
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

QuORAM: A Quorum-Replicated Fault Tolerant
ORAM Datastore

Sujaya Maiyya, Seif Ibrahim, Caitlin Scarberry, Divyakant Agrawal,
and Amr El Abbadi, UC Santa Barbara; Huijia Lin and Stefano Tessaro,

University of Washington; Victor Zakhary, Oracle
https://www.usenix.org/conference/usenixsecurity22/presentation/maiyya

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore

Sujaya Maiyya
UC Santa Barbara

Seif Ibrahim
UC Santa Barbara

Caitlin Scarberry
UC Santa Barbara

Divyakant Agrawal
UC Santa Barbara

Amr El Abbadi
UC Santa Barbara

Huijia Lin
University of Washington

Stefano Tessaro
University of Washington

Victor Zakhary
Oracle

Abstract
Privacy and security challenges due to the outsourcing of

data storage and processing to third-party cloud providers
are well known. With regard to data privacy, Oblivious RAM
(ORAM) schemes provide strong privacy guarantees by not
only hiding the contents of the data (by encryption) but also
obfuscating the access patterns of the outsourced data. But
most existing ORAM datastores are not fault tolerant in that
if the external storage server (which stores encrypted data)
or the trusted proxy (which stores the encryption key and
other metadata) crashes, an application loses all of its data.
To achieve fault tolerance, we propose QuORAM, the first
ORAM datastore to replicate data with a quorum-based repli-
cation protocol. QuORAM’s contributions are three-fold: (i)
it obfuscates access patterns to provide obliviousness guaran-
tees, (ii) it replicates data using a novel lock-free and decen-
tralized replication protocol to achieve fault tolerance, and (iii)
it guarantees linearizable semantics. Experimentally evaluat-
ing QuORAM highlights counter-intuitive results: QuORAM
incurs negligible cost to achieve obliviousness when com-
pared to an insecure fault-tolerant replicated system; QuO-
RAM’s peak throughput is 2.4x of its non-replicated baseline;
and QuORAM performs 33.2x better in terms of throughput
than an ORAM datastore that relies on CockroachDB, an
open-source geo-replicated database, for fault tolerance.

1 Introduction

Due to the cloud’s core policy of pay-by-use, individuals and
organizations are increasingly shifting from managing their
own storage servers to renting storage from third-party cloud
providers. Today, many products with high traffic, such as
Twitter [5], Spotify [4], and Netflix [3], rely on cloud storage
for some or all of their data storage requirements.

The cloud’s convenience, however, comes at the cost of
potentially compromising the privacy of the outsourced data.
This privacy concern slows down the adoption of cloud ser-
vices for many businesses [11]. Even with the encrypted data,
users’ access patterns can leak sensitive information to the
cloud provider. Consider an example where a doctor stores
patient records in a third-party cloud. If the doctor accesses a
given patient’s record more frequently than usual over a period
of time, an intruder can infer some information about the pa-
tient’s medical status. In fact, many works [9,15,17,19,21,22]
have shown concrete inference attacks by exploiting access
patterns alone.

The privacy of outsourced data requires first to hide the data
content through encryption, and then to obfuscate the access
pattern to that encrypted data. Oblivious RAM, or ORAM, a
cryptographic primitive originally introduced by Goldreich
and Ostrovsky [16], achieves access pattern obliviousness. Al-
though ORAM originally protected software executing on a
single machine from an adversary on that same machine [16],
ORAM’s functionalities are now extended to protect data ac-
cesses on remote storage [7, 10, 13, 25, 31–34]. Summarizing
the general idea in these works: they break up the data into
logical blocks, each stored at a unique physical addresses on
the external server. After each access to a logical block, the
ORAM scheme shuffles the physical address, thereby map-
ping any sequence of logical memory accesses to a sequence
of random physical memory accesses.

Broadly speaking, many remote ORAM system architec-
tures [7, 13, 14, 31, 33] consist of three-layers: an untrusted
cloud storage server, a trusted proxy, and the clients. An ap-
plication encrypts its data under a key K and outsources the
encrypted data onto an untrusted storage server. The trusted
proxy holds the key K and accesses the storage server on
behalf of the application’s clients. Clients send read and write
requests to the proxy, which then communicates with the
server according to an ORAM scheme and responds back to
the clients. An ORAM scheme translates client requests into a
sequence of storage server accesses that are indistinguishable
from other client request translations.

Recent proposals enhance the efficiency of ORAM
schemes [7, 8, 10, 13, 14, 31, 33, 39, 40] by supporting con-
current and asynchronous client accesses. However, in most
of these proposals, the proxy and the storage server are not
fault tolerant, deeming both components as single points of
failure. If either crashes, the data becomes unavailable to
users. Putting it differently, mitigating the privacy concerns of
cloud storage derails one of the most significant advantages
of the cloud: fault tolerance.

To date, Obladi [13] is the only ORAM system to toler-
ate crash failures without losing the system’s state. For the
storage server, Obladi relies on the standard fault tolerance
guarantees of cloud storage servers and assumes a highly
available server. For the proxy, Obladi meticulously pushes
‘valid’ proxy states to the cloud storage such that after a crash,
the proxy resets to the last valid state stored fault-tolerantly
in the cloud. The main problem with this approach is that
although a proxy’s relevant state can be recovered from the

USENIX Association 31st USENIX Security Symposium 3665

storage after a crash, the system cannot progress while the
proxy is down. Moreover, delegating fault tolerance to the
cloud incurs higher latencies than an ORAM system with
inherent fault tolerance guarantees, as shown in the later sec-
tions of this paper.

In distributed systems, the gold standard for fault tolerance
is state machine replication. Zakhary et al. [41] discuss repli-
cation to tolerate failures in ORAM systems and demonstrate
the challenges of employing standard design choices – such
as locking and quorum-based read-writes – in an ORAM sys-
tem. The authors discuss only the risks of standard design
choices for replication in ORAM systems rather than provide
any solution to tolerate failures.

In this paper, we present, QuORAM, the first (quorum)
replicated fault-tolerant ORAM system, consisting of mul-
tiple untrusted cloud storage instances and trusted proxies.
QuORAM replicates the data on multiple storage instances,
where each storage instance is accessed through its indepen-
dent trusted proxy. A subset of these replicas serve each client
request, thus allowing the system to tolerate some failures at
both the storage and the proxy layers.

Serving client requests from only a subset of replicas
raises the challenge of consistency, which we define using
linearizable semantics: “each operation applied by concurrent
processes [appears to take] effect instantaneously at some
point between its invocation and its response” [18]. Note
that the operations themselves need not take effect instanta-
neously across all replicas (and cannot, in the presence of
asynchronous network delay); they only need to appear in-
stantaneous to the clients. We address this challenge and
prove that QuORAM guarantees linearizable semantics.

Apart from obliviousness and fault tolerance, QuORAM
achieves the following additional functionalities:

1. It supports multiple concurrent reads and writes,
2. It has no single point of failure,
3. It replicates data across multiple (possibly colluding)

cloud storage servers, and
4. It guarantees linearizable semantics.
In the rest of the paper, §2 provides background on the

ORAM scheme on which we build QuORAM; §3 describes
the system and failure model of QuORAM; §4 defines the
security model of QuORAM; §5 proposes the replication and
ORAM scheme designs on QuORAM; and §6 experimentally
evaluates QuORAM with three baselines. Appendices A and
B detail the security and linearizability proofs of QuORAM.

2 Background
This section introduces an ORAM scheme, TaORAM [31],
that acts as a building block of QuORAM. TaORAM en-
sures obliviousness in the presence of concurrent, arbitrarily-
scheduled accesses while preserving linearizable semantics.
TaoStore’s [31] ORAM scheme, TaORAM, builds upon an-
other ORAM scheme Path ORAM [35]. Path ORAM organ-
ises data into a tree of buckets, each of which contains multiple

Figure 1: TaORAM’s architecture

data blocks. Path ORAM maps each block’s position to a leaf
node lf, and stores the block in any one of the buckets along
the path from the root to that leaf lf. TaoStore [31] extends
Path ORAM for asynchronous and concurrent queries. Tao-
Store’s system architecture (Figure 1) consists of a storage
server, a proxy, and the clients. The storage server stores the
encrypted data in a tree and the clients access the data by
sending read/write requests to the trusted proxy; the proxy
accesses the storage server on behalf of the clients (using the
encryption key it stores) according to the TaORAM protocol.

The proxy consists of two components: a Sequencer and
a Processor. The Sequencer communicates with clients and
the Processor communicates with the server. The Sequencer
maintains a FIFO request queue, which stores client requests
in the order they arrive. When the proxy finds a response
to a client request (after communicating with the server), the
Sequencer forwards responses to clients in the request queue’s
FIFO order. The Processor maintains three pieces of local
state: a position map, a local subtree, and a stash. The position
map stores a block’s leaf node id lf on whose path the block
resides. The local subtree consists of blocks already fetched
from the storage server (and possibly updated) but not yet
written back, whereas blocks that do not fit in the subtree are
stored in the stash. After the Processor fetches k paths, where
k is a system configuration constant, a background thread
writes those paths back to the server and deletes their contents
from the local subtree. As k increases, the amount of memory
consumed by the proxy also increases.

At a high level, TaORAM executes the following steps for
both reads and writes to a block B:
1) Let P be the path containing block B. TaORAM fetches P
from the server if not already fetched; otherwise, it performs
a fake read by fetching a random path.
2) TaORAM adds the read path to the local subtree. For write
operations, it updates the value of B in the local subtree.
3) TaORAM answers the client’s request with B’s value.

3666 31st USENIX Security Symposium USENIX Association

Figure 2: QuORAM Architecture

4) It assigns B to a new random path P′ and updates the
position map accordingly.
5) TaORAM next executes flushing: it reassigns each block
in the subtree’s path P or in the stash to the lowest non-full
bucket intersecting with P and P′, the block’s newly assigned
path. If no such bucket exists, TaORAM moves the block to
the stash. TaORAM [31] proves that the stash size is bounded.
6) If TaORAM fetched k paths since the last write-back
(where k is a system configuration constant), it writes those
k paths from the subtree to the storage server. It then deletes
all blocks in these k paths with no in-progress requests and
retains blocks modified since initiating the write-back.

Although TaORAM preserves linearizability (as the authors
proved in [31]), by itself, TaORAM does not tolerate failures.
A user loses access to the data if the proxy or the storage
server become unavailable. Additionally, the data cannot be
recovered if the proxy or/and the storage server lose data.

3 System and Failure Model
Given the lack of fault tolerance in TaORAM and almost all
existing ORAM datastores, we propose QuORAM, an ORAM
datastore that provides fault tolerance via replication. This
section presents the system and failure models of QuORAM.

3.1 System Model
QuORAM is a replicated oblivious data storage system that
supports single key read and write operations on a key-value
store, modeled as GET() and PUT() requests.1 QuORAM has
the same three-layered structure as a non-replicated ORAM
system: untrusted storage servers to store encrypted data,
application controlled trusted proxies to answer client re-
quests by accessing the storage server, and clients who send
read/write requests to the proxies. Typically in non-replicated
ORAM systems, the overall state of the data is split between
the proxy and the external storage. Extending an ORAM
system to include replication also requires maintaining this
one-to-one correspondence between a proxy and a storage
server. Hence QuORAM replicates storage servers and prox-
ies in pairs such that each proxy contacts exactly one storage
server, and no two proxies contact the same storage server.

1Inserts and deletes are modeled using GET() and PUT() requests.

