
This paper is included in the Proceedings of the 
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the 
31st USENIX Security Symposium is 

sponsored by USENIX.

Lamphone: Passive Sound Recovery from 
a Desk Lamp’s Light Bulb Vibrations

Ben Nassi, Yaron Pirutin, and Raz Swisa, Ben-Gurion University of the Negev; 
Adi Shamir, Weizmann Institute of Science; Yuval Elovici and Boris Zadov, 

Ben-Gurion University of the Negev
https://www.usenix.org/conference/usenixsecurity22/presentation/nassi



Lamphone: Passive Sound Recovery from a Desk Lamp’s Light Bulb Vibrations

Ben Nassi1, Yaron Pirutin1, Raz Swissa1, Adi Shamir2, Yuval Elovici1, Boris Zadov1

1 Ben-Gurion University of the Negev, 2 Weizmann Institute of Science
{nassib, yaronpir, razsw, elovici, zadov}@post.bgu.ac.il, adi.shamir@weizmann.ac.il

Abstract
In this paper, we introduce "Lamphone," an optical side-
channel attack used to recover sound from desk lamp light
bulbs; such lamps are commonly used in home offices, which
became a primary work setting during the COVID-19 pan-
demic. We show how fluctuations in the air pressure on the
surface of a light bulb, which occur in response to sound and
cause the bulb to vibrate very slightly (a millidegree vibra-
tion), can be exploited by eavesdroppers to recover speech
passively, externally, and using equipment that provides no
indication regarding its application. We analyze a light bulb’s
response to sound via an electro-optical sensor and learn how
to isolate the audio signal from the optical signal. We compare
Lamphone to related methods presented in other studies and
show that Lamphone can recover sound at high quality and
lower volume levels that those methods. Finally, we show that
eavesdroppers can apply Lamphone in order to recover speech
at the sound level of a virtual meeting with fair intelligibility
when the victim is sitting/working at a desk that contains a
desk lamp with a light bulb from a distance of 35 meters.

1 Introduction
The COVID-19 era, with its lockdowns, social distancing,

isolation, and quarantining, forced many people to stay at
home, work from home, and refrain from attending in-person
meetings. COVID-19 restrictions created a risky reality where
meetings that were usually held in person in secured buildings
(e.g., offices, clinics, banks) were replaced by phone calls and
virtual meetings in which the participants were based in un-
secured home environments (e.g., home offices). As a result,
personal, confidential, and business information is frequently
being exchanged from unsecured home environments in coun-
tries that are still under severe COVID-19 restrictions and
in countries that have already overcome COVID-19 where
companies have adopted a hybrid working approach.

The sensitive information shared by individuals in home
environments may attract eavesdroppers seeking to obtain
valuable information revealed in these settings for various ma-
licious purposes (e.g., spying, shaming, blackmailing). Vari-

ous side-channel attacks that can be applied by eavesdroppers
to recover sound from unsecured environments have been
demonstrated [7, 8, 12, 14, 15, 18, 22, 23, 27, 28, 31, 32, 35].
These studies have contributed to improved understanding
regarding the risks of sound eavesdropping via non-acoustic
data. These methods suffer from at least one of the following
disadvantages: (1) Some methods rely on obtaining and exfil-
trating data from a compromised device located in proximity
of a target/victim [7, 8, 14, 15, 18, 22, 27, 28, 35], a fact that
requires the eavesdropper to compromise a target device with
malware in advance. (2) Some methods are limited to the
classification of isolated words that appear in a precompiled
dictionary [7, 8, 15, 22, 27, 28, 35], a fact that requires the
eavesdropper to invest additional time in compiling words
for a dictionary. (3) Other methods are limited to recovering
sound at a high volume (+85 dB) [12, 18, 31, 32], a fact that
limits their effectiveness at recovering speech from virtual
meetings (the sound level of such meetings is typically 75
dB). (4) Some methods rely on spying equipment, a fact that
limits their availability in some countries due to regulations
restricting the sale of this equipment [23]. (5) Other methods
require that an active laser beam be directed at objects located
near the target [23], a fact that increases the likelihood of
detection.

In this paper, we identify a new risk to personal and busi-
ness meetings held in unsecured home environments. We
show that the presence of desk lamps (and more specifically
the light bulbs used in desk lamps), which are commonly used
in home offices and bedrooms, can be exploited by eavesdrop-
pers to recover intelligible speech at levels of 75 dB externally,
passively, and using equipment that is not associated with spy-
ing and provides no indication regarding its application. We
introduce "Lamphone," a novel side-channel attack capable
of recovering speech optically via an electro-optical sensor
directed at a desk lamp’s bulb; such bulbs vibrate due to
air pressure fluctuations which occur naturally when sound
waves hit the light bulb’s surface. We explain how a bulb’s re-
sponse to sound (a millidegree vibration) can be exploited to
recover sound, and we establish a criterion for the sensitivity
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specifications of a system capable of recovering sound from
such small vibrations. Then, we evaluate a bulb’s response
to sound, identify factors that influence the recovered signal,
and characterize the recovered signal’s behavior. Based on
our findings, we developed an optical-acoustic transformation
(OAT) to isolate the audio signal from the optical signal ob-
tained by directing an electro-optical sensor at a desk lamp’s
bulb. Finally, we evaluate Lamphone’s performance on the
task of recovering sound and show that Lamphone is capa-
ble of recovering speech audio at the sound level of a virtual
meeting with fair intelligibility from a distance of 35 meters.

The rest of the paper is structured as follows: In Section
2, we review existing methods for eavesdropping. In Section
3, we present the threat model. In Section 4, we analyze the
response of a light bulb to sound. We present our optical-
acoustical transformation in Section 5, and in Section 6, we
evaluate Lamphone’s performance on the task of sound recov-
ery. In Section 7, we describe potential improvements that can
be made to optimize the quality of the recovered sound, and
we present countermeasure methods against the Lamphone
attack in Section 8. We discuss the limitations of the attack
and suggest future work directions in Section 9.

2 Related Work
In this section, we review related research focused on eaves-

dropping methods. Several studies [7, 8, 15, 22, 28, 35] have
shown that measurements obtained from motion sensors lo-
cated in proximity of a victim can be used for the classification
of words. They variously demonstrated that the response of
MEMS gyroscopes [22], accelerometers [7, 8, 35], and geo-
phones [15] to sound at 75-85 dB can be used to classify
words and identify speakers and their genders, even when the
sensors are located in a smartphone and the sampling rate is
limited to 200 Hz. Two other studies [14, 27] showed that the
process of output devices can be inverted to recover speech.
In [27], the authors established a microphone by recovering
sound at 80 dB from a vibration motor, and in [14], the audio
from speakers was recovered. A recent study [18] exploited
magnetic hard disks to recover audio, showing that measure-
ments of the offset of the read/write head from the center of
the track of the disk can be used to recover songs and speech
at 90 dB.

