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Abstract
Since its creation, Certificate Transparency (CT) has served

as a vital component of the secure web. However, with the
increase in TLS adoption, CT has essentially become a defacto
log for all newly-created websites, announcing to the public
the existence of web endpoints, including those that could
have otherwise remained hidden. As a result, web bots can use
CT to probe websites in real time, as they are created. Little is
known about these bots, their behaviors, and their intentions.

In this paper we present CTPOT, a distributed honeypot
system which creates new TLS certificates for the purpose
of advertising previously non-existent domains, and records
the activity generated towards them from a number of network
vantage points. Using CTPOT, we create 4,657 TLS certificates
over a period of ten weeks, attracting 1.5 million web requests
from 31,898 unique IP addresses. We find that CT bots occupy a
distinct subset of the overall web bot population, with less than
2% overlap between IP addresses of CT bots and traditional
host-scanning web bots. By creating certificates with varying
content types, we are able to further sub-divide the CT bot
population into subsets of varying intentions, revealing a stark
contrast in malicious behavior among these groups. Finally, we
correlate observed bot IP addresses into campaigns using the
file paths requested by each bot, and find 105 malicious cam-
paigns targeting the domains we advertise. Our findings shed
light onto the CT bot ecosystem, revealing that it is not only
distinct to that of traditional IP-based bots, but is composed of
numerous entities with varying targets and behaviors.

1 Introduction

Security of the modern web is reliant on the HTTPS protocol
and, thus, the certificate authorities (CAs) that lay the
groundwork of trust through the issuance of TLS certificates.
This trust was shaken in 2011 however, when the popular CA
DigiNotar misissued TLS certificates for Google domains,
allowing for the exploitation of numerous Iranian users with
man-in-the-middle attacks [14]. This was just one of many
similar incidents affecting CAs in the early 2010s [1, 12, 36].

In response to these events, the Certificate Transparency [9]
(CT) system was introduced to provide clarity and insight into
the actions of CAs. CT works by logging the registration of
all TLS certificates to public append-only logs. This allows
domain owners to search for illegitimate registrations of
certificates for their domains, and the public to audit the actions
of CAs. In 2015, Google Chrome began requiring all new Ex-
tended Validation certificates to be publicly-logged in the CT
system, with this extending to all new certificates in 2018 [11].
Today, this participation is also required by popular browsers
such as Apple’s Safari [4] and Opera Browser [34]. However,
while Mozilla has pledged support for CT development and
use [29], it is currently not enforced by Firefox browser [16].

Because of the growing use of TLS on the web [21], and
the pressure applied by browser vendors for all sites to serve
content over HTTPS, CT has essentially become a log for all
newly created websites. This includes not only new benign
websites (or existing websites who are renewing their expiring
certificates) but also malicious websites which also need to use
TLS (and therefore CT) to properly render without warnings
in a user’s browser.

Prior work has capitalized on this constant stream of
websites to, among others, identify phishing websites the
moment they go online [46, 48, 54, 67], as well as provide
links for further indexing of the web [19, 38]. As these studies
demonstrate, the massive volume of certificate registrations
makes it impractical for analysts to manually visit each newly
created website. Thus, this job is often delegated to automated
web bots that tail CT logs, either visiting every domain or
seeking out specific domains of interest. As of yet, however,
this web bot ecosystem has not been fully studied to determine
the sources and behaviors of these bots, including its use by
attackers to discover new targets as they are created.

In this work, we create a honeypot infrastructure we call
CTPOT, that allows us to continually create TLS certificates
for pseudo-randomly generated subdomains and measure
the network traffic generated by their inclusion on CT logs,
from a number of network vantage points. Our certificate
creation strategy centers around three distinct domain-content
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categories, allowing us to observe the varying behaviors of
bots with different goals.

Using CTPOT, we create 4,657 TLS certificates across 12
measurement nodes for pseudo-random subdomains corre-
sponding to: popular trademarks, common web endpoints of
web application software, and dictionary words which act as
a baseline through which we compare and interpret the results
of our measurement groups. Over the course of ten weeks,
CTPOT received a total of 1.5 million web requests from
31,898 unique IP addresses, as well as 22,839 requests to SSH,
FTP, and Telnet honeypots. As each domain generated by
CTPOT was previously unused and completely unguessable,
our curated dataset consists entirely of bot traffic.

By analyzing our curated dataset, we observe distinct be-
haviors from the bots targeting different types of subdomains,
allowing us to learn about the intentions of these various bot
populations. For instance, we observe bots targeting subdo-
mains of common web application software send more than
one request over 40% more often than bots targeting domains
impersonating popular trademarks. Moreover, these bots ex-
hibit more malicious behavior with over twice as many unique
IP addresses attempting to authenticate with exposed network
services such as SSH. Additionally, we correlate requests from
seemingly isolated IP addresses into campaigns of related
bots. Alarmingly, through this analysis we find 105 malicious
campaigns attempting to perform malicious actions such as
data exfiltration, fingerprinting, and vulnerability exploitation.

Our main contributions are as follows:

• We design and implement CTPOT, a honeypot-based
system to create TLS certificates for pseudo-random
subdomains, and analyze requests directed towards them.
Using this system, we create 4,657 TLS certificates.

• We curate the first public dataset of CT bots. Analysis of
this dataset yields valuable insight into their populations
and behaviors, including the varying behaviors of bots
with distinct objectives and targets.

• We correlate the behaviors of seemingly isolated bots
into campaigns, finding 105 clusters of requests that are
malicious in nature.

2 Background

In this section, we provide the required background infor-
mation on CT and automated browsing to assist reader
understanding for the remainder of the paper.
Certificate Transparency
The purpose of CT is to prevent the exploitation of users
by ensuring certificates are not issued to malicious actors.
This is achieved by logging all certificate registrations on
publicly-available, append-only logs; allowing domain owners
to monitor for invalid certificate registrations for their domain,
and the community to audit the actions of CAs.

Though commonly managed by large organizations, anyone
can create a CT log and advertise its contents to browsers.
Likewise, anyone can submit a certificate to a CT log, though
this is typically done by CAs during the process of certificate
creation. When a certificate is submitted to a log, the log
responds with a Signed Certificate Timestamp (SCT), which
is a promise that the certificate will be added to the log either
immediately or in the near future. The CA then attaches the
SCT to the newly-issued certificate, which is proof the certifi-
cate was publicly logged in the CT system. Popular browsers
such as Google Chrome and Safari enforce CT compliance
by displaying errors when users visit HTTPS websites that
present certificates lacking valid SCTs. This helps coerce CA
participation, leading to over 90% of CAs logging to CT [10].

By simply hooking into readily available APIs [7, 15, 18],
anyone can audit CT logs for signs of inappropriately created
certificates (indicating a server compromise or a compro-
mised/misbehaving CA). However, because of growing CT
compliance by CAs, along with the proliferation of HTTPS
usage across the web, these APIs indirectly provide visibility
into a large percentage of all newly-created websites as they
come online. Moreover, as the primary focus of CT is the
public advertisement of new domains, observers of these logs
can receive powerful information, including the existence
of otherwise hidden web endpoints. This includes Fully
Qualified Domain Names (FQDNs) that would not have been
discovered via crawling or guessing (e.g. test-deployment-
888.example.com) as well as top-level domain names (TLDs)
from registries that do not share their Zone Records with the
public (such as in Country-Code TLDs). Prior work by Scheitle
et. al. demonstrated that web bots monitor CT logs, and initiate
requests towards the FQDNs included on them [68].
Bots and Automated Browsing
The immense scale of the Internet makes it impractical for
one looking to understand its trends and intricacies to do so
by manual means. Rather, this job is delegated to automated
browsing tools, commonly known as “spiders”, ”crawlers”, or
“bots”. Web bots are often used for benign tasks such as search
engine indexing [19, 38], and phishing detection [33, 75].
However, web bots are also responsible for many of the attacks
on systems across the Internet [58].