We refer to a pair of ORAM server and proxy as an ORAM
unit and depict the system architecture in Figure 2. Although
not a requirement, since QuORAM aims to tolerate crash fail-
ures, we envision QuORAM to be a geo-replicated datastore
wherein the ORAM units and the clients accessing the data
are all geo-distributed.

Within each ORAM unit, the external server S stores en-
crypted data while the corresponding proxy stores the re-
spective secret key that encrypts S’s data. The proxies in
QuORAM also store other metadata necessary for the ORAM
scheme (explained more in §5). All proxies in the system
run the same ORAM scheme, translating each ORAM oper-
ation into a sequence of storage server operations. From a
client’s perspective, it treats an ORAM unit as a black box
that exposes a read-write interface.

3.2 Failure Model
Crash failures: Our goal in developing a replicated ORAM
system is to provide durability and failure tolerance compa-
rable to production cloud storage. An ORAM unit enters a
failed state when its storage server and/or its proxy crashes or
when network partitions occur. These failures are effectively
equivalent to the entire unit being unreachable: since the
proxy holds the encryption secret key, the data accessed from
the storage server cannot be decrypted without the proxy’s
decryption key, and the proxy’s key is useless without the data
from its corresponding storage server. As such, we consider
an ORAM unit failure to be a single failure event, regardless
of which component actually failed.

To tolerate a maximum of f failures, QuORAM replicates
data onto 2 f +1 ORAM units. When a failed unit (server
and proxy) resumes operation after a crash, it resumes the
state before the crash. If an application assumes that a failed
unit does not recover its previous state upon crash recovery,
then the recovered unit can copy the current state from a
majority of the ORAM units (this is because QuORAM relies
on majority quorums to replicate the data and reading data
from a majority guarantees reading the latest values of data,
as will be discussed in §5.1).

All communication channels – clients to proxies, prox-
ies to servers – are asynchronous, unreliable, and insecure.
QuORAM secures all communication channels by employing
encryption mechanisms such as transport layer security to
mitigate message tampering.

Threat model: QuORAM assumes an honest-but-curious
adversary that executes the designated protocol correctly. An
adversary may control one or all external storage servers and
can observe, track, and analyze data accesses to and from
the server and perform inference attacks based on the ac-
cess patterns. The adversary can control the asynchronicity
of the network and also schedule read/write requests via a
compromised client. Crash failures are consistent with the
honest-but-curious adversarial model, hence we do not con-
sider more severe malicious failure modes in this paper. The

USENIX Association 31st USENIX Security Symposium 3667

goal is to design an oblivious data storage system that tol-
erates catastrophic crash failures under the aforementioned
adversarial model.

4 Security Model: Obliviousness in a Repli-
cated ORAM Setting

Existing definitions of obliviousness are insufficient to cap-
ture the security of a replicated ORAM system because even
if a single proxy-server pair provides ORAM guarantees, the
choice of replication protocol may leak non-trivial informa-
tion. Consider quorum-based replication protocols such as
CRAQ [37] or Hermes [20]. In these works, read requests
access a single node (i.e., single-node read quorums) and
write requests access all the nodes in the system (i.e., all-node
write quorums, which intersect with all single-node read quo-
rums). Deploying such schemes allows an adversary to distin-
guish between read and write operations by merely observing
how many units are accessed for an operation, regardless of
whether the ORAM scheme leaks any information about the
operation type.

To formalize the above information leak, we develop a
new definition of obliviousness, adapted from the notion of
aaob-security (adaptive asynchronous obliviousness) from
TaORAM [31]. Intuitively, an ORAM scheme is aaob-secure
if any two sequences of operations and any two data sets are
indistinguishable to the attacker. This section first defines the
ORAM scheme of QuORAM and then presents a security
game based on which we define the security of replicated
ORAM datastores.

4.1 ORAM scheme definition
A typical asynchronous ORAM scheme consists of two mod-
ules ORAM = {Encode, OClient}. Encode encrypts data D, and
produces Denc and a secret key K. An external server stores
Denc and a stateful ORAM client, OClient, stores K. QuO-
RAM uses the above definition of ORAM = {Encode, OClient}
for individual ORAM units but extends it to a list: Rep-ORAM
= (ORAM1, ORAM2, ..., ORAMn) for n ORAM units. Each
ORAM unit ORAMi’s Encode module receives the same data
D. Given D, the Encode module outputs a secret key Ki and
the data set DencKi encrypted with Ki after internally shuffling
the data in a random order. The shuffling mitigates identical
access patterns across different storage servers at the begin-
ning of execution. The ith external server stores DencKi and
the corresponding ith OClient retains Ki – both the server and
OClient (executed by proxy) form an ORAM unit, ORAMi.

Individual OClient’s execute ORAM requests denoted as
(op, bid, v) where op ∈ {read, write}, bid represents a data
block’s id, and v=⊥ for reads or a new block value for writes.
These operations result in read/write accesses to the storage
server. While an OClient process recognizes a single type
of operation – ORAM operation – represented by (op, bid,
v), QuORAM distinguishes between two types of operations:
logical and ORAM. Logical operations are client requested

read/write operations2 represented as (lop, bid, v) – where lop
∈ {read, write}, bid is a data block’s id, and v=⊥ for reads or
an updated value for writes. Each logical operation in-turn
translates to a sequence of ORAM operations (op, bid, v)i sent
to an ORAM unit i. For example: a logical read can translate
to a set of ORAM reads sent to a quorum of ORAM units
followed by ORAM writes sent to that quorum.

4.2 Security definition
A replicated ORAM system, such as QuORAM, requires
a slightly different security definition compared to aaob-
security. The attack presented at the beginning of this sec-
tion of using CRAQ [37] or Hermes [20] replication protocol
clearly indicates that an aaob-secure system can still leak the
type of logical operation. Hence, we extend aaob-security
to include logical obliviousness i.e., l-aaob-security. l-aaob-
security is an indistinguishability based security definition,
which we define using a game G . The steps of the game are:

• The game picks a uniformly random bit b∈{0,1}, called
the challenge bit.

• An adversary A generates two same-sized sets of data D0
and D1. The game calls Rep-ORAM on Db, i.e., it calls
Db

encKi
,Ki ←Encodei(Db) for each ORAM unit i. The

external server and OClient of an ORAM unit i store the
encrypted data DencKi and the secret key Ki, respectively.

• The adversary, at any point in time, schedules two logical
operations (lopi,0, lopi,1) consisting of arbitrary logical
reads/writes. The game picks only one of the operations
lopi,b and executes a replication protocol chosen by the
replicated ORAM system by sending ORAM read/write
operations to the ORAM units. The game notifies the ad-
versary once the operation terminates without revealing
the actual result, as the adversary can easily guess the
challenge bit b based on the result.

• Throughout the above process, the adversary can read,
delay, drop, and learn the timing of (but not modify)
messages. The adversary can also cause any storage
server, proxy, and/or client to crash, with at most f
proxy/storage server failures.

• Finally, after scheduling any number of logical opera-
tions, the adversary decides on the value of the challenge
bit b. The game G returns True if the adversary chooses
the right bit; and otherwise returns False. At this point,
the game terminates.

We define l-aaob-advantage of the adversary A against
Rep-ORAM as

Advl−aaob
Rep−ORAM = 2∗Pr[G l−aaob

Rep−ORAM ⇒ True]−1 (1)

A replicated ORAM system is l-aaob-secure if
Advl−aaob

Rep−ORAM is negligible for any polynomial time

2Logical reads/writes are equivalent to a key-value store’s GETs/PUTs.

3668 31st USENIX Security Symposium USENIX Association

adversary A , i.e., any polynomial-time adversary can guess
the challenge bit with probability negligibly higher than half.
In other words, an ORAM scheme is l-aaob-secure if any
two sequences of logical operations2 and any two data sets
are indistinguishable to the attacker.

5 QuORAM: a replicated ORAM datastore

This section presents the design of the replicated ORAM data-
store, QuORAM. In designing QuORAM, we aim to achieve
three goals: (i) obfuscate access patterns to achieve privacy
and l-aaob-security, (ii) replicate the data for fault tolerance,
and (iii) achieve the above two goals while preserving lin-
earizable semantics.

To describe how we achieve the above goals, this section
first discusses the design of a data replication protocol that
preserves linearizability, followed by the ORAM scheme that
hides access patterns.

5.1 QuORAM’s replication protocol
In describing QuORAM’s replication protocol, for now, we
assume the system employs a state-of-the-art ORAM algo-
rithm, TaORAM, as a black-box (this is relaxed in §5.2) and
focus only on the replication protocol that provides lineariz-
ability guarantees. Choosing an existing replication proto-
col or designing one is a non-trivial task due to preserving
obliviousness. To highlight the challenges in replicating an
ORAM datastore, we propose a naive solution followed by
QuORAM’s replication design.

Naive solution:
As discussed in §4, deploying optimized replication solu-

tions such as Hermes [20] or CRAQ [37] breaks obliviousness
because they access varying numbers of replicas for logical
read and write operations. The naive solution presented here
mitigates this challenge by deploying a single round replica-
tion protocol wherein a client accesses the same number of
ORAM units for both read and write operations. Note that
to ensure linearizability, the sites that handle read and write
requests, read quorum and write quorum, must intersect with
each other (e.g., majority quorums). In this single round multi-
cast protocol, assuming majority quorums, a client reads from
a majority and writes to a majority of the ORAM units.

While this solution is efficient since a client communicates
with the ORAM units only once, it violates linearizability.
We show how this solution breaks linearizability by provid-
ing an example. Consider a system with 3 replicated ORAM
units where clients read or write from 2 out of the 3 replicas.
A client c1 sends a write request for a data item identified
by key k, (k = v′) to ORAM units 1 and 2. Since the com-
munication channels are asynchronous, assume that ORAM
unit 1 receives the request and updates k’s value to v′ while
ORAM 2’s write request is in-transit. Now, another client c2
performs two consecutive reads on key k, once from ORAM
units 1 and 2 and subsequently from ORAM units 2 and 3. For

each request, the client chooses a read value corresponding to
the latest timestamp (typically achieved using totally ordered
timestamps [23]). For the first request, the client c2 reads the
most up-to-date value v′, whereas for the second request, it
reads only the older value of k.

This is a linearizability violation, as from the external
client’s perspective, the operations on k appear non-linear.

To circumvent this problem, the proxies can either deploy
a locking mechanism (as is typical in database systems and
as in Hermes [20]) or add another round of communication
to ensure the correct ordering of requests. But employing
a locking mechanism can breach obliviousness as locking
leads to deadlocks, and detecting/resolving deadlocks in dis-
tributed systems requires additional communication across
replica units. Since the adversary controls all communication
channels, such additional communication leaks non-trivial
information. Due to these reasons, QuORAM replicates the
data in a lock-free approach that uses two rounds of commu-
nication between a client and the ORAM units.

QuORAM’s replication
QuORAM’s replication protocol design is inspired by

Lynch and Shvartsman’s replication protocol [27]. In design-
ing the replication protocol, we follow the abstractions defined
in the Consensus and Commitment (C&C) framework [29],
which consists of four phases: Leader election, Value Discov-
ery, fault tolerance , and Decision. The C&C framework [29]
describes that most replication protocols are centralized in
that one of the replicas acts as a leader and drives the protocol
by communicating with other replicas. In such compositions,
the leader node can be overloaded and become a bottleneck.

QuORAM chooses a different decentralized approach in
which a client interested in reading or writing the data takes
on the role of a leader and communicates with all ORAM
units. This choice reduces the additional overhead on a single
leader unit and avoids an adversarial case where an adversary
delays the leader’s communication links, thwarting the system
performance.