Two studies [31, 32] used the physical layer of Wi-Fi pack-
ets to eavesdrop sound at 95 dB. In [32], the authors suggested
a method that analyzes the received signal strength indication
of Wi-Fi packets sent from a router to recover sound by us-
ing a device with an integrated network interface card. They
showed that this method can be used to recover the sound
from a piano. In [31], the authors suggested a method that
analyzes the channel state information of Wi-Fi packets sent
from a router to classify words.

Two other studies were able to recover speech from en-
crypted VoIP data by exploiting side effects of the compres-
sion process (variable bitrate) [33, 34]. A recent study sug-

gested a new TEMPEST attack against devices to recover
sound from speakers by analyzing the emitted EMR (electro-
magnetic radiation) [10].

Other methods utilized optical sensors to recover sound
[12, 23]. The laser microphone [23] is a well-known method
that uses an external device. In this case, the eavesdropper
directs a laser beam through a window into the victim’s room;
the laser beam is reflected off an object and returned to the
eavesdropper who converts the beam to an audio signal. The
method most related to our research is the visual microphone
[12]. In this method, the eavesdropper analyzes the response
of material inside the victim’s room (e.g., a bag of chips) to
sound waves at 95 dB, using video obtained from a high speed
video camera (2200 FPS), and recovers speech.

3 Threat Model
In this section, we describe the threat model and compare

its significance to methods presented in other studies.
Assumptions. We assume that the target of this attack is

a person located inside his/her house, exchanging/sharing
sensitive information in a phone call or virtual meeting. We
assume that the victim makes the call/attends the meeting
from an office/room that contains a lamp with a light bulb
(e.g., a home office or bedroom) and is positioned up to 50
cm away from the light bulb, a reasonable distance for an
individual seated at a standard desk with a desk lamp in a
home office or seated on a bed, next to a nightstand with a
tabletop lamp, in a bedroom. We consider the eavesdropper
to be a malicious entity interested in recovering speech from
the victim’s conversation by performing the Lamphone at-
tack. The eavesdropper could use the recovered information
for various malicious purposes, including spying, shaming,
blackmailing, business intelligence gathering, etc. We assume
that the eavesdropper is located within 35 meters of the target
room. The eavesdropper could be: (1) a person located in a
room in an adjacent building (e.g., a nosey neighbor), or (2) a
person in a nearby car (e.g., a private detective). We consider
this threat to be highly likely in the COVID-19 era due to the
increased number of personal and business meetings being
held in unsecured home environments.

Components. The Lamphone attack consists of the fol-
lowing primary components: (1) Telescope - This piece of
equipment is used to focus the field of view on the light bulb
from a distance. (2) Electro-optical sensor - This sensor is
mounted on the telescope and consists of a photodiode (a
semiconductor device) that converts light into an electrical
current. The current is generated when photons are absorbed
in the photodiode. (3) Sound recovery system - This system
receives an optical signal as input and outputs the recovered
acoustic signal. The eavesdropper can implement such a sys-
tem with dedicated hardware (e.g., using capacitors, resistors,
etc.). Alternatively, the eavesdropper can use an ADC to sam-
ple the electro-optical sensor and process the data using a
sound recovery algorithm running on a laptop. In this study,
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Figure 1: Lamphone’s threat model: The sound snd(t) from the victim’s room (1) creates fluctuations on the surface of the desk
lamp’s light bulb (the diaphragm) (2). The eavesdropper directs an electro-optical sensor (the transducer) at the light bulb via
a telescope (3). The optical signal opt(t) is sampled from the electro-optical sensor via an ADC (4) and processed, using an
algorithm to recover the acoustic signal snd∗(t) (5).

we use the latter digital approach.
The physical phenomenon. The conversation held in the

target room creates sound snd(t) that results in fluctuations
in the air pressure on the surface of the light bulb, which
causes the bulb to vibrate. As a result, a static electro-optical
sensor that is directed by the eavesdropper via a telescope
towards the vibrating light bulb captures the changes in the
light intensity over time that result from the minuscule bulb
vibrations. The time series of light intensities, which are cor-
relative to the air pressure that hits the surface of the bulb and
produced by nearby speech/sound, represent a modulation of
the speech/sound inside the victim’s room. The changes in
the analog output of the electro-optical sensor are sampled by
the ADC to a digital optical signal opt(t). The eavesdropper
then transforms the optical signal opt(t) to an acoustic sig-
nal snd∗(t) using an optical-acoustical transformation (OAT).
Fig.1 outlines the threat model.

In general, microphones rely on three components (a di-
aphragm, transducer, and ADC). In Lamphone, the light bulb
is used as a diaphragm, which vibrates when sound waves
hit its surface. The transducer, which is used to convert the
diaphragm’s vibrations to electricity, consists of the light emit-
ted from the light bulb (in the target room) and the electro-
optical sensor (used by the eavesdropper), which creates the
associated electricity. An ADC is used to convert the electrical
signal to a digital signal (as in standard microphones).

Significance. The significance of Lamphone with respect
to related methods presented in other studies is that Lam-
phone: (1) is an external method that relies on a line
of sight between the electro-optical sensor and the light
bulb (as opposed to other methods that require eavesdrop-
pers to compromise a device located in physical proxim-
ity of the victim in order to obtain data and exfiltrate it
[7,14,15,18,22,27,31,32,35]), (2) relies on an electro-optical
sensor that is passive and does not provide any indication re-
garding its use (as opposed to the laser microphone [23]), (3)
is composed of hardware (ADC, photodiode) that is not asso-
ciated with spying (as opposed to the laser microphone [23]),
(4) recovers intelligible audio signals, so it is not limited to
classifying isolated words that appear in a precompiled dic-
tionary (as opposed to [7, 15, 22, 31, 35]), and (5) capable of
recovering speech at a virtual meeting’s sound level of 75 dB
(as opposed to [12, 18, 31, 32]).