Identification of bots has become a priority for website
administrators, leading to to development and use of anti-bot
services [40]. Prior work has shown effective bot detection
techniques including fingerprinting of each client’s characteris-
tics and behavior [51,61,71]. The sophistication of web bots is
often dependent upon the expected usage of these anti-bot fin-
gerprinting techniques. Simple request tools such as wget [37]
allow for quick scanning of a large number of websites using
raw HTTP requests, but lack the traits of a real browser, increas-
ing the probability of fingerprinting and subsequent blocking.
Conversely, utilization of fully-instrumented browsers using
libraries such as Selenium [35] allow web bots to more-closely
resemble real users, at the expense of scanning efficiency.
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Figure 1: Architecture of CTPOT, our CT honeypot system composed of a series of measurement nodes that periodically generate certificates
for pseudo-random domains and record the traffic generated towards various network services.

3 Methodology & Experimental Setup

In this section, we first describe the design of CTPOT, our
system used to create TLS certificates and collect data on bots
monitoring CT logs. Additionally, we describe the details of
deploying CTPOT in the wild.

3.1 CTPOT System Design
To study the characteristics and behaviors of bots consuming
CT logs, we design a distributed honeypot system that
records data from a number of network vantage points. This
system, which we call CTPOT, is illustrated in Figure 1.
It consists of two main modules: a series of decentralized
measurement nodes, and a central data-aggregation node.
This “hub-and-spoke” architecture emphasizes scalability as
measurement nodes can be added or removed from the system
without interrupting the others. Meanwhile, recorded data is
periodically pulled by the data-aggregation node for analysis.

3.1.1 Measurement Nodes

Each CTPOT measurement node hosts an Apache Traffic-
Server [2] reverse proxy server, listening for both HTTP and
HTTPS requests. All valid HTTP(S) requests are forwarded to
the web server located on the data-aggregation node, without
any caching enabled. As mentioned earlier, this reverse-proxy
design allows us to freely add and remove nodes to the
infrastructure without the need to update any centralized
state. Additionally, spreading our experimental footprint
across multiple IP addresses decreases the chances of bots
blocklisting our nodes.

Since it is straightforward for bots to misidentify themselves
in their User-Agent headers (e.g. a wget client presenting the
User-Agent of a popular web browser), we attempt to identify
each visitor connecting over HTTPS with a TLS fingerprint.
To do this, we enable the JA3 TLS fingerprinting plugin for
Apache TrafficServer [3]. JA3 fingerprints are created by
concatenating the following fields from each TLS Client Hello

message: protocol version, accepted ciphers, supported exten-
sions, elliptic curves, and elliptic curve formats. The MD5 hash
of the resulting string is the unique identifier for that client [32].
Prior work has demonstrated that the list of supported cipher
suites in a TLS Client Hello message is enough to reliably
identify the underlying client platform in HTTPS traffic [50].
To communicate the JA3 fingerprint and other information
about the requesting client (e.g., client IP address and request
scheme), Apache TrafficServer appends a series of HTTP
headers to the original request with the additional information
before it is forwarded to the data-aggregation node.

In addition to probing the web servers of publicly-accessible
machines, malicious bots may also scan additional ports in
order to discover vulnerable services which can be abused. To
determine the extent to which CT bots interact with these net-
work services, we include an SSH and Telnet honeypot [13], as
well as an FTP honeypot [20] on each measurement node. We
use each of these three honeypots in a “low-interaction” fash-
ion, meaning visitors are presented with a login prompt, but
can never actually authenticate. Rather, they are presented with
a message indicating their authentication attempt failed. For
the purpose of this study, any visitor attempting to authenticate
with these honeypots can be considered malicious, regardless
of the actions they would take upon successful authentication.

Certificate Registration

Unlike bots that utilize IP-based scans to discover publicly-
accessible services across large Internet subnets, CT bots
have the ability to filter targets based on the content of
their domain names. For instance, a malicious bot that is
targeting outdated WordPress websites could opt to only
make requests towards domains that contain strings related
to blogs and WordPress (e.g., wordpress.example.com
and blog.example.com). Therefore, we carefully design a
certificate registration strategy that allows us to separate the
overall CT bot population into groups of varying intentions.
Specifically, we seek to observe distinct populations of
malicious and benign bots that feed off of CT logs.
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To do so, we define three TLD+2 subdomain content groups,
allowing us to not only separate the CT bots with these inten-
tions, but also separate their behaviors from the bots which
scan all domains that appear on CT logs. To attract bots oper-
ated by security companies and phishing researchers, we create
subdomains that contain the names of companies known to
be common targets of phishing attacks (e.g., Apple, Paypal,
Facebook, etc.,) [5], along with a qualifier string (e.g., reviews,
tutorials, lessons, etc.,). For example, we reason that the FQDN
paypal-reviews.example.net is likely to trigger the auto-
mated crawling logic of a CT bot searching for domains with
common phishing targets and then be dismissed during man-
ual review when the operator reads it in the context of the
rest of the string (i.e. paypal-reviews). We use these qual-
ifying phrases, along with a message indicating the purpose
of our study within all HTTP(S) responses (described in Sec-
tion 3.1.2), in an attempt to prevent automatic blocking by anti-
phishing entities, so that CTPOT can keep attracting both be-
nign and malicious CT bots for the entirety of our experiment.

To attract malicious bots, we create subdomains that are
targeted by popular vulnerability-scanning software [31] (e.g.,
wp-admin, sql, db, etc.,). Our rationale is that a certain class of
resource-constrained attackers may only focus their attention
on hosts that are likely to be running certain web applications,
as opposed to wasting their resources on any and all online
hosts.

Lastly, to compare the bot populations of the previous two
groups against bots that indiscriminately scan domains on
CT, we create subdomains containing the names of various
fruits, vegetables, and colors. We refer to these three groups as:
Impersonating, Sensitive, and Baseline, respectively. A
full list of all strings used to construct the subdomains of these
groups is located in Table 5 of the Appendix.

For the purposes of this study, we must ensure all visitors
to the domains we advertise on CT discovered them through
consumption of CT logs. Therefore, in addition to the TLD+2
subdomains which categorize our advertised domains, we add
a pseudo-random TLD+3 subdomain which is highly unlikely
to be guessed. Specifically, this subdomain encodes the
timestamp the certificate was registered along with five random
characters. By including this information, we can attribute all
requests to these domains to CT bots, with high-confidence.

All certificates are created on each measurement node by
randomly choosing one of the three described groups, and then
a string from the chosen group. In the case of Impersonating
domains, a randomly chosen trademark is appended to a
randomly chosen qualifier string (i.e., facebook-reviews).
Each generated subdomain is appended to the primary domain
assigned to that particular measurement node. Table 1 shows
an example of each domain category, along with the encoded
certificate creation timestamp.

These certificates are created using the Let’s Encrypt
Certbot API [8]. The rate limits enforced by Let’s Encrypt
restrict a single IP address to 50 new certificates each

Table 1: Example domains of each measurement category, and their
corresponding encoded certificate creation timestamps. For brevity,
the primary domain is excluded from each example.

Example Subdomain Type Encoded Timestamp
jjr20201wvo180002.zoom-help Impersonating 2022-02-01T18:00:02
bwr11215lkj013247.wp-admin Sensitive 2021-12-15T01:32:47
yug11031wvo061216.blue Baseline 2021-10-31T06:12:16

week [25]. Therefore, each CTPOT measurement node creates
one certificate every four hours, for a total of six per day or
42 per week. This provides ample daily coverage, while also
allowing for some margin of error to ensure API limits are not
exceeded. Our certificate creation strategy does not place any
undue burden on Let’s Encrypt servers, accounting for only
0.004% of all certificate requests each day [26].