Following the abstractions of the C&C framework, QuO-
RAM’s replication has two phases: in the first phase, a client
identifies the most up-to-date value of an item by reading from
a read quorum and in the second phase, it writes either the
identified value (for read requests) or the updated value (for
write requests) onto a write quorum of ORAM units, where
the read and write quorums have non-empty intersection. Us-
ing the terminology of Lynch and Shvartsman’s protocol [27],
we term the first phase as the query phase and the second as
the propagate phase. Given that some replica units’ states
may diverge due to crash or network failures, to easily iden-
tify the most up-to-date value of a given data item, each data
item in QuORAM additionally maintains a monotonically
increasing tag consisting of a sequence number and client
id, t =< seqNum,clientId >. This is analogous to version or
timestamp-based datastores.

USENIX Association 31st USENIX Security Symposium 3669

Figure 3: QuORAM’s replication protocol. Each circle represents
an ORAM unit and a client Cl executes the protocol.

Overview: Figure 3 represents a high-level description of
QuORAM’s replication protocol. A client who wants to logi-
cally read or write a key k executes the replication protocol
in two phases: query and propagate. The client first sends
ORAM read requests for key k to a read quorum of ORAM
units and waits to receive a response consisting of value v
and tag t from the read quorum. The actions of the propagate
phase depend on the type of client request: for logical reads
(GETs), the client selects the value v with the highest tag t
and multicasts ORAM write with v and t to a write quorum of
units. For logical writes (PUTs), the client creates a new tag
t ′ by incrementing the highest tag t (how will be explained
later) and multicasts the ORAM write with v′ and t ′ to a write
quorum of units where v′ is the new value. Upon receiving
the ORAM write request, proxies in QuORAM update the
value and tag if and only if the received tag t ′ is greater than
its own tag value. The propagate phase terminates when the
client receives acknowledgments from the write quorum. For
both logical read and write requests, a client considers its
request to be complete only after completing both phases.

From this overview, it is clear that if a client chooses differ-
ent read and write quorums in the query and propagate phases,
then both sets of quorum fetch a path, shuffle, and write it
back onto external servers. This creates unnecessary band-
width and compute overheads. QuORAM addresses this issue
by utilizing the same quorum for both query and propagate
phases. Since QuORAM reuses read and write quorums inter-
changeably, we stop distinguishing between read and write
quorums and impose a requirement that any two quorums
must intersect with each other (rather than imposing read and
write quorums must intersect). This way, a client can pick any
quorum for both query and propagate phases. While for sim-
plicity, QuORAM chooses majority quorums [38], i.e., sets of
⌈(N +1)/2⌉ ORAM units, the application can pick any other
quorum composition that guarantees non-empty intersection
between any two quorums (e.g., tree quorums [6] or grid quo-
rums [30]). Informally, utilizing the same quorum for both
the query and propagate phases does not leak any additional
information since an attacker already observes what ORAM
units are accessed while querying.

QuORAM’s choice to communicate with only a quorum
of ORAM units, instead of all, may result in a client not re-

ceiving a full quorum of responses (due to individual unit
failures or message losses), even if globally, a majority of
the units are alive. To ensure system progresses as long as a
majority of ORAM units are live, we use timeouts to detect
an unresponsive unit in a quorum and replace it with another.
This brings us to the final design of QuORAM’s replication
protocol, whose pseudocode is described in Algorithm 1. Al-
gorithm 1 and the rest of the paper distinguishes logical reads
and writes from ORAM reads and writes by denoting logical
operations as l_read and l_write (indicating GET() and
PUT() requests respectively of a key value store), and ORAM
operations as o_read and o_write (representing the query
and propagate phase messages, respectively). Algorithm 1:

Algorithm 1 Pseudocode for QuORAM’s replication protocol
executed by a client with id cId for an operation of opType ∈
l_read, l_write on block bId and update value v.

Query Phase:
1: Q← randomly select a set of ⌈(N +1)/2⌉ ORAM units
2: opId← a globally unique operation ID
3: Multicast o_read(opId, bId) to all ORAM units in Q.

Collect each response (vi, tagi), where tagi is a tuple of
(seqNumi, cIdi)

4: While waiting for all responses from Q, if a read request
sent to ORAM unit U times out:

(a) U′ ← randomly selected unit not in Q

(b) Q← Q + U′ - U

(c) Send o_read(opId,bId) to U′

5: Upon receiving responses from all Q units, select the
response r with the highest tag

6: If opType = l_write, set t ′ ← (r.tag.seqNum+ 1,cId)
and v′← v

7: If op_type = l_read, set t ′← r.tag and v′← r.v′

Propagate Phase:
8: Multicast o_write(opId,bId,v′,t ′) to all units in Q
9: While waiting for all responses from Q, if a write request

sent to ORAM unit U times out:

(a) Execute steps 4(a) to 4(c)

(b) Send o_write(opId, bId, v′, t ′) to U′, without
changing t ′ and v′ sent in Step 8

10: Upon receiving acknowledgements from Q, the client
considers the (logical) operation complete

1. A client C that wants to logically read or write a block
bId starts the protocol by picking a quorum Q of ran-
domly chosen majority of ORAM units (line 1).

2. The client assigns its operation a globally unique oper-
ation id, opId, (e.g., a sequence number and a client’s
unique id) as shown in line 2. This opId, a separate
identifier from a data item’s tag, is important to identify
in-progress operations at both the client and proxies.

3670 31st USENIX Security Symposium USENIX Association

(a) Timeline of the proxy in TaORAM (b) Timeline of a proxy in QuORAM

Figure 4: This figure captures the difference between the functionalities of a proxy in TaORAM vs. a proxy in QuORAM.

3. The client then multicasts o_read(opId, bId) to the
proxies in quorum Q, who in-turn may fetch the block
and the associated tag from their respective storage
servers and retain it in the subtree until the block is writ-
ten back (§5.2 will explain steps executed by a proxy).
The client waits to receive responses consisting of the
block’s value and tag from all proxies in Q (line 3).

4. If the client times-out while waiting for a response from
an ORAM unit U , it updates its quorum by removing U
and adding another randomly selected unit U ′ to Q. The
client then sends the o_read request to U ′.

5. Upon receiving Q responses, the client picks the re-
sponse r with the highest tag (line 5).

6. If client C’s operation is l_write, it updates the tag (t ′)
by incrementing the sequence number of the highest tag
and updating the tag’s client id to C’s id and sets the
value (v′) to the block’s new value v.

7. If client C’s operation is l_read, it retains the highest
tag (t ′) and its corresponding value (v′) of the response r
identified in Step 5.

8. Client C then broadcasts o_write(opId, bId, v′, t ′)
with the respectively updated value v′ and tag t ′ to the
proxies in Q and waits for their acknowledgements. A
proxy P that receives the o_write() message sends an
acknowledgement to C. However, the proxy P updates
the value and tag if and only if the received tag t ′ is
greater than its own tag value.

9. If the client times-out while waiting for an acknowledge-
ment from a unit U (line 9), the client re-executes steps
4(a) to 4(c), essentially updating the quorum Q and send-
ing o_read to the newly added unit U′. The client then
sends the o_write request to U′, without changing the
value v′ or tag t ′ sent in Step 8, which is important to
preserve linearizability. Note that even though only the
write part of the operation timed-out, the client sends
o_read before retrying o_write on the newly added
unit to ensure the proxy fetches the necessary block and
update its data structures accordingly.

10. Once the client receives acknowledgments from the quo-
rum Q, the client considers the logical operation to be
successful.

This concludes the discussion of QuORAM’s replication pro-
tocol. This protocol guarantees linearizability, as will be dis-
cussed in §5.3.

5.2 QuORAM’s ORAM Scheme

Having presented the replication protocol of QuORAM that
preserves linearizability, this section discusses QuORAM’s
goal of providing obliviousness by hiding access patterns.
QuORAM builds its ORAM scheme on top of TaORAM, de-
scribed in §2 and we suggest reviewing it before proceeding.

Challenge of using TaORAM as-is: If proxies in QuORAM
implement the ORAM scheme as-is in TaORAM, for each
logical request the proxies fetch the requested block’s path
twice and write it back to the server twice, incurring unnec-
essary communication and compute overhead. The reason
for the inefficiency is as follows: in a single execution of the
replication protocol described in §5.1, a given proxy is either
part of the quorum or not. If part of the quorum, the proxy al-
ways receives an o_read request in the query phase followed
by an o_write request in the propagate phase, regardless of
the type of logical request (Figure 3). Recall from §2 that
for every ORAM request, TaORAM fetches a path, flushes
it, and writes it back (after k requests) to the server. If the
proxy treats the o_read and o_write as two separate and
independent ORAM operations, then it fetches a path (real or
fake) and writes it back to the server for both ORAM requests,
incurring unnecessary overhead.

Solution: To mitigate the double fetching/writing of a
block’s paths, all proxies in QuORAM treat the two ORAM
operations as correlated, and execute a single fetch and a
single write-back for each logical operation. We discuss
what happens when an adversary suppresses an o_read or
o_write later. Figure 4 illustrates the details of a proxy’s
interactions between a client and its external storage in QuO-
RAM and contrasts them with the corresponding interactions

USENIX Association 31st USENIX Security Symposium 3671

in TaORAM. We now discuss in more detail how QuORAM
manages the execution of logical operations.

Challenge of asynchronously receiving o_read and
o_write: QuORAM considers an o_read followed by an
o_write as a single logical request, but they arrive sequen-
tially; an adversary who controls the communication channels
can control the interval between the two ORAM requests. This
implies a proxy needs to remember for which request it has
already fetched a path from the server and for which request
it has not.

Solution: We achieve this by introducing a new data struc-
ture in TaORAM’s Processor called incompleteCacheMap, as
depicted in Figure 5. The incompleteCacheMap tracks client
operations that are read but not written by mapping an op-
eration to its requested block, i.e., opId to bId. If multiple
operations access the same block, the incompleteCacheMap
tracks them all. For the incompleteCacheMap, we use an
LRU-based cache with a bounded number of elements for our
evaluations (but any other cache design can be used). The size
of the incompleteCacheMap is a system configuration and we
assume the adversary knows this size.

Another change in QuORAM’s ORAM scheme compared
with TaORAM is in deciding when to write-back fetched
paths (Figure 4). Conceptually, both ORAM schemes write-
back k paths to the server after serving k requests, and both
schemes track the number of requests served with a counter
denoted by paths. But the main difference lies in how the two
schemes define a single client request: TaORAM considers
an o_read or an o_write as an independent, single client
request, whereas QuORAM considers an o_read followed
by an o_write with matching opId as a single client request.
Due to this difference, TaORAM increments paths imme-
diately after fetching a path from the server, indicating the
accessed path is ready to be written back; whereas QuORAM
waits until receiving the corresponding o_write before in-
crementing paths. Both schemes write-back when the paths
counter value reaches a multiple of k.

Figure 5 provides the stepwise interactions between the
various components of QuORAM. In the figure, Subtree,
TaORAM Logic, and TaORAM Sequencer denote TaORAM’s
unmodified subtree, Processor and Sequencer logic (see Sec-
tion 2). The steps depicted in Figure 5 are as follows:

1 A client sends an o_read(opId,bId) request to a quo-
rum of proxies (Figure depicts interaction with one). The
unmodified TaORAM Sequencer records the request and
forwards it to the Processor.

2 The Processor adds a new entry opId : bId to the incom-
pleteCacheMap. If the cache is full, it evicts an entry
based on the cache policy before adding the new en-
try; cache eviction increments paths (§5.2.1 describes
the reasoning). The Processor then forwards the request
to the TaORAM Logic, which abstractly represents all
the unmodified data structures and execution logic of
TaORAM’s Processor.