The two methods most related to ours are the visual mi-
crophone [12] and the laser microphone [23]. Both methods
recover sound using optical sensors: the laser microphone
recovers speech at standard sound levels, however it utilizes
an active optical transceiver for this task (which is indica-
tive of its use and considered spying equipment, which limits
its availability). The visual microphone recovers speech by
utilizing a passive high-frequency video camera (equipment
which is not associated with spying), however it is limited to
recovering speech at a high volume level (an average volume
level of 95 dB), which is beyond the sound level of a virtual
meeting (such meetings have an average volume level of 75
dB). Lamphone combines the advantages of both methods:
Lamphone utilizes a passive photodiode (which is not consid-
ered spying equipment or indicative regarding its use) and is
effective at recovering speech at the sound level of a typical
virtual meeting. In addition, Lamphone is computationally
lighter than the visual microphone. In Lamphone, an ADC is
used to create the optical signal (time series) by sampling a
photodiode that is used to convert light to electricity which
is associated with the amount of light captured by the sen-
sor (and changes due to the bulb’s minuscule vibrations). In
contrast, the visual microphone extracts the optical signal by
analyzing a video stream and extracting a time series that
is associated with an object’s vibration over time. The opti-
cal signal (time series) is created by converting each frame
obtained by the high-frequency video camera (an operation
that consists of computations made on three HD resolution
matrices) to a single value (scalar) in time. This requires an
additional computation stage in order to create the optical
signal due to the fact that the desired frequency of 2200 Hz
is obtained by converting 2200 frames to 2200 scalars each
second. As a result, the visual microphone requires greater
computational resources than Lamphone.

4 Bulbs as Microphones
In this section, we describe a series of experiments aimed

at explaining why light bulb vibrations can be used to recover
sound and evaluate a bulb’s response to sound empirically.

4.1 Physical Analysis
First, we measure the vibration of a light bulb when sound

waves hit the light bulb’s surface and establish a criterion for
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Figure 2: A 3D scheme of
a light bulb’s axes.

Figure 3: Peak-to-peak difference of angles φ (left) and θ (right) for an E14 light bulb
in the 150-350 Hz spectrum.

Figure 4: The peak-to-peak movement for an E14 bulb in the
range of 150-350 Hz.

the sensitivity specifications of a system capable of recovering
sound from these vibrations

4.1.1 Measuring a Light Bulb’s Vibration
To measure the response of a light bulb to sound, we exam-

ine how sound produced in proximity to the light bulb affects
a bulb’s three-dimensional vibration (as presented in Fig. 2).

Experimental Setup: We attached a gyroscope (MPU-6050
GY-521 [2]) to the bottom of an E14 LED light bulb (10
watts); the bulb was not illuminated during this experiment
(see Fig. 21 in the appendix). A Raspberry Pi 3 was used to
sample the gyroscope at 700 Hz. We placed Logitech Z533
speakers in front of the bulb (a few centimeters away) and
played various sine waves (150, 200, 250, 300, 350 Hz) from
the speakers at two volume levels (60 dB and 70 dB). We
obtained measurements from the gyroscope while the sine
waves were played.

Results: Based on the measurements obtained from the
gyroscope, we calculated the average peak-to-peak difference
(in degrees) for θ and φ (which are presented in Fig. 3).We
calculated the peak-to-peak values, since they reflect the dis-
tance between the farthest and closest points that the light bulb
reaches when it vibrates. The average peak-to-peak difference
was computed by calculating the peak-to-peak difference be-
tween every 700 consecutive measurements (collected from
one second of sampling) and averaging the results. The fre-
quency response as a function of the average peak-to-peak
difference is presented in Fig. 3. The results presented in the
figure reveal three interesting insights: the average peak-to-
peak difference for the angle of the bulb is: (1) very small
2-35 millidegrees, (2) increases as the volume increases, and
(3) changes as a function of the frequency.

Based on the known formula of the spherical coordinate

Figure 5: Experimental setup: the telescope and the E14 bulb
used in the experiments. A PDA100A2 electro-optical sensor
[5] is mounted on the telescope. The electro-optical sensor
outputs voltage that is sampled via an ADC (NI-9234) [3] and
processed in LabVIEW.

system [6], we calculated the 3D vector (x,y,z) that represents
the peak-to-peak vibration on each of the axes. We calculated
the Euclidean distance between this vector and the vector of
the initial position. As seen in the figure, the sound caused
movements of 17-55 microns.

4.1.2 Capturing the Optical Changes
We now explain how eavesdroppers can determine the sen-

sitivity of the equipment needed to recover sound based on
a bulb’s vibration. The graphs presented in Fig. 3 establish
the criterion for recovering sound: the eavesdropping system
(consisting of an electro-optical sensor, telescope, and ADC)
must be sensitive enough to capture the small optical differ-
ences resulting from a bulb’s vibrations of 17-55 microns.

In order to demonstrate how eavesdroppers can determine
the sensitivity of the equipment needed to satisfy the above-
mentioned criterion, we conduct another experiment.

Experimental Setup: We directed a telescope (with a lens
diameter of 25 cm) at a 12W E14 LED bulb (as can be seen in
Fig. 5). We mounted an electro-optical sensor (the Thorlabs
PDA100A2 [5], which is an amplified switchable gain light
sensor that consists of a photodiode) to the telescope. The
voltage was obtained from the electro-optical sensor using a
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Table 1: Expected voltage for each frequency (based on the linear equations calculated from Fig. 6 and the expected movement
from Fig. 4). Green cells can be detected by the sensitivity provided by the ADC while yellow cells cannot.

Expected voltage change for E14 light bulb
ADC with sensitivity of 0.6 µV ADC with sensitivity of 4 µV

Distance Linear equation 150 Hz 200 Hz 250 Hz 300 Hz 350 Hz 150 Hz 200 Hz 250 Hz 300 Hz 350 Hz
1m - 2m y = -0.59x + 2.56 15.9 µV 15.3 µV 14.8 µV 32.5 µV 17.7 µV 15.9 µV 15.3 µV 14.8 µV 32.5 µV 2.95 µV
2m - 3m y = -0.52x + 2.41 14 µV 13.5 µV 13 µV 28.6 µV 15.6 µV 14 µV 13.5 µV 13 µV 28.6 µµV 15.6 µV
3m - 4m y = -0.14x + 1.27 3.78 µV 3.64 µV 3.5 µV 7.7 µV 4.2 µV 3.78 µV 3.64 µV 3.5 µV 7.7 µV 4.2 µV
4m - 6m y = -0.136+ 1.24 3.67 µV 3.54 µV 3.4 µV 7.48 µV 4.08 µV 3.67 µV 3.54 µV 3.4 µV 7.48 µV 4.08 µV
6m - 7m y = -0.12x + 1.14 3.24 µV 3.12 µV 3 µV 6.6 µV 3.6 µV 3.24 µV 3.12 µV 3 µV 6.6 µV 3.6 µV
7m - 9m y = -0.1x + 1.02 2.7 µV 2.6 µV 2.5 µV 5.5 µV 3 µV 2.7 µV 2.6 µV 2.5 µV 5.5 µV 3 µV

Figure 6: Output obtained from the electro-optical sensor
from various distances.