3.1.2 Data Aggregation Node

To allow for flexibility in the number of measurement nodes
used at any given time, CTPOT uses a single data-aggregation
node to gather all data collected from each measurement
node in one location for analysis and processing. The
data-aggregation node hosts an Nginx [30] web server in
which measurement nodes forward all requests to. These
requests are stored in a database for future processing, and
are responded to with a simple HTML webpage explaining
the purpose of this experiment along with additional contact
details. We chose to disclose the presence of our study to all
visitors as an additional attempt to avoid getting flagged as
malicious by the operators of anti-phishing tools.

Additionally, this node also hosts a Bind9 [6] authoritative
nameserver responsible for all domains used in our study. This
nameserver logs basic information about all queries received,
as well as the eDNS subnet of the querying client (if included
by the client’s resolver), allowing us to determine the subnet
of the querying stub resolver.

As previously mentioned, each measurement node hosts
SSH, Telnet, and FTP honeypots. The log files produced
by these honeypots are periodically collected by the data-
aggregation node and stored for future analysis. These logs,
along with the aforementioned HTTP and DNS data, are fed
into the analysis module for processing.

3.2 Cheap vs. Expensive TLDs
It is entirely possible that bots utilizing CT to discover
scanning targets are sensitive to the content of domain names.
This includes both the primary domain, subdomains, as well as
the chosen TLDs. For instance, studies have shown that a large
fraction of phishing sites are hosted on cheap TLDs where
attackers can keep registering new low-cost domains whenever
their existing ones are blocked [39, 60]. As such, operators
of anti-phishing tools may prioritize the scanning of low-cost
domain names that appear in CT logs, over established (and
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more expensive) domains. Contrastingly, malicious CT bots
searching for victims may focus their scanning resources on do-
mains registered on well-established TLDs, using registration
price as a proxy variable for the value of the targeted host.

To determine whether different TLDs need to be part of
our certificate-creation strategy, we conducted a small pilot
experiment with CTPOT using two measurement nodes.
Each node had the same primary domain with only the TLD
changing: one node operated a low-cost .xyz domain whereas
the other host operated a traditional .com domain name.
Additionally, we fixed the random seed used to construct
the subdomains for all certificate registrations such that both
nodes created certificates for the same domains, at the same
times, with only the TLD changing.

We ran this pilot experiment for one week, and monitored
the requests we received from bots. In total, we received
1,508 requests towards the .com domain from 421 unique
IP addresses. Conversely, our .xyz domain received 3,347
requests from 633 unique IP addresses. Additionally, over
half of the IP addresses that requested content from the .com
domain, also requested content from the .xyz domain. As a
result, we decided to use .xyz TLDs for our main experiments
allowing us to both attract more clients as well as lower
the operating costs of our study. We discuss the potential
limitations of utilizing a single TLD in Section 6.2.

3.3 Deployment and Data Collection
Using the described system setup, we created a total of
12 CTPOT measurement nodes. Six of these nodes were
located in a popular public cloud, and the remaining six in our
institution’s datacenter.

To isolate all measurement nodes, each node is assigned a
dedicated primary domain to which subdomains for that node
are applied to. We designed a separate generation strategy for
these primary domains to ensure that they do not interfere with
the decision of a CT bot to interact with that subdomain. This
strategy involves concatenating a randomly chosen string from
each of three groups: names of trees, names of flowers, and
names of birds–with all potential trademark conflicts removed.

Each measurement node creates a new certificate every four
hours, on the top of the hour. We stagger this process on each
measurement node such that there are at least three certificates
being created every hour. This results in a total of 72 certificate
creations each day. However, this number varies depending
upon the behavior of the Let’s Encrypt API (e.g., certificate
creation failures would result in fewer created in a particular
hour).

4 CT Bot Analysis

In this section, we report the findings of our deployment of
CTPOT for ten weeks, from November 3, 2021 to January 12,
2022. In total, we created 4,657 TLS certificates, each for a
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Figure 2: (Top) Total daily requests to our measurement infrastruc-
ture over both HTTP and HTTPS. (Bottom) Total new unique IP
addresses encountered each day of our measurement period both
respective to the current day (dotted line), and throughout the entire
data collection period (solid line).

unique domain. For the rest of this section, unless otherwise
noted, we focus on the traffic that CTPOT received targeting
one or more of our advertised FQDNs. This is to ensure
that we do not attribute the general scanning activity (that
publicly-reachable hosts receive from Internet-wide scanners)
as related to the Certificate Transparency mechanism.

Over the course of our data collection period, CTPOT
recorded 1.5 million HTTP requests from 31,898 unique
IP addresses towards the domains advertised on CT. This
corresponds to an average of 129,723 requests from 2,658
unique IP addresses, per measurement node. As the domains
advertised on CT are random in nature and have not existed
prior to the creation of each certificate, we can consider all
such requests to have originated from web bots. Furthermore,
as these domains were only ever advertised on CT, we can
conclude that the bots that made these requests did so after
observing one of our domains on a public CT log. To the best
of our knowledge, this is the first comprehensive dataset on
CT bots, detailing their identities and distinct behaviors. To
assist the community in understanding the CT bot ecosystem,
and defending against malicious actors therein, we are making
our dataset publicly available to researchers (Section 8).

4.1 CT Bot Traffic

Figure 2 (Top) shows the total daily HTTP and HTTPS
requests from visitors to our CTPOT deployment. We find that
the number of requests remains fairly stable throughout our
entire data-collection period, averaging around 10K-15K total
daily requests on both HTTP and HTTPS. In early November
2021, CTPOT encountered a series of daily request spikes of
over 100K. Upon close inspection of requests on these days,
we find this to be the result of the actions of a single CT bot.
More details regarding this bot can be found in Section 5.
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Figure 3: Unique IP addresses targeting each of the three domain
types in our study, along with the IP addresses of each measurement
node. We note that each circle in this figure is not to scale, but rather
serves to demonstrate the relationships between each group of CT
bots in our dataset.

The overall scale of the CT bot ecosystem is clearly
demonstrated in Figure 2 (Bottom). In this figure, the dotted
line represents the total number of unique IP addresses en-
countered on each day, while the solid line represents only the
unique IP addresses that first interacted with our infrastructure
on that particular day (i.e., on December 1, our infrastructure
saw roughly 500 new IP addresses that it had not seen in any
of the days prior). We observe a steady stream of new visitors
interacting with CTPOT each day, with approximately 300-500
previously unseen IP addresses recorded daily. Moreover, in
the final days of our data collection period, we even see large
spikes in this number, emphasizing the constant expansion
of the CT bot IP address pool.

CT Bot Populations
Figure 3 shows the number of unique IP addresses that targeted
each group of domains we advertised on CT, along with bots
that targeted the IP address of each measurement node. We
note that our measurement nodes also received traffic from
an additional 4,855 IP addresses that targeted only the primary
domains advertised on CT. However, as we cannot be certain
of the subdomain, and thus source of the visitor, we discard
these requests from our dataset.

Overall, we find that CT bots occupy a distinct subset of the
overall web bot population, with less than 2% overlap between
CT bots and IP-based bots (i.e., those that sent requests
towards the IP address of the particular measurement node,
rather than the domain listed on CT). Currently, IP-based bots
do not utilize the additional information provided by CT to
target their probes, opting instead to scan IP address subnets.
Additionally, we find the overall size of the CT bot population
to be over twice that of IP-based bots in our dataset.