Figure 5: QuORAM’s ORAM scheme built atop of TaORAM.

3 The TaORAM Logic then fetches a path - real or fake -
from the external server.

4 The Processor moves the fetched path, real or fake, to
the Subtree.

5 Irrespective of real or fake reads from the server, the
Processor sends the read response back to the client,
through the Sequencer. For fake reads, the block’s real
value can be found either in the Subtree or the Stash.
For real reads, the Processor assigns the block bId to a
new path. The Processor then flushes the fetched path –
real or fake (see §2 for details on flushing).

6 The client (after receiving responses from a quorum
and updating the value and tag according to Algorithm
1) sends an o_write(opId,bId,v′,t′) to the chosen
quorum of proxies.

7 Since o_write requests do not access the external server,
they can be processed directly by the Processor bypass-
ing the Sequencer, without breaking obliviousness. Upon
receiving o_write, the Processor of a proxy checks if
incompleteCacheMap has an entry for opId and bId :
if yes, it executes step 8 ; if no, i.e., the cache evicted
opId : bId entry in between o_read and o_write, then
it executes step 9 by sending a negative acknowledg-
ment to the client, indicating this request has failed.

8 The Processor removes the opId : bId entry from the
incompleteCache, increments the paths counter and for-
wards the o_write request to TaORAM Logic. When
paths reaches a multiple of k, TaORAM Logic asyn-
chronously writes back k paths to the server. After receiv-
ing a write acknowledgement from the server, TaORAM
Logic deletes the k paths from the Subtree. Importantly,

3672 31st USENIX Security Symposium USENIX Association

while deleting the paths, TaORAM Logic does not delete
blocks that are pointed to by incompleteCacheMap.

9 The Processor then sends a positive acknowledgment
to the client, and after receiving acknowledgments from
the chosen quorum, the client considers its operation
complete. If a client receives at least one negative ac-
knowledgement from any proxy, it deems its request as
unsuccessful. Based on the application, the client may
retry the failed request.

5.2.1 Discussion on incompleteCacheMap eviction

Along with tracking ongoing client requests, incomplete-
CacheMap’s other main role is to limit an adversary from caus-
ing a memory overflow at a proxy. An adversary can send only
o_read messages of clients and suppress all o_write mes-
sages. Because the ORAM scheme fetches paths on o_reads
and it writes-back paths and clears their memory upon receiv-
ing k o_writes, if a proxy receives only o_reads without
any o_writes, its memory can overflow. To mitigate such ad-
versarial behavior, we choose a limited-size cache-like datas-
tructure that dictates how many in-progress requests a proxy
can serve at a given time. As described in Step 2 , if the
Processor finds incompleteCacheMap to be full when a new
o_read arrives, it evicts an entry based on the cache eviction
policy and increments the paths counter. The counter incre-
ment is necessary to ensure a proxy writes-back paths even
if it receives no o_writes. Because we assume an adversary
knows the incompleteCacheMap size, writing k paths back
after k combined o_writes and cache evictions does not leak
any non-trivial information to an adversary.

An important detail for obliviousness and linearizability
lies in the details of what happens when a block gets evicted
from the incompleteCacheMap. Eviction from incomplete-
CacheMap does not mean eviction from the proxy. Eviction
merely allows the proxy to forget that the evicted block had
an in-progress request and allows the proxy to treat it as
a block whose logical operations are complete. When the
incompleteCacheMap evicts an entry, opId : bId, the opera-
tion’s o_write request becomes a no-op because whatever
the proxy read in the o_read operation is no longer guar-
anteed to be present in the proxy. Hence, the proxy notifies
a client if its o_write request failed by sending a negative
acknowledgement (7) and the application can decide how
to handle negative acknowledgements. We assume that the
adversary knows the incompleteCacheMap size; hence reveal-
ing the type of acknowledgement – positive or negative – to
the adversary does not break obliviousness.

5.2.2 Discussion on a proxy’s memory usage
As discussed earlier, QuORAM writes-back k paths to the
server after serving k client requests. But as seen in step 8 ,
after a write-back completes, QuORAM deletes only those
blocks with no pointers in the incompleteCacheMap (i.e.,
QuORAM retains blocks accessed by ongoing requests).

Memory Issue: QuORAM’s logic of not deleting certain
blocks in the k paths after a write-back can cause a proxy’s
memory, i.e., Subtree, to grow unbounded (more precisely, it
is bounded by N, the database size) if the retained blocks are
never accessed again (a larger Subtree may indirectly cause
a larger Stash). To see why, we consider a simple example
where k = 1 and two concurrent logical operations op1 and
op2 access the same block, b1. Say, a proxy receives op1’s
o_read first, upon which it fetches a real path containing b1
from the external server. While the path is being fetched, it
receives op2’s o_read and since the proxy already asked to
read b1’s real path, it reads a fake path from the server for op2.
When both o_reads are answered, the proxy receives op1’s
o_write, which increments paths and initiates a write-back
(because k = 1). The proxy writes the path back but cannot
delete b1 because it has not yet received op2’s o_write re-
quest (and op2 read a fake path). If op2 updates the block and
the path that block b1 resides on is never accessed and hence
never written back again, then b1 may permanently reside in
the proxy. If many such contending requests occur for dif-
ferent blocks at k write-back boundaries, a proxy’s memory
may grow unbounded. We note that in practical scenarios,
this type of memory growth is improbable since clients will
likely access some block in b1’s path over time and b1 will
be opportunistically written back to the server, freeing it’s
memory. But the unbounded memory issue is a theoretical
possibility.

Solution: To mitigate the unbounded memory growth prob-
lem, QuORAM creates a daemon process in the proxies
wherein the daemon process simulates a client access every
preset interval of time (e.g., 100 ms). The background process
mimics both o_read and o_write requests within a proxy
and that proxy fetches a path – real or fake – in accordance
with the ORAM algorithm, flushes the path, and writes-back
k paths after k accesses, including the accesses generated by
the background process. We assume the adversary is aware
of this behavior, where irrespective of client requests, each
proxy performs its own access at regular intervals.

To further ensure that a proxy’s Subtree (and hence it’s
Stash) does not grow in between the background thread’s
access intervals, we add a new datastructure called excess-
Blocks. Going back to the memory issue example, excess-
Blocks stores all blocks retained by the proxy after a write
back to accommodate ongoing client requests. Introducing
this new datastructure modifies Step 8 of the ORAM logic:
after receiving a write acknowledgment of k paths from the
server, a proxy moves to excessBlocks all blocks in those
k paths that are pointed to by the incompleteCacheMap and
which would otherwise have been deleted by TaORAM. This
allows TaORAM Logic to free up all k paths from Subtree.
We experimentally show (§6) that the size of excessBlocks
remains low, irrespective of contention in workloads. Ap-
pendix C formally analyzes the size of Stash, which is of
order O(logN).

USENIX Association 31st USENIX Security Symposium 3673

Regarding how the daemon process selects the blocks to
access, it can be sequential, pseudorandom, or blocks in ex-
cessBlocks. If an application chooses to access blocks in
excessBlocks, it must be noted that only blocks with no en-
tries in incompleteCacheMap can be accessed and if no such
blocks exist or if excessBlocks is empty, then the daemon
process must continue to access blocks at preset intervals of
time. Intuitively, how the daemon process selects blocks has
no implications on obliviousness because this process sim-
ulates client requests; if an ORAM scheme hides how and
what blocks are accessed by clients, then it also hides how
and what blocks are accessed by the background process.

5.3 Security and linearizability of QuORAM
SECURITY:
The following theorem captures QuORAM’s security.
Theorem 1: Assuming individual ORAM units are aaob-
secure, QuORAM is l-aaob-secure.

Appendix A describes the detailed proof of the theorem.
The core idea of the proof lies in how QuORAM replicates
data: for all types of logical requests, QuORAM executes
query and propagate phases. Both phases access the same
number (i.e., majority) of ORAM units, even in the presence
of failures. All system configurations – k the write-back fre-
quency parameter, the incompleteCacheMap size, and the ac-
cess interval of a proxy’s daemon process – are known to an
adversary, and hence any decision made based on these con-
figurations does not leak any new information to an adversary.

LINEARIZABILITY:
Theorem 2: QuORAM provides linearizability.

Arguing for linearizability – defined per data item – in repli-
cated data systems, especially semi-honest ones, is non-trivial.
Appendix B provides a detailed proof of how QuORAM guar-
antees linearizable semantics.

Intuitively, QuORAM’s linearizability proof captures two
main relations between any two operations: (i) the tag val-
ues of any two completed logical operations have a strict
less-than or less-than-or-equal-to relation; and (ii) a given
logical operation – read or write – is atomic. The former point
captures the relative ordering of logical operations and this
order is particularly important for conflicting operations. The
latter point implies that if an operation opi wrote a block, then
an operation op j immediately succeeding opi must read the
block written by opi; and if operation opi merely read a block
without writing it, then operation op j immediately succeeding
opi must also read the same value as opi. We further note that
even a compromised client executing QuORAM’s replication
protocol does not violate linearizability.

6 Evaluation
In this section, we discuss QuORAM’s experimental evalua-
tions and contrast its performance with multiple baselines. Of

N.California Ohio N. Virginia
N. California 6.3ms 51.32ms 62.19ms

Ohio 53.34ms 3.24ms 13.26ms
N. Virginia 63.48ms 11.98ms 4.87ms

Table 1: RTT latencies across different datacenters in ms.

particular interest is a baseline that resembles Obladi [13]’s ap-
proach to fault tolerance. As noted earlier, to date Obladi is the
only other ORAM-based system that tolerates trusted proxy
failures. Obladi achieves this by relying on the fault tolerance
guarantees of cloud databases; Obladi pushes the necessary
state of the proxy periodically to the external fault-tolerant
database and recovers the proxy’s state from the database
if and when the proxy fails. While Obladi provides many
additional guarantees, such as oblivious ACID transactional
guarantees, we focus on its design choice for fault tolerance.

While replication forms the core of fault tolerance, the two
systems choose contrasting designs to replicate data: Obladi
relies on the external cloud database to manage replicas and
QuORAM manages replicas itself. To precisely measure how
the choice of replication affects performance, we build a base-
line consisting of a single TaORAM proxy (since TaoStore
is the basis of QuORAM’s ORAM scheme) that relies on a
fault-tolerant open source database, CockroachDB [36], to
replicate data. The goal of this baseline is to contrast the per-
formance when an ORAM datastore (such as Obladi) relies on
a replicated database for fault tolerance vs. using QuORAM.