24-bit ADC NI-9234 card [3] and processed in a LabVIEW
script that we wrote. The internal gain of the electro-optical
sensor was set at 50 dB. We placed the telescope at various
distances (1, 2, 3, 4, 6, 7, 9 meters) from the light bulb and
measured the voltage obtained from the electro-optical sensor
for each distance.

Results: The results of this experiment are presented in Fig.
6. These results were used to compute the linear equation
between every two consecutive points. Based on the linear
equations, we calculated the expected voltage for each ex-
pected movement in the 150-350 Hz spectrum for the E14
light bulb for a sound level of 70 dB (based on the results
in Fig. 4). The linear equations and the expected voltage for
each movement are presented in Table 1.

We now explain how to use the data in Table 1 in order
to determine which frequencies can be recovered from the
optical measurements obtained for a sound level of 70 dB. The
sensitivity of the ADC can be calculated using the equation:

R
2B−1 , where R denotes the dynamic range of the output of
the ADC, and B denotes the resolution of the output in bits.
For example, a 24-bit ADC with an input range of [-5,5]
voltage (e.g., like the card used in our experiments) provides
a sensitivity of: 10

224−1 ≈ 0.6 µV.
Analyzing Table 1, we find that an ADC with a sensitivity

of 0.6 µV is sufficient for recovering the entire spectrum
(150-350 Hz) from a distance of nine meters, because the
smallest vibration of the bulb (17 microns) from this distance
is expected to yield a difference of 2.7 µV (for a frequency
of 150 Hz and a distance of nine meters). Such an ADC can
provide the sensitivity required to recover the entire spectrum
from any distance. However, given an ADC with a lower
sensitivity of 4 µV, only part of the spectrum can be recovered
beyond some distance (e.g., beyond three meters), because

in the frequency range of 150-250 Hz the vibrations of the
bulb are expected to yield values below 4 µV. The green cells
in Table 1 indicate frequencies that can be recovered by the
sensitivity provided by two ADCs (with sensitivities of 0.6 µV
and 4 µV). The yellow cells in Table 1 indicate the frequencies
that cannot be recovered by the ADCs in use. As can be seen
in the table, the entire measured spectrum can be recovered
with: (1) an ADC which provides 0.6 µV sensitivity from all
distances, and (2) an ADC which provides 4 µV sensitivity
from a maximal distance of three meters. This experiment
and these calculations can be used to determine the required
ADC given the electro-optical sensor used to capture light
from a light bulb.

4.2 Exploring the Optical Response to Sound
The experiments presented in this section were performed

to evaluate light bulbs’ response to sound. The experimental
setup described in the previous subsection (presented in Fig.
5) was also used throughout this set of experiments.

4.2.1 Characterizing the Optical Signal in Silence

First, we learn the characteristics of the optical signal when
no sound is played.

Experimental setup: We obtained five seconds of optical
measurements from the electro-optical sensor when no sound
was played in the lab.

Results: The FFT graph extracted from the optical mea-
surements when no sound was played is presented in Fig. 7.
As can be seen, peaks appears in the FFT at 100 Hz and its
harmonics (200 Hz, 300 Hz, etc.). The optical phenomenon
that happens at 100 Hz (which was captured by the electro-
optical sensor) is the result of power net harmonics. Most
electronic devices work with DC voltage that is converted
from AC. A diode bridge is integrated into the electrical de-
vice, which flips the negative half of the sinus, doubling the
base frequency from 50 Hz to 100 Hz. As a result, the LED
changes its intensity 100 times a second. These frequencies
strongly impact the optical signal and are not the result of
the sound that we want to recover. From this experiment we
concluded that filtering will be required.
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Figure 7: Baseline - FFT of the optical
signal in silence (no sound is played).

Figure 8: Difference in FFT before and
when an air horn was used.

Figure 9: SNR for a desk lamp at 100-2000
Hz.

4.2.2 Bulb’s Response to a Single Sine Wave
Next, we show that the effect of sound on a nearby bulb can

be exploited to recover sound by analyzing the light emitted
from the bulb via an electro-optical sensor in the frequency
domain.

Experimental Setup: In this experiment, we used an air horn
that plays a sine wave at a frequency of 518 Hz. We pointed
the electro-optical sensor at the bulb and obtained optical
measurements. Then we placed the air horn five centimeters
away from the bulb and operated the horn, obtaining sensor
measurements as we did so.

Results: Fig. 8 presents two FFT graphs created from two
seconds of optical measurements obtained before and while
the air horn was used. The peak that was added to the fre-
quency domain at around 518 Hz shows that the sound the
air horn produced affects the optical measurements obtained
via the electro-optical sensor. In this experiment, we specifi-
cally used a device (air horn) that does not create an electro-
magnetic side effect (in addition to the sound), in order to
prove that the results obtained are caused by fluctuations in
the air pressure on the surface of the bulb (and not by anything
else).

4.2.3 Bulb’s Response to Sound at 100-2000 Hz
In the next experiment, we tested the response of the light

bulb in a desk lamp to a wide spectrum of frequencies. These
experiments were conducted using speakers that were placed
in front of the light bulb on a dedicated stand.

Experimental Setup: We created an audio file that consists
of various sine waves (120, 170, 220, .... 1020 Hz) where
each sine wave was played for two seconds. We played the
audio file via the speakers near the bulb at two volume levels
(60 dB and 70 dB) and obtained the optical signal via the
electro-optical sensor.

Results: Fig. 9 presents the SNR obtained from the desk
lamp light bulb. Analyzing the signal with respect to the orig-
inal signal reveals two insights: (1) The response of the recov-
ered signal decreases as the frequency increases until its power
reaches the same level as the noise. (2) The SNR improves
as the volume increases. From this experiment, we concluded
that we would have to increase the SNR using speech enhance-
ment and denoising techniques, and strengthen the response
of higher frequencies in order to recover them by using an
equalizer.

4.3 Explaining the Physical Phenomenon
The experiments conducted in this section show that the

intensity of the light captured by an electro-optical sensor
changes as a function of the distance between the light bulb
and the electro-optical sensor (Fig. 6). The changes in the
distance between the light bulb and a static electro-optical
sensor are caused by sound waves that hit the surface of the
bulb and cause the bulb to vibrate (Fig. 4). As a result, the
electro-optical sensor outputs voltage levels (which serve as
optical measurements) that modulate the sound near the light
bulb (Fig. 9) with some additional side effects (Fig. 7).