Among CT bots, we find that the majority of IP addresses tar-
geted only Impersonating domains, completely ignoring the
two additional groups. This shows how there exists a large pop-
ulation of bots that are actively filtering CT logs for domains

Figure 4: Number of days after certificate creations our measurement
nodes received HTTP(S) requests from CT bots.

with specific content. In this case, these bots may be searching
for newly-created phishing websites that are targeting popular
trademarks. We contrast this with the IP addresses that visited
Sensitive and Baseline domains, which exhibit a much
larger overlap with each other as well as with Impersonating
domains. This indicates that these bots are not filtering based
on the content of domain names, opting rather to visit all
— or a large percentage of all — domains listed on CT logs.
We reason that bots with this behavior fall into one of two
categories: academic or industry scanners indexing the web, or
malicious bots looking for attack targets. Distinctions between
these two groups can be made by observing their varying
behaviors, which we do later in this section.

Interestingly, we also find a number of bots that only visited
Baseline domains. That is, domains that simply contain
non-sensitive dictionary words. We attribute these isolated
requests to the non-deterministic nature of CT log streams
where it is not guaranteed any particular observer of a log will
encounter all certificate registrations. This non-determinism
can be attributed to clients connecting and disconnecting to
any given CT log, as well as not connecting to all possible logs
operated by different CAs [56].

CT Bot Request Properties
Figure 4 shows the number of days after the creation of all
certificates that our measurement nodes received all requests.
On average, the first requests towards our domains occurred
5.9 minutes after a certificate was registered for that domain,
consistent across all three domain groups. In some cases, we
observed the first request arriving as early as 12 seconds after
certificate creation.

Additionally, all three groups continued to see periodic re-
quests long after certificate creation, indicating that a subset of
CT bots are interested in long-term changes to domains that ap-
pear on CT logs. However, we find this is much more common
in bots that target Sensitive and Baseline domains, rather
than bots that target Impersonating domains. As bots in the
latter group may be part of the infrastructures of anti-phishing
entities, they are more likely to send one or a small number
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of requests shortly after encountering a domain to analyze for
phishing traits. Their decision to not revisit that same domain at
a later time may be part of a strategy for scaling their infrastruc-
ture to the large number of targets appearing in their CT logs.

Figure 5 shows the distribution of the number of requests
sent by each visitor for all three kinds of subdomains
we register. We find that almost 80% of all visitors to
Impersonating domains send “single-shot” requests, or a
single request without returning, while that same behavior
is only observed from approximately 30% of visitors to
Baseline and Sensitive domains. Overall, we discover that
the vast majority of visitors send fewer than 10 requests to our
honeypots, with the exception of a small number of visitors
that send thousands of requests. For these visitors, we find that
they typically send the same number of requests to each of our
newly registered domains, indicating the use of a pre-curated
scan-list – such as one associated with a scanning tool.

This observed behavior demonstrates the differences
between bots targeting domains within these two groups, with
bots operated by anti-phishing organizations monitoring for
newly-created phishing websites making a small number of
requests shortly after certificate creation in order to detect
malicious content. Meanwhile, bots targeting domains that
indicate potentially vulnerable systems initiate more requests
for a much longer period of time, probing for vulnerabilities.

Bot Distributions
Figure 6 shows the top countries from which CT bots
originated from in our dataset. Currently, there is an order
of magnitude more CT bots in the United States than there
are in any other country. Interestingly, we find that bots that
visited Impersonating domains are found in each of the top
countries, while there exists a number of countries that do not
host any bots that visited Sensitive or Baseline domains
(such as Germany and the UK). While the difference in total
unique IP addresses from each domain explains these gaps,
it also shows the clustering of these bots in a fraction of all
represented countries.

To further understand the origins of CT bots, we utilized the
IpInfo [23] API to determine the Autonomous System (AS)
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Figure 6: Top geographic locations of IP addresses that requested
content from our measurement infrastructure.
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Figure 7: ASN types of IP addresses that requested content from our
measurement infrastructure.

type of each bot IP. We present our findings in Figure 7. We find
that the proportion of each IP address type is consistent across
all three domain categories. That is, the majority of CT bots
originate from hosting providers. Interestingly, the second-
largest group of CT bots originate from ISP address ranges.
This is an unexpected result, and indicates that many CT bots
are either running on infected home devices (i.e., IoT devices)
or are using ISP-based proxy services to evade detection [62].
IP Blocklist Presence
To determine the reputation of CT bot IP addresses, we utilized
a subset of the IP blocklists provided by Firehol [17] that corre-
spond to bot behavior. In total, we searched for IP addresses on
43 blocklists, a full breakdown of which are listed in Table 6
of the Appendix. Of the 31,898 unique IP addresses that sent
requests to CTPOT, 4.5% appeared on at least one IP blocklist
during our data collection period. This corresponds to 5.1%
Impersonating, 6.6% Sensitive, and 7.7% Baseline IPs.

Figure 8 shows the overlap of CT bot IP addresses that
appear on at least one IP blocklist, based on the domain types
they sent requests to. Compared to Figure 3, we find a much
larger overlap among maliciously labeled IP addresses. This
implies that attackers utilizing CT for target discovery cast
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Figure 8: Distribution of malicious bot IP addresses in our dataset
by domain-type targeted. We consider an IP address to be malicious
if it appears on at least one IP blocklist.

a wide net by scanning domains of various kinds, rather than
targeting a particular category of domain. However, similarly
to the overall distribution of CT bot IP addresses, those that
only visited Impersonating domains are the single-largest
group of IP addresses in our dataset.

4.2 CT Bot Behavior

As we have shown, there exists distinct populations of CT
bots that interact with only a specific subset of domains. The
filtering of domain content prior to interaction implies that
each group has explicit goals in their use of CT. We now use
the varying behaviors of bots in these groups to determine their
intentions, including examining the extent to which attackers
utilize CT to discover new targets and where they lie within
these overall bot populations.

4.2.1 Request Targets

As the only information advertised about our measurement
nodes is each domain through CT, studying requested file
paths is a useful method to determine the intentions of a
particular visitor. Table 2 shows the top five paths requested
from each of the domain groups by the percentage of unique IP
addresses (within each group) that requested that path at least
once. Unsurprisingly, over 96% of IPs in each domain group
request the website’s root path, with this request occurring as
a visitor’s first query 96.6% of the time.

Beyond the domain root, we observed 24.1% of unique IP
addresses queried for at least one additional file. The most com-
mon of these is for the file favicon.ico. This request is common
if the client is using a real web browser, as this file is automat-
ically requested by major web browsers in order to render a
tab bar image [69]. Using these requests, we can begin to infer
the number of CT bots that utilize a real browser to perform
network requests. Doing so, we find only 11.9% of CT bots
targeting Impersonating domains requested the site’s favi-
con file. This is less than half as frequent as the bots targeting

Table 2: Top paths requested by visitors to each domain type, by
percentage of visitors that requested each path.

Impersonating Sensitive Baseline
Path Ratio Path Ratio Path Ratio
/ 97.27% / 96.86% / 97.79%
favicon.ico 11.96% favicon.ico 25.08% favicon.ico 28.55%
robots.txt 1.75% robots.txt 3.60% robots.txt 4.92%
my-account/ 1.01% login.php 2.91% login.php 0.84%
US/US_aaiphh 1.00% wp-login.php 0.85% wp-login.php 0.69%
walmart-mo/ 0.97% .git/HEAD 0.33% .git/HEAD 0.47%

Sensitive andBaseline domains. We note however, that it is
trivial for bots to initiate a request for favicon.ico in order to ap-
pear as though they are utilizing a real web browser. Therefore,
we treat requests for this file as an upper bound on real browsers
in our dataset, and rely on further analysis later in this section
to determine the extent in which bots misidentify themselves.