6.1 Experimental Setup

We evaluated QuORAM and its baselines on AWS using
r5.xlarge instances with 32GB of memory, Intel Xeon Plat-
inum 8000 CPU with 4 cores @ 3.1GHz, and a gp2 SSD.
Storage servers for QuORAM and its baselines persist the
data on disk. We run our experiments on three different dat-
acenters N. California, Ohio, and N. Virginia and Table 1
records the round-trip-time (RTT) latencies across and within
the three datacenters. All the experiments place an ORAM
unit (server & proxy) and a client process in each datacenter.
Each client process creates 100 concurrent threads to achieve
concurrency. We believe this reflects a setup for real-world ap-
plications where geo-distributed clients access data replicated
across different datacenters. Note that we chose a replica-
tion factor of 3 as current state-of-the-art databases typically
choose a replication factor of 3 [1, 2].
Baselines:

Along with the CockroachDB-backed baseline, we evaluate
QuORAM with 2 other baselines as well. Note that all base-
lines and QuORAM receive requests from geo-distributed
clients. The 3 baselines are:
1. Insecure Replication Baseline: To measure the cost of
providing obliviousness guarantees, we compare QuORAM
with an insecure replication baseline that implements QuO-
RAM’s replication protocol (§5.1). More precisely, a client

3674 31st USENIX Security Symposium USENIX Association

queries from a majority quorum; for reads it picks the value
corresponding to the highest tag and for writes it increments
the highest tag and updates the value; it propagates the (poten-
tially updated) tag and value to the same quorum it read from.
In this baseline, the clients interact directly with the datastore
replicas, eliminating the need for proxies, and clients do not
encrypt their data or perform any ORAM related operations.
2. Secure No Replication (TaoStore): To measure the costs
and benefits of fault tolerance, we use as a baseline the origi-
nal non-replicated TaoStore [31] design consisting of a trusted
proxy and an external server, both located in N. California.
We choose TaoStore as the non-replicated baseline over other
concurrent ORAM schemes because QuORAM ’s ORAM
logic closely relates to TaoStore’s and hence, TaoStore forms
a better baseline for evaluating the costs-benefits of replica-
tion, without accounting for performance differences due to
ORAM scheme disparities.
3. CockroachDB Baseline: This baseline deploys TaoStore
for obliviousness guarantees and CockroachDB [36] for fault
tolerance (via replication managed by CockroachDB). We use
a single trusted proxy (analogous to Obladi’s single-proxy de-
sign) placed in N. California and a three-node CockroachDB
cluster with replicas distributed across N. California, Ohio,
and N. Virginia data centers, similar to QuORAM’s setup.

6.2 Implementation details
We implemented QuORAM as well as the three baselines
by modifying an open-source Java implementation of TaoS-
tore, which forms the base ORAM scheme of QuORAM. The
implementation consists of ∼9,400 lines of Java code. The
implementation of QuORAM and its baselines can be found
in https://github.com/SeifIbrahim/QuORAM/. To eval-
uate the systems, we use YCSB-like [12] benchmarking.

The storage server stores 1 GB of data with a block size
of 4096 bytes and a bucket size of 4 blocks (i.e., each node
in the tree stored at the external server consists of 4 blocks).
To simulate an increasing load on the system, multiple client
threads request logical read/write operations. By default, the
experiments use 300 concurrent and geo-distributed clients
accessing data at once (unless noted otherwise in an exper-
iment). Each client chooses a type of operation at random,
sends the request, waits for the response, and then repeats
the process. Each run of the experiment lasts three minutes,
and all clients end exactly the same time. For each operation,
the block to be read or written is chosen randomly among all
the blocks in a Zipfian distribution with an exponent of 0.9
(unless stated otherwise in an experiment), and the operation
type is picked uniformly at random between read and write.
In all the experiments, each data point represents an average
of 3 runs and also marks the confidence interval. For system
configurations, we use a default value k = 40 and the daemon
process pseudo-randomly accesses blocks every 100ms, and
an incompleteCacheMap of size 1000 blocks.

Query phase Propagate phase
QuORAM 12ms 0.55ms

Insecure Replication 0.05ms 0.03ms

Table 2: Processing time spent in the query and propagate phases by
replicas in QuORAM vs. the Insecure replication baseline.

6.3 Experimental Results
6.3.1 Throughput and Latency
In the first set of experiments, we compare the throughput
and latency of QuORAM with the three baselines and see
the most counter-intuitive result in this work. Figures 6a and
6b respectively show throughput and latency observed while
increasing the number of concurrent clients.
i. QuORAM vs. Insecure Replication Baseline

We first compare QuORAM with an insecure baseline that
replicates data using QuORAM’s replication protocol (§5.1).
As seen in Figures 6a and 6b, QuORAM’s throughput and la-
tency values are closely comparable with that of the insecure
baseline despite QuORAM providing privacy and oblivious-
ness guarantees. To better understand the minor performance
differences between QuORAM and the insecure baseline, we
measured the average processing times spent by a replica in
both the query and propagate phases of the two protocols. Ta-
ble 2 records the processing time breakdown. As noted in the
table, QuORAM’s query phase requires the most time because
a proxy communicates with its server to fetch a path. This
includes 3-6ms intra-datacenter communication latency (Ta-
ble 1). The proxy also decrypts the read path, merges it with
the Subtree, and flushes the path, all of which incur process-
ing latency. Meanwhile, the propagate phase merely updates
a block in the Subtree. Although as noted in Table 2, the pro-
cessing time for both phases of the insecure baseline requires
extremely low latency compared to QuORAM, the commu-
nication cost (Table 1) overwhelms the processing time of
either protocols, causing both protocols to be latency bound.
Due to this reason, both QuORAM and the insecure baseline
have comparable performances. This experiment indicates
that in geo-replicated datastores, the overhead of encrypting
and hiding access patterns of data is negligible compared to
communicating with geo-distributed replicas.
ii. QuORAM vs. Secure No Replication Baseline This base-
line compares QuORAM’s performance with a non-fault tol-
erant baseline (TaoStore as-is). Because replication involves
additional communication with replicas and maintaining ad-
ditional data structures (e.g., incompleteCacheMap), one can
expect a replicated solution to perform worse than its non-
replicated counterpart. The reason why QuORAM outper-
forms a non-replicated TaoStore datastore is because TaoS-
tore consists of a single proxy, located in N. California, which
receives an increasingly higher number of concurrent client
requests, whereas the client load is balanced across the three
proxies in QuORAM. More importantly, since the experiment
consists of geo-distributed clients and the proxy resides in just

USENIX Association 31st USENIX Security Symposium 3675

https://github.com/SeifIbrahim/QuORAM/

0 200 400 600 800 1,0000
200
400
600
800

1000
1200

Concurrent Clients

Th
ro

ug
hp

ut
(o

ps
/s

) QuORAM
Insecure Replication

Secure No Replication
CockroachDB Baseline

(a) Throughput vs Concurrency

0 200 400 600 800 1,0000
4
8

12
16
20
24
28

Concurrent Clients

La
te

nc
y

(s
)

QuORAM
Insecure Replication

Secure No Replication
CockroachDB Baseline

(b) Latency vs. Concurrency

0
200
400
600
800
1,000
1,200

T
hr

ou
gh

pu
t(

op
s/

s)

Throughput

0 20 40 60 80 1000

100

200

300

400

k

L
at

en
cy

(m
s)

Latency

(c) Throughput and Latency while
Varying k

0
200
400
600
800
1,000
1,200

T
hr

ou
gh

pu
t(

op
s/

s)

Throughput

0 0.1 0.3 0.5 0.7 0.90

100

200

300

400

Zipf

L
at

en
cy

(m
s)

Latency

(d) Throughput and Latency while
Varying Zipf Coefficient

Figure 6: (a) QuORAM’s throughput is comparable with the Insecure replication baseline, 2.4x of the No Replication baseline, and 33.2x
higher than using CockroachDB for fault tolerance. (b) QuORAM’s latency is comparable with the Insecure replication baseline, whereas the
No replication baseline and CockroachDB suffer from a bottle-necked single proxy. (c) Varying the write-back frequency parameter k has no
significant effect on throughput or latency of QuORAM. (d) Varying Zipfian exponent to produce low to high contention workloads has no
significant effect on throughput or latency of QuORAM.

one location for TaoStore, the clients farther from the proxy
face large access latencies, reducing the overall performance.
Due to both load balancing and geo-replication, QuORAM’s
peak throughput is 2.4x that of the non-replicated baseline.

iii. QuORAM vs. CockroachDB Baseline
Finally, comparing QuORAM with a replicated ORAM

scheme that relies on a fault-tolerant database, CockroachDB,
both in terms of throughput and latency, QuORAM clearly
outperforms CockroachDB. The two main reasons causing
CockroachDB to perform poorly are: (i) This baseline also
consists of a single proxy that utilizes the read/write interface
of CockroachDB to read and write the data on the external
database. This single proxy, located in N. California, suffers
from the same bottleneck issues as the non-replicated baseline.
To mitigate the single proxy bottleneck, deploying multiple
proxies – where a client communicates with any one proxy to
access data – is a non-trivial task. This is because each access
updates only one proxy’s position map, stash, and subtree data
structures, and the other proxies now have inconsistent data
or position maps. Such solutions can neither guarantee lin-
earizability nor obliviousness; (ii) The second reason causing
CockroachDB to perform poorly is its choice of replication
design: CockroachDB has a single leader for a given data item
and this leader sequentially replicates data across replicas. Be-
cause of this single leader approach, since every read or write
operation accesses the root node of the ORAM storage tree,
all client operations are executed sequentially. QuORAM,
on the other hand, employs a decentralized replication proto-
col, mitigating the single leader bottleneck. Because of the
above two bottlenecks, CockroachDB performs worse with
increasingly concurrent client requests.

6.3.2 Varying write-back threshold k

This set of experiments measures the throughput and latency
of client accesses while varying the write-back threshold k,
as seen in Figure 6c. The parameter k resembles a batching
threshold: the higher the value of k, the higher the number of

paths written back together and vice versa. Although proxies
in QuORAM process and maintain larger number of paths lo-
cally with higher k values, it also results in fewer write-backs.
Moreover, because a background thread executes write-backs,
k values do not have a significant impact on throughput (with
a range of 980-1030 ops/sec) or latency (about 290 ms), as
can be seen in Figure 6c. This indicates that the QuORAM’s
performance is independent of the frequency of write-backs.

6.3.3 Varying contention
This experiment measures QuORAM’s performance –
throughput and latency – while varying the contention levels
in client generated workloads and the results are shown in Fig-
ure 6d. Low contention, achieved by setting Zipfian exponent
close to 0, implies clients select blocks uniformly at random
from a pool of 262,140 blocks (the size of our dataset). High
contention, achieved by setting Zipfian exponent to 0.9, in-
dicates clients pick a small percent of the blocks (e.g., 10%)
with a high probability. Typically, in non-oblivious datastores,
contention in client workloads directly impacts the perfor-
mance with higher contention causing low performance and
vice versa. But the performance of an oblivious datastore, such
as QuORAM, must remain independent of the contention in
client workloads; otherwise an adversary can infer contention
in client workloads just by observing requests served per sec-
ond. As Figure 6d clearly indicates, QuORAM’s throughput
and latency values remain mostly constant with increasing
contention (increasing Zipfian exponent) in client workloads.
This experiment highlights the effectiveness of QuORAM in
remaining impervious to contention in client workloads.

6.3.4 Stash and excessBlocks size analysis
In the next set of experiments, we measure the average sizes
of Stash and excessBlocks data structures over a 10-second
window, calculated for a duration of 6 minutes, as shown in
Figures 7a and 7b, respectively. Both figures depict the size
of the respective data structures for two different Zipfian dis-
tributions in client workloads: Zipfian exponent close to 0

3676 31st USENIX Security Symposium USENIX Association

0 100 200 300 3600

0.25

0.5

0.75

1

Time (s)

N
um

be
ro

fB
lo

ck
s zipf=0.000001

zipf=0.9

(a) 10-second moving average
number of blocks in Stash

0 100 200 300 3600
1
2
3
4
5
6

Time (s)

N
um

be
r

of
B

lo
ck

s zipf=0.000001
zipf=0.9

(b) 10-second moving average
number of blocks in excessBlocks

0 100 200 300 3600
200
400
600
800

1,000
1,200

Time (s)

Th
ro

ug
hp

ut
(o

ps
/s

) Crash Experiment
No Crash Experiment

(c) Throughput over time

0 100 200 300 3600

200

400

600

800

1,000

Time (s)

La
te

nc
y

(m
s)

Crash Experiment
No Crash Experiment

(d) Latency over time

Figure 7: (a,b) The number of blocks in both Stash and excessBlocks remains low. The Stash’s 10-second moving average size is under 1
block (implies the Stash has at least one block in the last 10 seconds) and excessBlocks at peak has 6 blocks (= 0.33 · logN where N=262140
blocks and logN ≈18). (c,d) When an ORAM unit crashes, after a short adjustment period, both throughput and latency values stabilize and the
stabilized values are higher for throughput and lower for latency compared to the non-replicated baseline.