5 Optical Acoustical Transformation
In this section, we leverage the findings presented in Sec-

tion 4 and present an optical-acoustic transformation (OAT),
which we use to recover audio signals from the optical sig-
nals obtained from an electro-optical sensor directed at a light
bulb. Throughout this section, we consider snd(t) as the audio
played inside the victim’s room by the speakers, opt(t) as the
optical signal obtained via an electro-optical sensor directed
at a tabletop/desk lamp, and snd∗(t) as the audio signal re-
covered from opt(t) using the OAT. The OAT consists of the
following steps:

1) Filtering Side Effects: As discussed in Section 4 and
presented in Fig. 7, there are factors which affect the optical
signal opt(t) that are not the result of the sound played (e.g.,
peaks which are added to the spectrum that are the result
of the lighting frequency of the light bulb and its harmonics
- 100 Hz, 200 Hz, etc.). We filter these frequencies using
bandstop filters. In addition, since the lower range of the
speech spectrum is around 100 Hz, we use a high-pass filter
(>100 Hz) to remove any phenomenon that is added to the
optical signal that is not the result of the sound.

2) Speech Enhancement: Speech enhancement is per-
formed to optimize the speech quality by improving the intel-
ligibility and overall perceptual quality of the speech signal.
We enhance the speech signal by normalizing the values of
opt(t) to the range of [-1,1].

3) Noise Reduction: Noise reduction is the process of re-
moving noise from a signal in order to optimize its quality.
We reduce the noise by applying spectral subtraction, one
of the first techniques proposed for denoising single channel
speech [30]. Spectral subtraction is considered an adaptive
technique, i.e., it characterizes the noise from the signal. Adap-
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Figure 10: The effect of each step of the OAT in recovering the word "lamb" from an optical signal.

tive techniques are highly effective at removing noise from
signals when there is no prior knowledge regarding the dis-
tribution of the noise or when the distribution of the noise
changes between different setups.

4) Equalizer: Equalization is the process of adjusting the
balance between frequency components within an electronic
signal. We use an equalizer to amplify the response of weak
frequencies.

The influence of each step of the OAT on the recovered
signal when the transformation is used to recover an arbitrary
sentence is illustrated in Fig. 10. As can be seen, the raw
optical signal is very noisy, however the application of each
step significantly improves the SNR. In the appendix, we
present Algorithm 1, an implementation of the OAT’s steps
to recover audio from optical measurements.

The techniques used in this study to recover speech are
extremely popular in the area of speech processing; we used
them for the following reasons: (1) the techniques rely on a
speech signal that is obtained from a single channel; if eaves-
droppers have the capability of sampling the light bulb using
other sensors, thereby obtaining several signals via multiple
channels, other methods can also be applied to recover an op-
timized signal; (2) these techniques do not require any prior
data collection to create a model; novel speech processing
methods use neural networks to optimize the speech quality
in noisy channels, however such neural networks require a
large amount of data for the training phase in order to create
robust models, a requirement that eavesdroppers would likely
prefer to avoid; (3) the techniques can be applied in real-time
applications, so the optical signal obtained can be converted
to audio with minimal delay; and (4) these techniques (e.g.,
spectral subtraction and equalization) can overcome changes
in the optical signal’s SNR level which can be caused by
different noise levels.

6 Evaluation
In this section, we evaluate the performance of the Lam-

phone attack in terms of its ability to recover sound from the
light bulb of a desk lamp. We start by examining the influence
of environmental factors and various types of bulbs and lamps
on the SNR of the recovered sound. We continue by compar-
ing Lamphone’s performance to related work in a lab setup.
Finally, we examine the influence of the distance between the
bulb and the victim and the electro-optical sensor and the bulb
on Lamphone’s performance.

The reader can assess the quality of the recovered sound

visually by analyzing the extracted graphs (spectrograms and
SNR), qualitatively by listening to the recovered audio signal
online,1,2 and quantitatively based on metrics used by the
audio processing community to compare a recovered signal
to its original signal: (1) Intelligibility - a measure of how
comprehensible speech is in given conditions. Intelligibil-
ity is affected by the level and quality of the speech signal,
and the type and level of the background noise and rever-
beration [1]. To measure intelligibility, we used the metric
suggested by [29], which results in values between [0,1]. A
higher intelligibility indicates better sound quality. (2) Log-
Likelihood Ratio (LLR) - a metric that captures how closely
the spectral shape of a recovered signal matches that of the
original clean signal [26]. This metric has been used in speech
research for many years to compare speech signals [11]. A
lower LLR indicates better sound quality. (3) Weighted Spec-
tral Slope (WSS) - a distance measure that computes the
weighted difference between the spectral slopes in each fre-
quency band [21]. The spectral slope is the difference be-
tween adjacent spectral magnitudes in decibels. A lower WSS
indicates better speech quality. (4) NIST Speech SNR (NIST-
SNR) - the speech-to-noise ratio, which is defined as the log-
arithmic ratio between the speech power and the noise power
estimated over 20 consecutive ms. A higher NIST-SNR indi-
cates better sound quality.

We used the following equipment and configurations to re-
cover sound in all of the experiments conducted and described
in this section: a telescope (25 cm lens diameter) was directed
at the light bulbs. We mounted an electro-optical sensor (Thor-
labs PDA100A2 [5]) to the telescope. The electro-optical sen-
sor was configured for the highest gain level before saturation.
The output of the electro-optical sensor (voltage associated
with light intensity) was sampled with two different ADCs. A
24-bit ADC NI-9234 card was used for the experiments pre-
sented in Sections 6.1-6.3. A PXI-1082 measurement system
(PXI Sound and Vibration Module PXI-4498 with a 24-bit
ADC) was used for the experiments presented in Section 6.4,
in order to optimize the SNR (its noise level is lower by al-
most two orders of magnitude compared to the NI-9234). We
used Logitech Z200 speakers, which were placed on a dedi-
cated stand, to produce the sound. The data was processed in
a LabVIEW script that we wrote. The sampling frequency of
the ADC was configured at 2 KHz. In the rest of this section
we refer to this setup as the eavesdropping equipment. The

1 https://youtu.be/kfdXhX8hWok
2 https://youtu.be/86CDP9QP1Bw
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Figure 11: Influence of an electric fan on the spectrum.

Figure 12: The effect of the light in a room on the SNR.

level of the sound played was measured with a professional
decibel meter.