Along with the favicon.ico file, all three domain groups
receive requests for the file robots.txt. This file is commonly
used by websites to control the requests made by bots. It
contains access rules specified by the website owner to be
followed by all web bots visiting the site, including which paths
are permitted to be accessed, and which are not–including
revoking all access to bots [22]. Ideally, this file is supposed
to be read and followed by all web bots, however this is not
always the case [72]. Over the course of our data collection
period, we find that only a small fraction of bots send requests
for the robots.txt file. Furthermore, fewer visitors request this
file in the Impersonating and Sensitive domain groups
than the Baseline group, with visitors in the Impersonating
group requesting it the least often.

Past the top three most common, paths in each group begin
to diverge. Here, we see requests towards Impersonating
domains focused on common website endpoints such as
my-account/. Meanwhile, requests towards the remaining two
groups are towards endpoints such as login.php and .git/HEAD,
which are commonplace in vulnerability scans [58].

POST Requests
In addition to the paths requested by each CT bot, we can
determine malicious intent by observing POST requests to
the domains we advertise. We assert that sending unsolicited
POST requests to newly-created web endpoints is an overtly
malicious action, regardless of the path to which the request
was destined. Upon searching our dataset, we find that only
4,555 of all requests towards our measurement nodes were
POST requests. This corresponds to 2,818 Impersonating,
901 Sensitive, and 836 Baseline requests. While this is
a small fraction of the overall number of requests directed
towards our measurement nodes, we reason that this could
be a result of our endpoints responding to all requests with
the same simple HTML message. As this content does not
indicate the presence of a form to submit data to, bots simply
choose to move on, instead of blindly sending POST requests.
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Table 3: Types of HTTP User-Agents encountered by measurement
nodes during data collection period as a fraction of unique IP
addresses in each category.

User-Agent Type Impersonating Sensitive Baseline
Browser 84.71% 78.38% 76.11%
Academic/Industry 5.64% 13.44% 15.10%
Library 3.90% 1.79% 4.31%
Scanning Tool 3.01% 3.50% 3.22%
Other 2.73% 2.88% 1.23%
Payload 0.01% 0.01% 0.03%

4.3 CT Bot Self-Identification

The HTTP User-Agent is the web’s primary method for self-
identification of clients. It is standard practice for web bots to
use this string to identify themselves to each web server, along
with information about their purpose. In total, we recorded
1,746 unique User-Agents from CT bots during our data
collection period. To better understand the behaviors of CT
bots, we manually inspected each User-Agent we received and
produced a label to each depicting the type of client it implies.

Table 3 shows the types of User-Agents our measurement
nodes encountered from bots requesting subdomains from
each of the three groups. We observed User-Agents from the
following general groups: web browsers (e.g., Google Chrome
and Firefox), network request libraries of programming
languages (e.g., Python Requests library, and Go-http-client),
academic or industry scanning tools (e.g., Googlebot and
LinkedInBot), web scraping tools (e.g., wget and curl),
malicious payloads (e.g., Log4j and code injection), and other
strings we could not classify into one of the defined groups
such as custom strings and messages.

We find that a majority of bots present a User-Agent of a
browser. Furthermore, bots that interact with Impersonating
domains are more likely to use the User-Agent of a browser
than bots that interact withSensitive andBaseline domains.
We hypothesize that this behavior is because of the entities com-
monly operating the websites in each domain category. As mali-
cious actors are more likely to create websites with impersonat-
ing domain names, anti-phishing organizations do not disclose
their identities in order to prevent cloaking by attackers [59,73].
Meanwhile, Sensitive and Baseline domains are likely op-
erated by legitimate, benign entities who are unlikely to cloak
any content on their sites, leading to approximately 10% more
Academic/Industry User-Agents presented to those domains.

TLS Fingerprinting
Based on the HTTP User-Agents recorded by our measurement
nodes, the majority of CT bots claim to use real browsers to
perform network requests. However, it is known that web bots
are likely to spoof their User-Agents to prevent detection and
subsequent blocking by the websites they visit. To investigate
the rate in which CT bots spoof their User-Agents, we utilize
the JA3 TLS fingerprints we recorded from each bot that sent

Table 4: Types of TLS stacks encountered by measurement nodes
during data collection period as a fraction of unique IP addresses
in each category.

Fingerprint Type Impersonating Sensitive Baseline
Library 40.94% 17.58% 12.07%
Academic/Industry 20.37% 30.63% 33.45%
Unknown 14.46% 20.46% 25.70%
Scanning Tool 12.52% 28.22% 26.59%
Browser 11.59% 2.94% 1.98%
Empty 0.12% 0.17% 0.21%

HTTPS requests to our measurement nodes, as described in
Section 3.

In total, we recorded 113 unique JA3 TLS fingerprints
from the clients interacting with our measurement nodes.
Of these clients, 19.5% of all unique IP addresses presented
more User-Agents than JA3 TLS fingerprints, with that
corresponding to 19.4% of Impersonating, 12.3% of
Sensitive, and 11.7% of Baseline visitors. This implies
these bots changed their User-Agents between requests, while
the underlying client remained the same. To ensure that
IP-address churn was not the cause of this discrepancy, we
calculated the length of each request session from bots towards
the domains we leaked on CT, finding that 92% of all sessions
last less than 10 minutes. This is far shorter than the average
time IP address leases are renewed by major ISPs [63].

To identify the underlying clients making these requests,
we query for all fingerprints in the ja3er.com [24] fingerprint
database which maps JA3 hash values to observed HTTP
User-Agents with those fingerprints. For each fingerprint we
manually create a label based on the User-Agents returned
from the database. However, for many JA3 fingerprint values,
this database contains multiple HTTP User-Agents. In
these cases, we produce a label based on the “lowest-level”
User-Agent available. That is, if a particular JA3 fingerprint
maps to the User-Agents of a browser and a network request
library, we label that fingerprint as belonging to a network
request library. We reason that a bot utilizing a network request
library (e.g., Python Requests library) would benefit from
reporting as a web browser as part of its detection-evasion
strategy. However, a bot utilizing a web browser to send
requests is unlikely to identify as a network-request library
as there is nothing to be gained by this misidentification.

Using this methodology, we labeled each JA3 TLS
fingerprint we received and present our results in Table 4. We
observe a vastly different distribution of clients compared
to what was reported by each CT bot. As we expect, the
percentage of bots that utilize network request libraries to
send requests is much greater in reality. Moreover, the number
of bots that used a real web browser to send requests is only
2–11% based on their TLS fingerprint, compared to the
75–85% based on the reported User-Agents. This also shows
how bots targeting Impersonating domains appear to take
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Figure 9: Number of unique IP addresses that interacted with a
network service honeypot in addition to sending a web request to one
of the three domain groups.

more action to prevent fingerprinting than bots targeting
Sensitive and Baseline domains, as approximately 11%
more of these bots use a real browser.

Comparing the TLS fingerprints of each bot with the file
paths requested in Table 2, we see that requests for favicon.ico
are in line with the percentage of bots with a web browser
TLS fingerprint. However, this is not the case for bots that
requested Sensitive and Baseline domains, where over
25% of the bots that queried for favicon.ico did not have a TLS
fingerprint that matched a known web browser. This indicates
that bots in these categories could be using scanning tools or
scanning lists that make requests for this file as a method to
bypass bot detection.

These findings demonstrate that CT bots are likely to spoof
their User-Agents to prevent detection. TLS fingerprinting
remains a powerful tool for uncovering the true identities of
these bots. However, we find that the ja3er.com fingerprint
database is incomplete as 15–25% of our collected fingerprints
were unknown. Increased usage of TLS fingerprinting and
contributions to databases such as this will help improve the
overall visibility into the clients utilized by bots. To assist in
this, we submitted all User-Agents we received from the bots
in our dataset to this database.

