage and Delays. In Table 3, we show the queue sizes,
the offline computation time, as well as the min., max., and
avg. delays of CIP-PIR. We use three clients who in paral-
lel flood the CIP-PIR servers with 1, 10, and 100 queries to
simulate simultaneous queries. The min./max./avg. delay is
the smallest/highest/average time a client has to wait until she
obtains the desired PIR block. The offline computation time
is the total time for filling the server’s empty preprocessing
queue Q with |Q| =10000 entries. The total storage is the

sum of the database size |DB| and the queue size |Q|.

As already observed in Table 2, the queue size grows sub-
linearly with the database size, which we can also observe
in Table 3. While the difference between the queue size of
a 0.8 GB and 4 GB (5x larger) database is 174 MB, the
difference between the 4 GB and 8 GB (only 2x larger)
database is just 125 MB. For the largest database of 8§ GB, the
queue size |Q] =89 427 is equal to the database size.

The offline computation time grows linearly with the
database size (cf. Table 2), which we can approximately also
see in Table 3. A CIP-PIR server needs ~ 34 minutes to
precompute 10000 pairs (200 ms per pair) in the offline com-
putation for the largest database of 8 GB.

Our CIP-PIR implementation processes incoming queries
sequentially in a “first-come first-serve" manner. Thus, the
delay time until a client obtains a block highly depends on the
number of simultaneous queries as shown in Table 3. For the
8 GB database, the delay for a single query is just 176 ms, but
for 10 simultaneous queries the average delay time is 737 ms
and for 100 queries it is 8§ 500 ms. Hence, the performance of
our PIR scheme depends on the database size and the number
of active users. Note that our servers just use the computation
power of one machine. Thomas et al. [48] deploy their GPC
tool with Google Cloud Functions, which scales with the
number of incoming queries. Integrating our protocol in their
system or optimizing our implementation for hardware-based
parallelization would yield better average delay times.

1776 31st USENIX Security Symposium

USENIX Association

	Introduction
	Private Information Retrieval (PIR)
	Large-Scale PIR Applications
	Setting and Applicability
	Our Contributions

	Preliminaries and Background
	PIR Background
	Multi-Server PIR schemes
	CUDA
	Threat Model

	Private Information Retrieval Extensions
	PIR with Client-Independent Preprocessing (CIP-PIR)
	Our CIP-PIR Protocol
	Database Compression in PIR

	GPU-Accelerated Multi-Party PIR
	GPU-Acceleration of XOR Operations
	Amortized Query Preprocessing

	Implementation and Benchmarks
	Implementation
	Benchmarks
	Preprocessing Phase
	Setup and Online Phase

	Related Work
	Summary of RAID-PIR DHS14, DHS17
	Security Proof of CIP-PIR
	Complexity Analysis of CIP-PIR