6.1 Influence of Environmental Conditions
6.1.1 Effect of Fan/Air Conditioner

First, we explore the effect of air produced by an external
device (e.g., a fan, air conditioner) in proximity to the desk
lamp. Such devices may cause unwanted vibrations which
may affect the quality of the recovered signals.

Experimental Setup: We directed an electric fan at the desk
lamp light bulb from a distance of one meter. We obtained two
optical signals via the electro-optical sensor: (1) a baseline
signal when the electric fan was off, and (2) an additional
signal when the electrical fan was on.

Results: Fig. 11 presents the SNR calculated from the two
optical signals. As can be seen, air produced by the electric
fan affects the spectrum below 120 Hz.

Conclusions: The range below 120 Hz is filtered in the first
step of the OAT using a high-pass filter. Therefore, despite the
effect of the electric fan on the spectrum, it has a negligible
effect on the quality of the recovered speech, because most of
the speech energy is present above 100 Hz.

6.1.2 Effect of Ambient Light
Next, we explore the effect of ambient light on the SNR.
Experimental Setup: We played a frequency scan via speak-

ers that were placed 10 centimeters from the desk lamp light
bulb. We obtained two optical signals via the electro-optical
sensor from a distance of five meters: when the light in the
room was off (darkness) and on.

Results: Fig. 12 presents the SNR calculated from the two
optical signals. As can be seen, the SNR graphs are almost
identical in their behavior and quality.

Figure 13: SNR of different types of desk lamps.

Conclusions: Based on this experiment, we concluded that
ambient light does not affect the SNR of the recovered sound.

6.2 Influence of Lamps and Bulbs
6.2.1 Effect of the Lamp

Here we explore the effect of the type of lamp used on the
SNR.

Experimental Setup: We directed an electro-optical sensor
at a desk lamp through a telescope located five meters away.
We placed the speakers 10 centimeters away from the lamp
and played a frequency scan from the speakers (70 Hz-1000
Hz). We obtained optical signals during the frequency scan.
We repeated this experiment four times, each time using a
different type of desk lamp (presented in Fig. 13). The same
bulb was used in each of the lamps: a 12W E27 light bulb.

Results: Fig. 13 presents the SNR calculated from the opti-
cal signals. As can be seen from the results, the behavior of the
SNR graphs is similar for the four desk lamps examined: the
SNR decreases as a function of the frequency. However, the
SNR level of each of the lamps differs (as does the effective
bandwidth that can be used to recover sound). For example, a
lamp with a long swing arm (lamp D) produces higher SNR
values than lamps with short swing arms (lamps B and C). In
addition, the fixed desk lamp (lamp A) produces significantly
lower SNR values than the adjustable table lamps. Based on
this experiment, we concluded that all of the lamps can be
used to recover sound, however the type of lamp used affects
the quality of the recovered sound.

6.2.2 Effect of the Light Bulb
Here we explore the effect of the type of light bulb used on

the SNR.
Experimental Setup: We repeated the previous experiment,

this time using a fixed desk lamp, playing a frequency scan
and obtaining optical measurements from four different types
of E27 light bulbs: Incandescent 40W (31 grams), Leelite
15W LED (67 grams), Leelite 19W LED (86 grams), and S-
10A60 15W LED (39 grams). In addition, we obtained optical
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Figure 14: Comparison of SNR between
different E14 bulbs.

Figure 15: Comparison of SNR between
different E27 bulbs.

Figure 16: SNR for various distances
between the light bulb and the speakers.

Table 2: Comparison of the results of the visual microphone (VM) [12] and Lamphone for the sound recovery of speech. A green
cell indicates a better result. The spectrograms associated with these results can be seen in Figs. 22 and 23 in the appendix.

Intelligibility LLR WSS NIST-STNR
Speech VM Lamphone VM Lamphone VM Lamphone VM Lamphone

Female speaker - fadg0, sa1 "She had your dark suit in greasy wash water all year" 0.72 0.72 1.47 1.79 120.29 75.55 26.8 16
Female speaker - fadg0, sa2 "Don’t ask me to carry an oily rag like that" 0.65 0.67 1.37 2.1 197.83 71.76 43.3 4.5
Male speaker - mccs0, sa1 "She had your dark suit in greasy wash water all year" 0.59 0.7 1.31 1.72 149.55 63.1 27.3 10.3
Male speaker - mccs0, sa2 "Don’t ask me to carry an oily rag like that" 0.67 0.71 1.55 1.86 137.04 59.23 18 2.8
Male speaker - mabw0, sa1 "She had your dark suit in greasy wash water all year" 0.77 0.67 1.68 1.48 211.11 54.97 6 5.5
Male speaker - mabw0, sa2 "Don’t ask me to carry an oily rag like that" 0.72 0.69 1.81 1.89 162.11 73.77 25.8 5.3

Average 0.68 0.69 1.53 1.8 162.98 66.39 24.53 7.4
STD 0.06 0.02 0.19 0.2 35.23 8.48 12.27 4.89

Table 3: Comparison of the NIST-SNR results of the Hard
Drive of Hearing [18] and Lamphone for the sound recovery
of speech. A green cell indicates a better result.

Hard Drive of Hearing Lamphone
Male (List 57) 11.2 22.65
Female (List 1) 7.8 23.35
Average 9.5 23
STD 2.4 0.49

measurements from four different types of E14 light bulbs:
Eurolux 10W LED (36 grams), Nixon 9W LED (22 grams),
Nixon 5W LED (36 grams), and Osram 40W Incandescent
(16 grams).

Results: Figs. 14 and 15 present the SNR calculated from
the eight optical signals. As can be seen from the results,
the bulbs that produced higher SNR values were the more
powerful bulbs (higher wattage), and LED bulbs produced
higher SNR values than other types of bulbs. In addition,
lighter LED bulbs produced higher SNR values than heavier
ones with the same power level.

6.3 Comparing Lamphone to Related Work
6.3.1 Comparing Lamphone to the Visual Microphone

Here, we compare the performance of Lamphone to that of
the visual microphone [12]. The authors proposing the visual
microphone demonstrated the recovery of six sentences from
the TIMIT repository [13] by playing the sentences via speak-
ers and analyzing the resulting vibrations of a bag of chips via
a high-frequency video camera (2200 FPS) from a distance
of two meters. We compare Lamphone’s performance when
recovering the same sentences by analyzing the vibrations of
a 12W E14 desk lamp light bulb.