(≈ 0.00001) indicates low contention (i.e., most requests ac-
cess unique blocks) and the Zipfian exponent of 0.9 implies
high contention (i.e., most requests access a small subset of
blocks). Moreover, this experiment executes with the write-
back threshold k set to 1. The reason we choose to analyze
the sizes of Stash and excessBlocks with varying contention
and with k = 1 is because of the memory issue discussed in
§5.2.2. Recall that the memory issue is caused when say two
logical operations access the same block and the second oper-
ation triggers a fake read. If the second operation’s o_write
arrives after the proxy initiates a write-back, the proxy cannot
delete the block after receiving a write acknowledgment from
the server (as TaoStore would have). To ensure the size of
Subtree, which impacts the size of Stash, remains low, we
move blocks that cause the memory issue into excessBlocks.
Because excessBlocks’s size can vary based on contention
as well as when the write-back occurs frequently, we mea-
sure its sizes across two extreme contention values and the
worst case write-back threshold. First, analyzing the Stash
size, Figure 7a highlights that the size of the stash remains
less than 1 over a 10-second window, matching QuORAM’s
theoretical Stash size guarantees of logN. Second, analyz-
ing the size of excessBlocks, Figure 7b indicates that even
though excessBlocks’s size in larger for high contention, for
both high and low contention workloads, it’s size remains
low (at worse (0.33 · logN) with N=262140 and logN = 18).
We note that choosing various strategies of how the daemon
process in a proxy accesses blocks – sequential, pseudoran-
dom, or blocks from excessBlocks – has no significance on
the size of excessBlocks. This experiment clearly highlights
that both Stash and excessBlocks remain small for all types
of contention in workloads.

6.3.5 Crash Experiment

The final experiment measures QuORAM’s performance
when one (N. California) of the three ORAM units crashes
when 300 clients execute operations and the crashed unit re-
mains unavailable for the remainder of the experiment. The
throughput and latency over time is depicted in Figures 7c

and 7d respectively. As the figures indicate, the through-
put drops and the latency increases steeply as soon as the
crash occurs; both values stabilize afterward. In both figures,
QuORAM’s throughput stabilizes at ∼800 ops/s and latency
stabilizes at ∼400ms. Even when failures occur, QuORAM
performs better than the non-replicated baseline. The drop
in QuORAM’s throughput, which is ∼300 ops/s, is roughly
one-third of the overall throughput ∼1080 ops/s. In fact, the
reason the drop in throughput is less than one-third of the
total throughput (∼300 instead of ∼360) is because this ex-
periment crashes the proxy in N. California, which adversely
affects only one set of clients. Whereas the clients in Ohio
and N. Virginia continue to benefit from forming a quorum
of two nearby proxies (Table 1). This experiment shows that
QuORAM performs better than the non-replicated baseline
even while tolerating f ORAM unit failures.

7 Related Work

While the literature on ORAM schemes consists of many
works [7, 13, 16, 25, 31–34], to date, Obladi [13] by Crooks
et al. is the only system to consider the fault tolerance as-
pect of an ORAM system. While Obladi provides transac-
tional (ACID) guarantees in an ORAM setting, it compares to
QuORAM in its durability or fault tolerance aspect. Obladi
assumes the external and untrusted cloud storage server to
be inherently fault-tolerant – a property guaranteed by most
cloud providers – and relies on this guarantee to make the
ORAM proxy fault-tolerant as well. Obladi pushes the state of
the stateful proxy to the external server at periodic intervals;
if the proxy crashes, it is restored to the last state pushed to
the server. QuORAM has two main advantages over Obladi’s
design choice of fault tolerance : i) in spite of backing up
the proxy’s state at set intervals, Obladi becomes unavailable
during proxy failures and recovery, and ii) as shown in the
experiments, relying on cloud providers for fault tolerance
incurs performance penalties compared to QuORAM’s choice
of fault tolerance . Another work EHAP-ORAM [24] relies on
Non-volatile Memory (NVM) based hardware to persist data

USENIX Association 31st USENIX Security Symposium 3677

to recover from crashes. But the proposed solution cannot be
generalized for non-NVM based ORAM datastores.

In Pharos [41], Zakhary et al. are one of the first to demon-
strate the challenges of extending ORAM schemes to in-
clude replication. The authors show that naively replicating an
ORAM system leaks non-trivial sensitive information. How-
ever, no correct ORAM fault-tolerant solution is proposed.

In a separate line of work, many works [10, 25, 26, 32–34,
42] have looked at extending a single ORAM server model
to multi-server, multi-cloud settings. In SSS-ORAM [34] Ste-
fanov et al. propose partitioned ORAM: an ORAM of N items
split into

√
N ORAMs, each of

√
N size, albeit with a single

cloud assumption. In [26], Lu et al. propose a distributed
two-server ORAM from a theoretical perspective. They show
that with two non-colluding servers, client bandwidth can be
reduced to O(logN). In [32] Stefanov et al. extend [34] to pro-
pose a multi-cloud oblivious storage solution to reduce client-
cloud bandwidth cost. An ORAM of N items is split across
two non-colluding servers where after each data block’s ac-
cess, the two servers perform two-cloud shuffling to randomly
shuffle the accessed block before its next access. In [25] Liu
et al. build on [32] to optimize both the client-server and the
cloud-cloud bandwidths, leading to reduced overall response
time. Oblivistore [33] extends SSS-ORAM [34] to not only
incorporate asynchronous concurrency but also to distribute
an N item ORAM into multiple servers. The work also pro-
poses ways to dynamically add ORAM nodes and external
storage servers. CURIOUS [7] proposes a simpler solution to
distribute data across multiple storage servers and serves con-
current client requests. ConcurORAM [10] allows a constant
c number of concurrent clients to query at a time and requires
APIs for fine-grained locking and additional datastructures
from the server.

While the above works extend a partition-based ORAM
scheme ([34]) to multi-server or multi-cloud schemes, in [42]
Zhang et al. extend the tree-based ORAM ([35]) into a two-
server setting by splitting the storage tree across two non-
colluding servers to enhance performance. While the above
proposals distribute data across storage servers, their deploy-
ment uses a single proxy. Recently Snoopy [14] partitions the
data and the proxies where for scalability, proxies executing
on trusted hardware serve different sets of client requests.

The main differences between prior proposals [14, 25, 26,
32–34, 42] and QuORAM are: i). the former proposals are
non-replicated, i.e. each server stores a disjoint set of data
items, whereas in QuORAM all servers store the same set of
data items; ii) the former proposals are not fault-tolerant and
can lose the data if a server or an ORAM client fails, unlike
in QuORAM that tolerates server and ORAM client failures.

8 Conclusion

This work proposed QuORAM, a quorum-replicated ORAM
datastore that provides fault tolerance and linearizable se-

mantics. To date, QuORAM is the first system to replicate
data while preserving obliviousness by hiding access patterns.
QuORAM’s novel replication protocol avoids locking – a
standard technique to guarantee linearizability in distributed
data systems – as employing locking can leak non-trivial in-
formation. Because QuORAM’s replication protocol chooses
a decentralized design, QuORAM performs 33.2x better in
throughput compared to relying on CockroachDB for fault
tolerance, which consists of a centralized replication proto-
col. QuORAM’s evaluation with a non-replicated ORAM
baseline establishes the performance benefits of replication:
due to geo-replication, clients can access data from close-by
replicas thus causing QuORAM’s peak throughput to be 2.4x
of the non-replicated baseline. Finally, the experiments in-
dicate that QuORAM incurs negligible overhead to achieve
obliviousness compared to the cost of fault tolerance due to
communication among geo-distributed replicas.

Acknowledgements
We thank the Usenix Security reviewers for their insightful

feedback and our shepherd Patrick McDaniel for his help in
revising the paper. Sujaya Maiyya is partially supported by an
IBM PhD Fellowship. Huijia Lin is supported by NSF grants
CNS-1936825 (CAREER), CNS-2026774, a JP Morgan AI
research Award, a Cisco research award, and a Simons Col-
laboration on the Theory of Algorithmic Fairness. Stefano
Tessaro is partially supported by NSF grants CNS-1930117,
CNS-1926324, CNS-2026774, a Sloan Research Fellowship,
and a JP Morgan Faculty Award. This work is partially funded
by CNS-1703560.

This work is dedicated to the loving memory of Caitlin
Scarberry. This project started as part of her Masters Research
requirements in 2018-19. In Spring 2019, Caitlin graduated
from UCSB and joined Facebook. We are deeply saddened
that she passed away in October 2021. Caitlin was an amaz-
ing person and had exceptional acumen as a student and re-
searcher. This work benefited extensively from her insights.
Her loss is immense for all of us and the research community.

References

[1] Default Replica Count For CockroahDB. https:
//www.cockroachlabs.com/docs/stable/configure-
replication-zones.html. Accessed Jan 10, 2021.

[2] Default Replica Count For Spanner. https://cloud.google.
com/spanner/docs/instances. Accessed Jan 10, 2021.

[3] Neflix uses AWS for all compute and storage
needs. https://aws.amazon.com/solutions/case-
studies/netflix/. Accessed October 5, 2021.

[4] Spotify backend infrastructure moves to Google Cloud.
https://variety.com/2016/digital/news/spotify-
goes-cloud-no-more-data-centers-1201712891/.
Accessed October 5, 2021.

[5] Twitter selects AWS to power user feeds. https:
//press.aboutamazon.com/news-releases/news-

3678 31st USENIX Security Symposium USENIX Association

https://www.cockroachlabs.com/docs/stable/configure-replication-zones.html
https://www.cockroachlabs.com/docs/stable/configure-replication-zones.html
https://www.cockroachlabs.com/docs/stable/configure-replication-zones.html
https://cloud.google.com/spanner/docs/instances
https://cloud.google.com/spanner/docs/instances
https://aws.amazon.com/solutions/case-studies/netflix/
https://aws.amazon.com/solutions/case-studies/netflix/
https://variety.com/2016/digital/news/spotify-goes-cloud-no-more-data-centers-1201712891/
https://variety.com/2016/digital/news/spotify-goes-cloud-no-more-data-centers-1201712891/
https://press.aboutamazon.com/news-releases/news-release-details/twitter-selects-aws-strategic-provider-serve-timelines/
https://press.aboutamazon.com/news-releases/news-release-details/twitter-selects-aws-strategic-provider-serve-timelines/

release-details/twitter-selects-aws-strategic-
provider-serve-timelines/. Accessed October 5, 2021.

[6] AGRAWAL, D., AND EL ABBADI, A. An efficient and fault-
tolerant solution for distributed mutual exclusion. ACM Trans-
actions on Computer Systems (TOCS) 9, 1 (1991), 1–20.

[7] BINDSCHAEDLER, V., NAVEED, M., PAN, X., WANG, X.,
AND HUANG, Y. Practicing oblivious access on cloud storage:
the gap, the fallacy, and the new way forward. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), pp. 837–849.

[8] BOYLE, E., CHUNG, K.-M., AND PASS, R. Oblivious parallel
ram and applications. In Theory of Cryptography Conference
(2016), Springer, pp. 175–204.