4.4 Network Service Interactions

As mentioned in Section 3, in addition to hosting a reverse
proxy web server, each measurement node also hosted three
low-interaction honeypot processes: SSH, FTP, and Telnet.
These three services log all network interactions with visitors,
but do not permit any authentication. This allows us to infer
malicious intent among CT bots that not only request web
content after observing a domain on a CT log, but also try to
probe additional ports on the measurement nodes and even
attempt to gain access to these additional services. For the
purposes of this work, we consider any kind of interaction
with a honeypot as malicious.
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Figure 10: Unique IP addresses encountered sharing the same
subset of paths requested. Each marker represents one unique set
of paths, with the size of each marker representing the number of
TLS fingerprints encountered from the IP addresses which requested
those paths. Red markers indicate that the cluster contains malicious
requests. The bounding box with a corner at (x, y) = (102, 101)
contains 68.4% of all malicious bot campaigns in our dataset.

We correlate web request logs with honeypot logs using
the client IP address that sent requests to each. Specifically,
we associate a honeypot interaction with the closest web
request temporally (i.e., an SSH interaction is associated to an
Impersonating web request if that web request occurred the
closest to that interaction compared to all other web requests
from that host). In total, our measurement nodes received
22,839 network requests directed towards the ports of the
three honeypot processes from 746 unique IP addresses. Of
these, 675 (90.5%) went beyond simple network probes and
attempted to authenticate with the particular service. Figure 9
shows the number of honeypot interactions that occurred from
CT bots that sent web requests to domains of each category.
We observe that CT bots that target Sensitive domains are
more likely to attempt to interact with additional services on
the host, compared to CT bots targeting domains of the other
two groups. This shows that CT bots targeting such domains
have malicious intentions in doing so, as these domains
indicate the creation of a potentially vulnerable online service.
Attempting to authenticate to these servers via Telnet, SSH,
and FTP indicates the desire to achieve remote-command
execution capabilities and acquire sensitive information.

4.5 CT Bot Campaign Analysis
It is common practice for bots to be used in scanning
“campaigns”, or scanning sessions where a pre-determined set
of probes are sent to each encountered web host. Therefore, if
the same bot software is deployed on many different machines,
the file paths requested by each unique IP address would be the
same. We use this expected behavior to identify connections
between bots in our dataset. Specifically, we analyze the
intersection of the total file paths requested by each unique IP
address with all other IP addresses in our dataset. Additionally,
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to further attribute the requests of multiple IP addresses to the
same bot software, we analyze the JA3 TLS fingerprints of
IP addresses that requested each set of file paths.

In total, bots in our dataset cluster into 539 unique sets of
requested file paths. For the purposes of this analysis, we call
each of these sets a distinct “campaign”. Figure 10 shows the
distribution of these campaigns, with the size of each marker
indicating the number of TLS fingerprints encountered by bots
that requested those specific paths. By analyzing the place-
ments and sizes of each marker in this figure, we can create
connections between seemingly isolated IP addresses, and
identify the most active clusters within the CT bot population.

We observe three general trends in the characteristics of CT
bot campaigns. The most populous cluster in our dataset (A)
is comprised of bots that only requested the root file path. This
cluster contains over 24K IP addresses, with 88 fingerprints
shared between them. As the number of TLS fingerprints is
large, with a small file path set, little can be deduced about the
connections between bots in clusters such as this.

We can be more confident in the association between dis-
tinct IP addresses if either the number of paths requested is
large enough, or if the number of IP addresses in that cluster
is large with only one or a small number of TLS fingerprints
shared among them. For instance, we observe one campaign
(B) where 151 unique IP addresses requested the same 15 file
paths, all while possessing the same TLS fingerprint. Similarly,
we see a group of campaigns (C) that have 100–200 distinct file
paths requested, with significant overlap in the specific paths
requested between them. In cases such as these, we can deduce
connections between distinct IP addresses that appear to be uti-
lizing the same or similar bot software and target request lists.

Malicious Request Fingerprinting
We have discovered that bots in our dataset originating from
unique IP addresses can be associated to the same campaign
because of the requests they make. These campaigns vary
in the number of files requested, and the number of bots that
participate. We now seek to determine the effect of domain
content on the volume of malicious activity directed towards
hosts online, and the overall maliciousness of the campaigns
identified in our dataset. To do this, we cross-reference all
requested file paths in our dataset with the malicious bot traffic
dataset curated by Li et al. [58]. This dataset contains labels
for over 14K bot web requests performing common malicious
actions (e.g., exploit strings and data exfiltration).

Figure 11 shows the malicious requests directed towards
each of our three domain categories, by the number of unique
IP addresses that executed them. During our data collection
period, we encountered malicious requests in the form of
data exfiltration, fingerprinting, and vulnerability exploitation,
originating from 272 unique IP addresses. We note that the
bot traffic dataset from Li et al. contains labels for other
kinds of malicious requests (i.e., backdoor creation), but the
malicious activity observed from CT bots was limited to these
three categories. Of the three domain categories measured,
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Figure 11: Unique IP addresses in each domain group that requested
a file path indicating one of the recognized malicious actions.

Sensitive domains encountered the greatest number of
bots that executed at least one malicious request, with data
exfiltration being the most popular malicious action performed.
As these domains indicate the presence of a potentially
vulnerable web application, malicious bots may assume there
could be sensitive information that is publicly available.

In addition to analyzing malicious activity on an IP-level,
we also use this dataset to determine the overall maliciousness
of the CT bot campaigns we identified. Of the 539 unique sets
of requested file paths, we find that 105 contain at least one
malicious request, depicted as the red markers in Figure 10.
The majority of malicious campaigns have fewer than 10
requests and are shared between fewer than 100 IP addresses,
with 68.4% falling within the bounding box with a corner at
(x,y)=(102,101). This finding demonstrates the stark contrast
in the malicious and benign uses of CT, where benign bots
participate in large-scale scanning campaigns across many
unique IP addresses, and malicious bots attempt to decrease
their footprint by limiting the scope of their campaigns.

In conjunction with our findings in Section 4.1, the clear
presence of malicious actors in the CT bot ecosystem
emphasizes the necessity of website administrators to ensure
the process of setting up a new web service concludes with
certificate creation, after all security mechanisms are in place
and tested. Due to CT logs, the seemingly innocuous action
of creating a TLS certificate now publicly announces the
existence of a new website, leading to the immediate attention
of web bots, some with malicious intentions.

5 Case Studies

Most Active Bot
Of the 31,898 total unique IP addresses that visited our
measurement nodes throughout our data collection period,
only three exceeded 100K total requests. The most active of
these (IP address: 3.85.226.XXX) sent over 327K requests, all
targeting Impersonating domains that contained the strings
“Coinbase” or “Alipay”. Note that there has been an increasing
number of phishing attacks against online cryptocurrency
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exchanges [42, 55, 64] which could motivate new generations
of CT bots searching for impersonating websites containing
these popular trademarks. These requests only occurred
between November 3rd, 2021 and November 22nd, 2021. On
average, this bot sent approximately 30K requests per day, and
over 36K requests per domain.

We observe two large spikes in incoming traffic to our
measurement nodes. The first of these occurred on November
4th and 5th, and the second from November 8th through
10th. These two spikes can be directly attributed to this one
particular bot as 83.2% of all requests on these dates originated
from this IP address.