Experimental Setup: We followed the experimental setup
used in the visual microphone study [12] as follows: We
placed speakers on a dedicated stand (so their vibrations
would not affect the bulb) at the same distance that the bag
of chips was placed in the visual microphone study (5 cm).
We played the same six sentences from the TIMIT repository
recovered by the visual microphone via the speakers at the
same volume level used in the visual microphone study (95
dB). We placed the eavesdropping equipment 2.5 meters from
the light bulb, behind a closed door (the same distance that
the video camera was placed in the visual microphone study).
Our experimental setup is presented in Fig. 5.

Results: We used the OAT to recover speech from the opti-
cal measurements. The recovered audio signals are available
online1 where they can be heard. The spectrograms of the
six recovered sentences can be seen in Figs. 22 and 23 in the
appendix. We evaluated the intelligibility, LLR, WSS, and
NIST-SNR of the recovered signals and reported the results in
Table 2. We also downloaded the same six audio signals that
were recovered and published in the study presenting the vi-
sual microphone, and evaluated their performance according
to the same metrics. The results presented in Table 2 reveal
four interesting insights: (1) The range of the intelligibility of
the speech recovered by Lamphone is 0.67-0.72, which is con-
sidered good/fair according to [1]. The average intelligibility
of the speech recovered by Lamphone is 0.1 higher (better)
than the average intelligibility of the speech recovered when
using the visual microphone. In addition, the standard devia-
tion (STD) of the intelligibility obtained by Lamphone is 0.04
lower (better) than the STD of the intelligibility obtained by
the visual microphone. This indicates that the results obtained
by Lamphone are of a higher quality and more stable in terms
of intelligibility. (2) The average LLR of the speech recov-
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ered by the visual microphone is 0.27 lower (better) than that
obtained when using Lamphone. In addition, the STD of the
LLR obtained by the visual microphone is 0.01 lower (better)
than the STD of the LLR obtained by Lamphone. This indi-
cates that the results obtained by the visual microphone are
of a higher quality and more stable in terms of the LLR. (3)
The average WSS of the speech recovered using Lamphone is
96.59 lower (better) than the speech recovered by the visual
microphone. In addition, the STD of the WSS obtained by
Lamphone is 26.75 lower (better) than the STD of the WSS
obtained by the visual microphone. This indicates that the re-
sults obtained by Lamphone are of a higher quality and more
stable in terms of the WSS. (4) The average NIST-SNR of
the speech recovered by the visual microphone is 17.1 higher
(better) than the average NIST-SNR of the recovered speech
when using Lamphone. However, the STD of the NIST-SNR
obtained by Lamphone is 7.3 lower (better) than the STD of
the NIST-SNR obtained by the visual microphone. This indi-
cates that the results obtained by Lamphone are more stable
but of a lower quality in terms of the NIST-SNR.

6.3.2 Comparing Lamphone to the Hard Drive of Hear-
ing

Here, we compare the performance of Lamphone to that
of the Hard Drive of Hearing [18]. The authors proposing
the Hard Drive of Hearing demonstrated the recovery of two
recordings from the Harvard sentences database: a female
sample (list 1) and a male sample (list 57). The specific audio
samples are taken from the Open Speech Repository [4]. We
compare Lamphone’s performance when recovering the same
sentences by analyzing the vibrations of a 12W E14 desk
lamp light bulb.

Experimental Setup: We followed the experimental setup
used in the Hard Drive of Hearing [18] study as follows:
We placed speakers on a dedicated stand (so their vibrations
would not affect the bulb) the same distance as in the Hard
Drive of Hearing study (25 cm). We played the two audio
samples from the Open Speech Repository recovered by the
Hard Drive of Hearing via the speakers at the same volume
level used in the Hard Drive of Hearing study (85 dB). In
our experiment, the eavesdropping equipment was placed
2.5 meters from the light bulb, behind a closed door. Our
experimental setup is presented in Fig. 5.

Results: We used the OAT to recover speech from the opti-
cal measurements. Since we were unable to obtain the recov-
ered audio samples from the Hard Drive of Hearing study, we
compared Lamphone’s performance to the results reported in
their paper. The authors of the Hard Drive of Hearing study
evaluated their recovered signals using the NIST-SNR, so we
compare the sentences recovered by Lamphone and the Hard
Drive of Hearing based on the NIST-SNR. The results of
our comparison are presented in Table 3. The average NIST-
SNR of the speech recovered by the Lamphone is 13.5 higher
(better) than the average NIST-SNR of the recovered speech

Figure 17: Experimental setup: An electro-optical sensor is
mounted to a telescope (left picture) that is directed at a desk
lamp light bulb (placed 50 cm from the speakers) from 35
meters away (right picture).

reported in the Hard Drive of Hearing paper. Moreover, the
STD of the NIST-SNR obtained by Lamphone is 1.91 lower
(better) than the STD of the NIST-SNR obtained by the visual
microphone.

6.3.3 Conclusions
Analyzing the results of the experiments conducted in this

section, we concluded that: (1) that the quality of the speech
recovered by Lamphone and the visual microphone is at the
same level. The answer to the question of which method is
better depends on the metric used to evaluate the methods. (2)
The quality of the signals recovered by Lamphone is better
than the quality of the signals recovered by the Hard Drive of
Hearing.

6.4 The Influence of Distance on Lamphone’s
Performance

Here, we evaluate the influence of the distance between
the light bulb and: (1) the eavesdropping equipment (as the
distance increases, the sensor captures less light), and (2) the
victim (as the distance increases, the magnitude of the light
bulb vibrations decreases) on the SNR. The setup can be seen
in Fig. 17.

First, we tried to assess the influence of the distance be-
tween the victim and the bulb on the spectrum of the recovered
signal.

Experimental Setup: The eavesdropping equipment was
located 10 meters away from the light bulb. We placed the
speakers at two distances (25 cm and 50 cm) away from the
light bulb. We played a frequency scan via the speakers at
the volume level of a virtual meeting (such meetings have an
average volume level of 75 dB) while obtaining the optical
measurements.

Results: Fig. 16 presents the SNR obtained by placing
the speakers at distances of 25 cm and 50 cm from the light
bulb. Based on the results, we concluded that the effective
bandwidth containing a strong signal that can be used to
recover sound (>15dB) is narrow: it ends at around 340 Hz
for a distance of 50 cm and at around 400 Hz for a distance
of 25 cm.
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Table 4: "We Will Make America Great Again!" - Results of recovered speech from various distances.
Distance between electro-optical sensor and light bulb

15m 25m 35m
Distance between

speakers and
light bulb

Intelligibility WSS LLR NIST-SNR Intelligibility WSS LLR NIST-SNR Intelligibility WSS LLR NIST-SNR

25 cm 0.522 660.47 6.72 21 0.487 643.1 5.11 21.8 0.454 686.65 4.22 17.5
50 cm 0.457 669.37 3.5 12.3 0.4 651.16 4.34 21 0.362 635.9 3.75 11.5

Next, we tried to assess the influence of distance on the
speech recovered by Lamphone.