[9] CASH, D., GRUBBS, P., PERRY, J., AND RISTENPART, T.
Leakage-abuse attacks against searchable encryption. In Pro-
ceedings of the 22nd ACM SIGSAC conference on computer
and communications security (2015), pp. 668–679.

[10] CHAKRABORTI, A., AND SION, R. Concuroram: High-
throughput stateless parallel multi-client oram. arXiv preprint
arXiv:1811.04366 (2018).

[11] CHOW, R., GOLLE, P., JAKOBSSON, M., SHI, E., STADDON,
J., MASUOKA, R., AND MOLINA, J. Controlling data in the
cloud: Outsourcing computation without outsourcing control.
In Proceedings of the 2009 ACM Workshop on Cloud Comput-
ing Security (New York, NY, USA, 2009), CCSW ’09, ACM,
pp. 85–90.

[12] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISH-
NAN, R., AND SEARS, R. Benchmarking cloud serving sys-
tems with ycsb. In Proceedings of the 1st ACM symposium on
Cloud computing (2010), pp. 143–154.

[13] CROOKS, N., BURKE, M., CECCHETTI, E., HAREL, S.,
AGARWAL, R., AND ALVISI, L. Obladi: Oblivious serializable
transactions in the cloud. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18)
(2018), pp. 727–743.

[14] DAUTERMAN, E., FANG, V., DEMERTZIS, I., CROOKS, N.,
AND POPA, R. A. Snoopy: Surpassing the scalability bot-
tleneck of oblivious storage. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles
(2021), pp. 655–671.

[15] DEMERTZIS, I., PAPADOPOULOS, D., PAPAMANTHOU, C.,
AND SHINTRE, S. {SEAL}: Attack mitigation for encrypted
databases via adjustable leakage. In 29th {USENIX} Security
Symposium ({USENIX} Security 20) (2020), pp. 2433–2450.

[16] GOLDREICH, O., AND OSTROVSKY, R. Software protection
and simulation on oblivious rams. J. ACM 43, 3 (May 1996),
431–473.

[17] GRUBBS, P., LACHARITÉ, M.-S., MINAUD, B., AND PATER-
SON, K. G. Learning to reconstruct: Statistical learning theory
and encrypted database attacks. In 2019 IEEE Symposium on
Security and Privacy (SP) (2019), IEEE, pp. 1067–1083.

[18] HERLIHY, M. P., AND WING, J. M. Linearizability: A correct-
ness condition for concurrent objects. ACM Trans. Program.
Lang. Syst. 12, 3 (July 1990), 463–492.

[19] ISLAM, M. S., KUZU, M., AND KANTARCIOGLU, M. Access
Pattern disclosure on Searchable Encryption: Ramification, At-
tack and Mitigation. In 19th Annual Network and Distributed
System Security Symposium, NDSS 2012, San Diego, Califor-
nia, USA, February 5-8, 2012 (2012).

[20] KATSARAKIS, A., GAVRIELATOS, V., KATEBZADEH, M. S.,
JOSHI, A., DRAGOJEVIC, A., GROT, B., AND NAGARAJAN,
V. Hermes: a fast, fault-tolerant and linearizable replication
protocol. In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (2020), pp. 201–217.

[21] KELLARIS, G., KOLLIOS, G., NISSIM, K., AND O’NEILL, A.
Generic attacks on secure outsourced databases. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), pp. 1329–1340.

[22] KORNAROPOULOS, E. M., PAPAMANTHOU, C., AND TAMAS-
SIA, R. Data recovery on encrypted databases with k-nearest
neighbor query leakage. In 2019 IEEE Symposium on Security
and Privacy (SP) (2019), IEEE, pp. 1033–1050.

[23] LAMPORT, L. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21, 7 (1978), 558–565.

[24] LIU, G., LI, K., XIAO, Z., AND WANG, R. Ehap-oram: Effi-
cient hardware-assisted persistent oram system for non-volatile
memory. arXiv preprint arXiv:2011.03669 (2020).

[25] LIU, Z., LI, B., HUANG, Y., LI, J., XIANG, Y., AND

PEDRYCZ, W. Newmcos: towards a practical multi-cloud
oblivious storage scheme. IEEE Transactions on Knowledge
and Data Engineering 32, 4 (2019), 714–727.

[26] LU, S., AND OSTROVSKY, R. Distributed oblivious ram for
secure two-party computation. In Theory of Cryptography
Conference (2013), Springer, pp. 377–396.

[27] LYNCH, N. A., AND SHVARTSMAN, A. A. Robust emula-
tion of shared memory using dynamic quorum-acknowledged
broadcasts. In Proceedings of the 27th International Sympo-
sium on Fault-Tolerant Computing (FTCS ’97) (Washington,
DC, USA, 1997), FTCS ’97, IEEE Computer Society, pp. 272–.

[28] MAIYYA, S., IBRAHIM, S., SCARBERRY, C., AGRAWAL, D.,
EL ABBADI, A., LIN, H., TESSARO, S., AND ZAKHARY, V.
Quoram: A quorum-replicated fault tolerant oram datastore.
Cryptology ePrint Archive (2022).

[29] MAIYYA, S., NAWAB, F., AGRAWAL, D., AND ABBADI, A. E.
Unifying consensus and atomic commitment for effective cloud
data management. Proceedings of the VLDB Endowment 12, 5
(2019), 611–623.

[30] NAOR, M., AND WIEDER, U. Scalable and dynamic quorum
systems. Distributed Computing 17, 4 (2005), 311–322.

[31] SAHIN, C., ZAKHARY, V., EL ABBADI, A., LIN, H., AND

TESSARO, S. Taostore: Overcoming asynchronicity in oblivi-
ous data storage. In 2016 IEEE Symposium on Security and
Privacy (SP) (2016), IEEE, pp. 198–217.

[32] STEFANOV, E., AND SHI, E. Multi-cloud oblivious storage.
In Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security (2013), pp. 247–258.

USENIX Association 31st USENIX Security Symposium 3679

https://press.aboutamazon.com/news-releases/news-release-details/twitter-selects-aws-strategic-provider-serve-timelines/
https://press.aboutamazon.com/news-releases/news-release-details/twitter-selects-aws-strategic-provider-serve-timelines/

[33] STEFANOV, E., AND SHI, E. Oblivistore: High performance
oblivious cloud storage. In 2013 IEEE Symposium on Security
and Privacy (2013), IEEE, pp. 253–267.

[34] STEFANOV, E., SHI, E., AND SONG, D. Towards practical
oblivious ram. arXiv preprint arXiv:1106.3652 (2011).

[35] STEFANOV, E., VAN DIJK, M., SHI, E., FLETCHER, C., REN,
L., YU, X., AND DEVADAS, S. Path oram: an extremely
simple oblivious ram protocol. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications
security (2013), ACM, pp. 299–310.

[36] TAFT, R., SHARIF, I., MATEI, A., VANBENSCHOTEN, N.,
LEWIS, J., GRIEGER, T., NIEMI, K., WOODS, A., BIRZIN,
A., POSS, R., ET AL. Cockroachdb: The resilient geo-
distributed sql database. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data
(2020), pp. 1493–1509.

[37] TERRACE, J., AND FREEDMAN, M. J. Object storage on craq:
High-throughput chain replication for read-mostly workloads.
In USENIX Annual Technical Conference (2009), no. June, San
Diego, CA, pp. 1–16.

[38] THOMAS, R. H. A majority consensus approach to concur-
rency control for multiple copy databases. ACM Transactions
on Database Systems (TODS) 4, 2 (1979), 180–209.

[39] TOPLE, S., JIA, Y., AND SAXENA, P. Pro-oram: Practical read-
only oblivious {RAM}. In 22nd International Symposium on
Research in Attacks, Intrusions and Defenses ({RAID} 2019)
(2019), pp. 197–211.

[40] WILLIAMS, P., SION, R., AND TOMESCU, A. Privatefs: A
parallel oblivious file system. In Proceedings of the 2012 ACM
conference on Computer and communications security (2012),
pp. 977–988.

[41] ZAKHARY, V., SAHIN, C., EL ABBADI, A., LIN, H., AND

TESSARO, S. Pharos: Privacy hazards of replicating oram
stores. In Proceedings of the 21th International Conference on
Extending Database Technology, EDBT 2018 (2018).

[42] ZHANG, J., MA, Q., ZHANG, W., AND QIAO, D. Tskt-oram:
A two-server k-ary tree oram for access pattern protection in
cloud storage. In MILCOM 2016-2016 IEEE Military Commu-
nications Conference (2016), IEEE, pp. 527–532.

Appendix
A Security of replicated ORAM datastores

This section discusses obliviousness of QuORAM. Re-
call the ORAM scheme and the security definitions de-
fined in Section 4.2. While the underlying ORAM scheme
TaORAM [31] is proved to be aaob-secure (adaptive
asynchronous obliviousness), QuORAM extends aaob-secure
definition to include logical operations and defines l-aaob-
security in Section 4.2. Logical operations are client requested
read and write operations, which may internally consist of
ORAM read and write operations. l-aaob-secure is an indistin-
guishability based security definition defined using a security
game G in Section 4.2.

Theorem 1: Assuming individual ORAM units are aaob-
secure, QuORAM is l-aaob-secure.
Proof (Sketch): Sahin et al. proved the obliviousness of TaO-
RAM in [31]. The most important property of TaORAM (and
tree-based ORAMs in general) is that every logical access
translates into fetching a random path from the server to the
TaORAM Processor, right after the Processor receives the
logical access request. TaORAM achieves this by initially
randomly shuffling the dataset before uploading to the storage
server, and assigning a new random position to a block after
each access. The position map in TaORAM’s Processor keeps
track of the random positions of all blocks.

We here focus only on the obliviousness of QuORAM,
showing that it is l-aaob-secure. The security game G is
defined in Section 4.2. Because the actual proof involves
similar steps as TaORAM’s, we omit the full proof due to
lack of space but we outline the main steps necessary for
the formal argument. The following are the key properties of
QuORAM in arguing for its l-aaob-security:

1) During initialization, the game shuffles the data set Db
(after encryption) chosen by the adversary as done in TaO-
RAM. Note that a consequence of this is that no two external
servers store Db in the same order.

2) QuORAM’s replication protocol always accesses a quo-
rum (majority) of ORAM units for the query phase and the
same quorum for the propagate phase. An adversary A ob-
serving the communication between a client and the ORAM
units sees 2 rounds of communication between the client and
a quorum, for either type of logical operations, irrespective of
the address or content of the block accessed.

3) In executing a logical operation, a proxy, p, is either part
of the quorum or not. If p is part of the quorum, it always
receives o_read before o_write (if o_read was dropped, the
proxy sends negative acknowledgement for the o_write).

4) Given the fixed order of ORAM read and write requests
for each logical request, in response to o_read, a proxy al-
ways fetches exactly one random path, either real or fake,
from the server. There are three ways in which a path may
become ready to be written back to the server. 1) The client
sends an o_write, and then the path fetched for the corre-
sponding o_read becomes ready to be written back. 2) The
incompleteCacheMap becomes full and it chooses an entry
to evict according to the eviction policy; the path associated
with that entry becomes ready to be written back. 3) A path
fetched by the daemon process is ready to be written back.
When the number of paths to be written back accumulates to k,
the proxy writes them back in a batch. Importantly, the adver-
sary can predict the trigger for each of the case above, since
1) it observes every o_read and o_write requests from the
client and knows the random path fetched for each o_read, 2)
it can deduce the entries that reside in incompleteCacheMap
and when it becomes full and which entry should be evicted,
and 3) the adversary predicts the access from the daemon pro-
cess (based on the preset interval). Therefore, observing the

3680 31st USENIX Security Symposium USENIX Association

write-backs to the server reveals no non-trivial information.
5) The incompleteCacheMap in QuORAM identifies blocks

that are read but not yet written. Maintaining this information
crucially avoids re-fetching a path from the server for a given
logical request. Further, even if the incompleteCacheMap
evicts an in-progress block, the proxy still retains the block
locally until it is written back to the server.