Regardless of the number of requests sent to each domain,
they were all identical: GET requests over HTTPS to the
root path of the domain. Moreover, requests to each domain
occurred shortly after the certificate was registered and lasted
for a short period of time, ranging from a few hours to days.
Since this client focused on impersonating domains and did
not appear on any blocklist during our data collection period,
we hypothesize that this behavior is due to a poorly configured
anti-phishing bot that was taken down upon realization of the
request volume produced.
Log4J Exploitation Attempts
In December 2021, security researchers from Alibaba discov-
ered a vulnerability in the Apache Log4J logging library. This
vulnerability allowed attackers to remotely execute arbitrary
code on the victim’s machine using nothing more than loggable
web events [28]. Attackers simply need to include JNDI or
LDAP command strings in common web request fields such as
requested paths and HTTP headers. If these fields are logged
with an un-patched version of Apache Log4j, the included pay-
loads will be executed on the victim’s machine. Upon discovery
of this vulnerability, websites across the Internet reported
receiving thousands of exploitation attempts, regardless of the
site’s actual usage of Apache Log4j [27]. This implies early ex-
ploitation attempts of this novel vulnerability were conducted
with Internet-wide scanning, agnostic to each site’s content.

Since this vulnerability was released and mass-weaponized
during our data-collection period, we received exploitation
attempts on our measurement nodes. We analyzed our
collected data to understand the use of CT to gather targets for
this attack. In total, we received 2,188 total requests containing
a Log4J payload in the HTTP headers and queried filepaths,
originating from 183 unique IP addresses. These requests
were directed towards both the specific domains we advertised
on CT as well as the IP addresses of our measurement
nodes directly. Our measurement nodes received 686 HTTP
requests containing Log4J payloads towards the domains we
advertised on CT, from 3 unique IP addresses. Conversely,
our measurement nodes received an additional 1,502 Log4J
requests towards their IP addresses (68.6% of all Log4J
requests), from 181 unique IP addresses. This includes one IP
address that sent Log4J payloads to the domains we advertised
as well as the IP addresses of our measurement nodes.

Immediately, we observe that targeting specific domains
advertised on CT is a much less popular strategy among
attackers compared to Internet-wide scanning. However,
upon analyzing the timestamps of each request, we see
that requests towards the IP addresses of our measurement
nodes started to occur on December 10, the date in which
details regarding the Log4j vulnerability were made public.
Meanwhile, such requests towards advertised domains did not
begin until December 12, indicating a shift in strategy after
initial Internet-wide scans ran their course.

Looking closer at the requests sent to our domains advertised
on CT, we see that domains of the three categories received
roughly the same number of requests, with Impersonating,
Sensitive, and Baseline domains receiving 237, 221, and
228 requests, respectively. Of the three unique IP addresses
that sent these requests, we found that two of the three belong
to anti-abuse entities, with the remaining IP belonging to a
machine in Microsoft’s AS. Exploit payloads in these requests
reside in 28 different HTTP headers along with the requested
path. Additionally, all payloads appear to simply reach out to a
unique subdomain of the primary domain log4jdns.x00.it over
DNS, suggesting that these are simply probes to determine
if a site is vulnerable. On the other hand, analysis of payloads
sent to the IP address of each measurement node reveals that
the majority of requests attempt to download code from an
unknown server, with 20.9% of such requests being base-64
encoded shell scripts.

Our findings demonstrate that weaponization of Log4j
exploits is currently limited to Internet-wide scans, rather than
targeted attacks on domains publicized on CT. Together with
our earlier findings regarding the small overlap between CT
bots and Internet-scanning bots (Section 4.1), this suggests
that the parties operating CT bots are different from those
behind Internet-wide scanners with the former acting more
benign than the latter.

6 Discussion and Future Work

6.1 Key Takeaways

• Malicious CT Bots: Our results show that when one creates
a website, they must ensure that all security best practices
are applied prior to creating TLS certificates. Once a domain
appears on CT logs, admins should expect to receive numer-
ous requests to their sites within minutes of certificate cre-
ation, from potentially malicious web bots. This is especially
true for Sensitive domains that indicate the site could be
a vulnerable web application, which are likely to receive
tens of probes ranging from fingerprinting attempts to un-
solicited POST requests. In total, we observe 105 malicious
web-request campaigns targeting our measurement nodes.
Furthermore, we find hundreds of unique IP addresses that
extend their probes beyond web servers, attempting to au-
thenticate with exposed network services such as SSH.
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• Bot Ecosystem Diversity: Because of the rapid growth of
the web, the population of bots interacting with websites
is only becoming larger and more diverse. In this paper, we
studied a previously unexplored subset of this ecosystem,
demonstrating that CT bots are indeed distinct in source
and behavior from traditional IP-based bots. Moreover,
we showed that this population of CT bots can be further
sub-divided into groups with distinct behaviors.

• CT Bot Fingerprinting: CTPOT is a highly versatile
system, allowing defenders to find both the types of targets
that bots are interested in (so they can be better defended),
as well as malicious bots themselves. We have shown that
using bot fingerprinting techniques, we can make connec-
tions between otherwise isolated bot requests. In total,
we discovered 539 campaigns in our dataset, with many
spanning across multiple unique IP addresses. By collecting
IP addresses and fingerprints of malicious bots attracted to
the CTPOT infrastructure, defenders can identify pools of IP
addresses utilized by attackers and curate extensive block-
lists to better protect newly-created websites from malicious
requests. Continual identification of malicious bots effec-
tively “drains” the IP address pools utilized by attackers,
reducing the effectiveness of rapid IP address changes.

• Malicious Use of CTPOT: Malicious actors seeking to
prevent detection and subsequent removal of their content
could use a system such as CTPOT, along with similar
fingerprinting techniques, to create real-time blocklists of
bots operated by anti-abuse organizations. These lists could
be fed directly into attacker infrastructures to ensure only
real victims observe malicious content, such as phishing
webpages and malware downloads. Operators of anti-abuse
bots should be aware of this possibility and design probing
strategies that reduce the chance of trivial evasion by attack-
ers. For instance, utilizing real browsers to initiate requests
and reducing the number of hosts used to conduct scans on
a particular website would raise the bar for attacker evasion.

6.2 Limitations
Our analysis should be considered alongside certain limita-
tions. As CTPOT was designed to study a large and diverse
population of bots, the content we chose to serve to visitors
is generic and simple, not conforming to any particular
content-group. We therefore expect that some bots who
initiated requests towards the domains we advertised on CT
chose not to perform normal probing scans because of the
content received from the web server. Rather, if we for instance
hosted a full WordPress site on all Sensitive domains,
we would likely receive more malicious requests such as
fingerprinting or credential brute-forcing attempts.

Additionally, as this is a prototype study to introduce
the community to this previously unexplored subset of web
bots, our domain-generation strategy revolved around a

limited set of categories and related strings. As mentioned
in Section 3.1.1, we chose strings related to each of the three
studied categories based on their popularity. However, we
found that this can sometimes not be sufficient because of the
rapid evolution of web. For instance, roughly halfway through
our data collection period, the Log4J vulnerability targeting
software written in Java was discovered. However, we did not
have any subdomain strings containing either Java or Log4J in
our Sensitive category. To ensure the integrity of our curated
dataset, we did not modify the parameters of our setup during
the entirety of our data collection period. However, future uses
of CTPOT would be best-served to maintain a dynamic list
of subdomain strings to remain on top of evolving trends.

We also note that our choice of TLD could bias our findings
to bots that are only interested these low-cost domains. Our
pilot study (Section 3.2) demonstrated that, in addition to
an overall greater amount of traffic generated towards our
measurement node with a low-cost TLD, there is a large
overlap of interest in low and high cost TLDs. By limiting
our study to a single TLD, we were able to narrow its scope,
providing a more focused analysis on the effect of subdomain
content on web bot behavior. We encourage future work to
expand upon our pilot study, to fully understand the effects
of TLD choice on CT bot behavior.