6) If an adversary A crashes either a server or a proxy,
especially in the middle of a query or a propagate phase, A
observes the client, executing the protocol, randomly access
another ORAM unit and send two sequential requests (query
followed by propagate) to this additional unit.

7) The game notifies the completion of a logical operation
to the adversary only after a quorum of ORAM units com-
plete executing both the query and propagate phase. If the
adversary delays scheduling one or more messages in either
of the phases, it receives delayed notification from the game.

In the security game (defined in game G in §4.2), an ad-
versary generates two data sets of the same size D0 and D1
and schedules multiple but finite pairs of logical requests
(lop0,m, lop1,m), where m identifies each request pair gener-
ated by the adversary. The game randomly picks the chal-
lenge bit b ∈ {0,1} and stores only Db in QuORAM and
executes only lopb,m from each request pair. To store Db in
QuORAM, the game calls Rep-ORAM on Db by invoking
Db

encKi
,Ki←Encodei(Db) for each ORAM unit i. The external

server and the proxy of an ORAM unit i store the encrypted
data DencKi and the secret key Ki, respectively. The game exe-
cutes QuORAM’s replication protocol as defined in §5.1 for
each logical request lopb,m. The adversary does not see the
output value of any operation it schedules (if it did, it would be
trivial to guess the challenge bit). To prove that QuORAM is
l-aaob-secure, we need to argue that an adversary has negligi-
ble advantage over randomly guessing the value of challenge
bit b.

To do this, we show that from the adversary’s point of view,
it cannot distinguish a real execution of the game with a sim-
ulated game that does not use Db or lopb,m for either b. First,
instead of storing Db, the simulated game stores encryption
of dummy blocks (e.g., zero-value) and replaces block values
in each lopb,m logical request also with encryption of dummy
blocks. Next, it simulates the view of the adversary as follows:

(i). For each o_read request, a quorum (majority) of
ORAM unit proxies are accessed; (ii). After the first access,
the proxies always fetch one random path from the server and
upon receiving the server response, proxies send a (response)
message back; (iii) For each o_write request, the same quo-
rum of ORAM unit proxies are accessed the second time, and
they return to the client a small (acknowledgement) message;
(iv) The simulator keeps track of the paths that are ready to be
written-back triggered by o_write, as well as entries evicted
from the incompleteCacheMap and accesses by the daemon
process, and batch-write k paths back to the server, whenever
k paths become ready.

Based on the above discussed properties of QuORAM,
we assert that the adversary cannot distinguish the access
behavior in the real and simulated cases, even in the presence
of crash failures. This implies the l-aaob-secure of QuORAM.

B Linearizability
As noted in TaoStore [31], the correctness of a read or write
operation differs from the obliviousness of the operation. Sim-
ilar to TaORAM [31], QuORAM defines correctness using
linearizability or atomic semantics: to an external observer, a
client operation appears to take effect at a specific instance
between the operation’s invocation and its response indicating
the operation’s success. This section proves the correctness
of QuORAM.

To argue for the correctness of QuORAM, we use the game
G defined in Section 4.2 where the adversary schedules logi-
cal read/write operations but with a slight modification where
the adversary now receives the response values and hence the
challenge bit is non-existent. We call the modified game Gcorr
and use it in arguing correctness.

Definitions: A history Hist represents a sequence of logical
read/write operations, viewed as the transcript after executing
game Gcorr. Each operation opi in Hist consists of an invo-
cation event invi and a response event respi (which occurs
after a successful propagate phase in QuORAM). A history
is said to be complete if for every invocation event invi in the
history there exists a corresponding response event respi; and
otherwise the history is said to be partial.

We represent each operation opi as (opid ,bId, tagi,vi,ui)
where opid identifies a globally unique logical operation, bId
identifies a data block, tagi represents a non-decreasing tag
associated with the block, vi equals ⊥ for read operations and
otherwise block’s value to be updated with, and ui indicates
the existing value of the block prior to executing opi, derived
by a client after the query phase of opi.

Similar to [31],≤lin defines a linearizable relation between
any two operations opi and op j: opi ≤lin op j implies respi
precedes inv j in a given history. We note that linearizability is
defined for a single data block, i.e., both opi and op j operate
on the same block bId. Given a complete and finite history of
operations executed by QuORAM, this section proves QuO-
RAM is linearizable, provided any adversary A eventually
delivers all messages (after delaying and/or reordering).
Lemma 1: A block bId’s response value ui, derived by a
client after a successful query phase of an operation opi, cor-
responds to bId’s highest tagged value.
Proof : Since each logical request in QuORAM reads from
and writes to a (majority) quorum, there exists at least one
over-lapping ORAM unit between any two logical requests.
For each ORAM unit, TaORAM [31] guarantees that the unit
maintains fresh-subtree invariant: “The contents on the paths
in the local subtree and stash are always up-to-date, while the
server contains the most up-to-date content for the remaining

USENIX Association 31st USENIX Security Symposium 3681

blocks”. Thus, when a client executes the query phase of a
logical operation opi, at least one ORAM unit answers with
block bId’s value ui corresponding to the highest tag (either
from the ORAM unit’s proxy or the server), proving Lemma
1 holds. □

Lemma 2: Tags of a block bId maintained by an ORAM
unit (either at the proxy or at the server) are monotonically
non-decreasing.
Proof : As described in Algorithm 1, clients in QuORAM
either retains tag values (for reads) or increments them (for
writes) but never decrements tag values. Lemma 1 shows that
a client always receives the highest tag for a block while exe-
cuting the query phase, which it may retain or increment based
on the type of the operation. Further, as discussed in §5.1,
an ORAM unit’s proxy updates a block’s tag after receiving
an o_write request if and only if the new tag is greater than
the block’s current tag. Based on the above arguments, it is
shown that Lemma 2 holds. □

In our proposed system, linearizability captures two main
relations between any two operations in a history: (i) the tag
values of any two completed logical operations have a strict
< or ≤ relation; and (ii) a given logical operation – read or
write – is atomic. The former point captures the relative or-
dering of logical operations. The latter point implies that if an
operation opi wrote a block, then an operation op j immedi-
ately succeeding opi must read the block written by opi; and
if operation opi merely read a block without writing it, then
operation op j immediately succeeding opi must also read
the same value as opi. We formally define the two relations
captured by linearizability as follows.
Definition 1: A complete and finite history Hist is linearizable
if for any two logical operations opi = (bId, tagi,vi,ui) and
op j = (bId, tag j,v j,u j), and opi, op j ∈ Hist, the following
conditions hold:

1 if opi precedes op j, then (i) tagi < tag j if op j is a write
operation, or (ii) tagi ≤ tag j if op j is a read operation.

2 if opi precedes op j such that tagi is the highest tag less
than or equal to tag j, then (i) u j = vi if vi ̸=⊥ (opi is a
write), or (ii) u j = ui if vi =⊥ (opi is a read).

Theorem 2: QuORAM provides linearizability.
Proof : 1 To prove the first condition, we consider the two
possible types of operations op j can be:

(i) If op j is a write: From Lemma 1 and 2, a logical write
always increments the highest tag of a block. Since op j is a
write, and opi may or may not be, due to the quorum inter-
section, op j receives the highest tag in its query phase and
increments it. Hence, the tag of op j is strictly greater than
that of opi.

(ii) If op j is a read: From Lemma 1 and 2, given the tag
of a block is monotonically non-decreasing, we know that
tag j ≮ tagi, as opi precedes op j. Since tags are incremented
only on writes, if no write took place between opi and op j,

then tagi = tag j; whereas if a write operation opk occurred
after opi and before op j, then tagi < tagk (from step (i)), and
by transitivity, tagi < tag j. This is true for any number of
write operations between opi and op j. Hence, tagi ≤ tag j.

2 Given that tagi is the highest tag less than or equal
to tag j, irrespective of the type of operation of op j, due to
Lemma 1, when op j executes the query phase, it receives the
current highest tag of the block, i.e., tagi and its associated
value. (i) Now, if opi wrote the block, then the block’s value is
vi and hence when op j queries the block, it receives vi. Thus
u j = vi. This shows that writes are atomic as any operation
executing after a write reads the updated value.

(ii) If opi merely read the value, which was equal to ui,
then since op j immediately succeeds opi for block bId, op j’s
read value also equals ui as no other operation updated the
block. Thus ui = u j. This shows that reads are atomic. □

C Stash size analysis
This section analyzes QuORAM’s stash size and the space
utilized at the proxy can be found in the extended report [28].
Lemma 3: Similar to TaORAM, QuORAM’s stash size is
bounded by any function F(N) = ω·logN, except with negligi-
ble probability in N.
Proof: The core idea of this proof lies in mapping the execu-
tion of QuORAM to that of TaORAM in a straight-forward
way. TaORAM’s stash size is proved to be bounded by a func-
tion F(N) = ω · logN (e.g., F(N) = (logloglogN) · logN) and
by mapping QuORAM’s execution to that of TaORAM we
prove that QuORAM has the same stash size guarantees as
TaORAM.

To analyze QuORAM’s stash size, recall the details of the
unbounded space issue and its solution discussed in §5.2.2.
The memory issue is caused due to the asynchrony in receiv-
ing o_read and o_write requests for a logical request; if
a proxy initiates a write-back in between receiving the two
requests, and if the o_read had triggered a fake read, the
proxy cannot delete the block after receiving a write acknowl-
edgement from the server. This is because the block’s latest
o_write arrived after the proxy initiated the write-back. In
the unlikely case that this block or any block in its path is
never accessed again, this block will always reside in the Sub-
tree. This may in-turn affect the size of the Stash. QuORAM
mitigates this issue by moving such blocks to excessBlocks
datastructure and the daemon process in each proxy accesses
(i.e., mimics o_reads and o_writes) blocks in the excess-
Blocks at pre-set intervals of time. This can be viewed as, from
TaORAM’s perspective, all blocks that can be deleted after
receiving a write-back acknowledgement from the server will
be deleted from the Subtree (and some may move to excess-
Blocks). As seen with this abstraction, QuORAM relies on
TaORAM’s logic of freeing the Subtree, without any changes,
and hence QuORAM’s stash size analysis follows that of TaO-
RAM and the size is bounded by any function F(N) = ω·logN,
except with negligible probability in N. □

3682 31st USENIX Security Symposium USENIX Association

	Introduction
	Background
	System and Failure Model
	System Model
	Failure Model

	Security Model: Obliviousness in a Replicated ORAM Setting
	ORAM scheme definition
	Security definition

	QuORAM: a replicated ORAM datastore
	QuORAM's replication protocol
	QuORAM's ORAM Scheme
	Discussion on incompleteCacheMap eviction
	Discussion on a proxy's memory usage

	Security and linearizability of QuORAM

	Evaluation
	Experimental Setup
	Implementation details
	Experimental Results
	Throughput and Latency
	Varying write-back threshold k
	Varying contention
	Stash and excessBlocks size analysis
	Crash Experiment

	Related Work
	Conclusion
	Security of replicated ORAM datastores
	Linearizability
	Stash size analysis