7 Related Work
Web Bot Detection & Measurement
The pervasiveness of bots in network communications has led
to considerable work in developing strategies to detect and
measure them. Prior studies have utilized supervised machine
learning models to differentiate real users from web bots using
features derived from their browsing patterns. This includes
timing analysis of sessions (e.g. total visit time, time between
requests, etc.), distribution of request types (GET, POST,
HEAD, etc.), and the types of files requested [41, 61, 71].
Jacob et al. took this a step further by creating a system to not
only detect and augment responses for particular bots, but also
correlate requests from distinct IP addresses into coordinated
campaigns [51]. Jan et al. addressed a common limitation of
bot detection work, the lack of groundtruth datasets, by using
data augmentation techniques to create artificial samples from
real-world datasets [52].

Prior work has also explored web bots at scale to understand
their general behaviors and strategies, including analyzing the
web server logs of various academic websites to determine
the common behaviors of search engine bots and general web
bots [43, 44]. Xie et al. designed a bot detection system and
used it to discover and analyze bots targeting a university
campus network over the course of six months [74]. Li et al.
created a honeysite system used to deploy various popular web
application software to study the behaviors of bots targeting
these particular applications. By ensuring the domains
corresponding to these sites were never registered prior their
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experiments, they were able to assume all visits to their hon-
eysites were from web bots, rather than real users. Using this
system, the authors were able to uncover malicious behaviors
of bots targeting each web application, including credential
brute forcing and exploitation attempts of known CVEs [58].

Existing work in the area of bot detection and characteri-
zation is focused primarily on Internet-wide scanning bots, or
bots that feed off of pre-curated lists of long-standing websites.
In this paper, we study a previously unexplored subset of
bots, those which feed of CT logs. These logs provide bots
with increased information about all sites, enumerating even
otherwise-hidden subdomains that need to create a certificate.

Certificate Transparency
The creation and subsequent adoption of CT by the web has
fostered the growth of an ecosystem consisting of numerous en-
tities. Prior work has studied this ecosystem to determine how
it operates in practice, including the actions of particular log
operators, monitors, and auditors [49, 57, 65]. Stark et al. stud-
ied the overall success of the deployment of CT, to determine
if its enforcement by browsers breaks web functionality [70].

Work has also been done to understand the security and
privacy impacts of CT. This includes the implications of CT on
end-user privacy as well as the unintended leakage of informa-
tion because of the logging of all TLS certificates [47, 53, 66].
Dowling et al. also explore the resilience of CT against attack-
ers at various vantage points using cryptographic means [45].

In our work, we explore an unintended use of CT: as a log of
all newly created web endpoints. We therefore take inspiration
from the work of Scheitle et al. who study the information leak-
age caused by CT [68]. The authors use CT to advertise random
domains and monitor the network traffic directed towards
the authoritative name servers for those domains, as well as
network scans directed towards the IP addresses behind those
domains. They find that DNS queries for domains appearing
on CT logs reach their nameservers 73 seconds after certificate
creation, and occasional port scans on their honeypot machines.
Our work builds upon their findings by adding different ex-
perimental conditions (via the advertising of Impersonating,
Sensitive, and Baseline domains) to assess the level of
targeting, as well as modern fingerprinting techniques that
allow us to uncover the real software utilized by CT bots and
cluster seemingly independent clients as part of campaigns.

8 Conclusion
In this paper we presented CTPOT, a system for deploying
and managing honeypots at various network vantage points
which are associated with pseudo-random domain names
advertised on Certificate Transparency (CT) logs. Using
CTPOT, we conducted a ten week study of CT bots, recording
1.5 million total web requests from 31,898 unique IP addresses,
directed towards the domains we advertised. As each domain
generated by CTPOT was previously unused and completely
unguessable, our curated dataset consists entirely of bot traffic.

By analyzing this dataset, we were able to uncover that CT
bots are a distinct, yet highly-active, subset of the overall web
bot population. During our data-collection period, we observed
over ten times more requests from CT bots than IP-based bots.
Moreover, our domain-generation strategy allowed us to ob-
serve unique behavior from CT bots targeting only a subset of
domains on CT with particular content of interest. For instance,
we discovered that 63% of unique IP addresses only targeted do-
mains that impersonate popular trademarks. We also observed
that bots targeting domains associated with common web appli-
cations exhibit substantially more malicious behavior, includ-
ing attempts to authenticate with network services such as SSH
occurring over twice as often as bots targeting other domains.

Lastly, we make associations between seemingly isolated
bots, and find 539 request campaigns sharing identical file
paths, and TLS fingerprints. Our findings demonstrate how
operators deploy their bots into large infrastructures across
many unique IP addresses. Furthermore, we identify malicious
activity within these campaigns, discovering 17.6% contain
payloads relating to data exfiltration, fingerprinting, and
vulnerability exploitation.
Availability
Using CTPOT we curated a dataset consisting entirely of
requests originating from CT bots. To assist in the under-
standing and further exploration of CT bots by the research
community, we make our dataset available to other researchers
at https://uninvited-guests.github.io.
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A Appendix

Table 5: Strings used to construct domains for each of the three
measurement categories.

Impersonating Sensitive Baseline
apple phpmyadmin banana
paypal wp-admin pear
facebook wordpress peach
twitter drupal strawberry
instagram admin watermelon
linkedin cpanel melon
google demo cherry
youtube testphp grape
chase administrator grapefruit
venmo mail avocado
zoom mailserver blueberry
microsoft mysql coconut
dhl postgres clementine
bestbuy db fig
dropbox sql guava
youtube ssh honeydew
qq webmin kiwi
baidu internal lemon
sohu private mango
taobao members peach
yahoo staging artichoke
netflix blog asparagus
reddit test arugula
office webmail bean
alipay wp beet
coinbase ws broccoli
myshopify example cabbage
twitch login carrot
ebay dev cauliflower
adobe demo corn
aliexpress ftp cucumber
tiktok gateway ginger
alibaba irc kale
amazonaws old lettuce
spotify smtp mushroom
walmart shop pea
nih files pepper
americanexpress app potato
tmall git pumpkin
canva hostmaster red
bing firewall blue
tdameritrade api green
wellsfargo store orange
robinhood printer yellow
bankofamerica users purple
binance proxy violet
kraken forum indigo
gemini vpn brown
bittrex m black
indeed ns white

Qualifiers
reviews
tutorials
lessons
assistance
support
help
advice
coaching
education
guidance

Table 6: List of Firehol blocklists used to determine maliciousness
of CT bot IP addresses.

Firehol Blocklist
Alienvault Reputation
Blocklist De Bots
Blocklist De Bruteforce
Blocklist De
Blocklist De SSH
Blocklist De Strongips
Blocklist Net Ua
Botscout 1d
Botscout 30d
Botscout 7d
Botscout
Botvrij Dst
Bruteforceblocker
Cleantalk 1d
Cleantalk 30d
Cleantalk 7d
Cleantalk New 1d
Cleantalk New 30d
Cleantalk New 7d
Cleantalk New
Cleantalk Updated 1d
Cleantalk Updated 30d
Cleantalk Updated 7d
Cleantalk Updated
Cruzit Web Attacks
Cta Cryptowall
Cybercrime
Dyndns Ponmocup
Et Compromised
Et Tor
Gpf Comics
Greensnow
Haley SSH
Malc0de
Myip
Php Dictionary 1d
Php Dictionary 30d
Php Dictionary 7d
Php Dictionary
Threatcrowd
Turris Greylist
Uscert Hidden Cobra
Vxvault
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