Experimental Setup: We placed the eavesdropping equip-
ment at three distances (15, 25, 35 meters) away from the
light bulb, and we placed the speakers at two distances (25
cm and 50 cm) away from the light bulb Then we played a
famous statement made by former President Donald Trump:
"We will make America great again!" via speakers at the vol-
ume level of a virtual meeting while obtaining the optical
measurements.

Results: We used the OAT to recover speech from the opti-
cal measurements. The recovered audio signals are available
online2. The spectrograms of the recovered speech can be
seen in Figs. 24 and 25 in the appendix. The intelligibility,
LLR, WSS, and NIST-SNR of the recovered signals are re-
ported in Table 4. As can be seen from the results, the quality
of Lamphone is considered fair when it is used to recover
sound from a distance of: (1) up to 35 meters when the lamp
is located 25 cm from the victim, and (2) up to 15 meters
when the lamp is located 50 cm from the victim.

7 Potential Improvements
In this section, we suggest methods that eavesdroppers

can use to optimize the quality of the recovered audio with-
out changing the setup of the target location. The potential
improvements suggested below are presented based on the
component they are aimed at optimizing.

Telescope: The amount of light captured by an electro-
optical sensor mounted to a telescope with diameter r is de-
termined by the area of the telescope’s lens (πr2). As a result,
there is a quadratic difference in the amount of light cap-
tured by two telescopes with lens diameters of x and y (where
x = y+ z) = (πx2) - (πy2) = 2πyz + πz2. This is empirically
demonstrated in Fig. 18, which presents three SNR graphs
extracted from optical measurements obtained by three tele-
scopes with different lens diameters (7.5 cm, 10 cm, 20 cm)
using the same experimental setup. As can be seen from the
results, as the lens diameter increases, the amount of light
captured by the mounted electro-optical sensor also increases.
As a result, the optical signal yields a higher SNR and has a
wider effective spectrum.

Lens: A close-up lens can be used as an optical amplifier
for the optical signal by increasing the ratio of the area of
the lamp’s light (and thus the amount of light captured by the
telescope) to the total area captured by the telescope. This is
empirically demonstrated in Figure 19, which presents two

SNR graphs extracted from optical measurements obtained
from a telescope in two setups: (1) with a close-up lens placed
between the telescope and the electro-optical sensor, and (2)
without a close-up lens. As can be seen from the results, the
increased ratio of the area of the lamp (which resulted in an
increased light ratio) to the total area captured by the telescope
yields a higher SNR and a wider effective spectrum.

Electro-Optical Sensor: The sensitivity of the system can
be enhanced by using an improved electro-optical sensor to
obtain the optical measurements. This is empirically demon-
strated in Figure 20, which presents two SNR graphs extracted
from optical measurements that were obtained from two dif-
ferent optical sensors (PDA100A2 and APD410A). As can
be seen from the results, the sensitivity of the electro-optical
sensor affects the SNR level. Another option is to sample the
signal from multiple optical sensors. Given N sensors that
sample a signal, the SNR increases by

√
N. Thus, eavesdrop-

pers can optimize the SNR of the optical signal by directing
several electro-optical sensors at the light bulb in order to ob-
tain multiple measurements and sample the bulb’s vibrations
simultaneously from several channels.

ADC: As discussed in Section 4, a 24-bit ADC with an
input range of [-5,5] voltage provides a sensitivity of 0.6
uV. Only bulb vibrations that are expected to yield a greater
voltage change (i.e., > 0.6 uV) can be recovered by Lamphone.
A 32-bit ADC provides a higher level of sensitivity of 2.3
nV and significantly optimizes the system’s sensitivity. In
addition, in this research we experimented with two types of
24-bit ADCs (PXI-4498 and NI-9234). The ADC with the
lower self-noise level provided a higher SNR which yielded
signals of a higher quality.

OAT: Many advanced denoising methods in the field of
speech enhancement can be used in addition to or as an alter-
native to the OAT steps. Advanced algorithms (e.g., neural
networks) provide excellent results for filtering the noise from
an audio signal, however often a large amount of data is re-
quired to train such models. The effective bandwidth of the
recovered speech signal can be extended by using artificial
bandwidth extension algorithms for speech [16,17,20,24,25]).
Such algorithms use a dedicated model for speech and arti-
ficially add information to the high frequencies of the audio
signal according to the information that appears in the lower
frequencies. By doing so, bandwidth extension algorithms ex-
tend the effective bandwidth that can be heard by the human
ear, which improves the quality of the audio.

Conclusions: The experiments conducted in this section
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Figure 18: Impact of a telescope’s lens di-
ameter on the SNR.

Figure 19: Impact of a close-up lens on
the SNR.

Figure 20: SNR obtained by two differ-
ent electro-optical sensors.

reveal than the use of improved equipment yields a higher
SNR. We concluded that the quality of the sound recovered
by Lamphone is proportional to the quality of the equipment
used. Improved equipment can be used to extend the possible
distance between both the lamp and the victim and the lamp
and the electro-optical sensor.

8 Countermeasures
In this section, we analyze the effectiveness of known coun-

termeasures against sound recovery and compare their effec-
tiveness against Lamphone and methods proposed in other
studies. The countermeasures are analyzed according to their
effectiveness: high (denoted as  ), medium (denoted as G#),
and low (denoted as #). A summary of this comparison is
presented in Table 5.

8.1 Prevention
Countermeasures used to eliminate the vulnerability. The

countermeasure: ( ) - is effective at preventing objects from
turning into diaphragms, (#) - is ineffective against the meth-
ods.

Removing potential diaphragms from offices - Banning
any lightweight object/device (e.g., a bag of chips, smart-
phones) that vibrates when it is hit by sound waves from
the environment ( - against the vast majority of the meth-
ods [7, 8, 12, 14, 15, 18, 22, 27, 28, 31, 32, 35], including Lam-
phone), however laser microphones can recover sound from
the vibration of window panes which cannot be removed from
most environments (#- against the laser microphone [23]).

8.2 Mitigation
Countermeasures used to prevent the exploitation of the

vulnerability. The countermeasure: ( ) - prevents eavesdrop-
pers from exploiting the vulnerability (i.e., recovering sound),
(G#) - reduces the likelihood of exploiting the vulnerability
(e.g., lowers the quality of the recovered sound or requires
eavesdroppers to use more expensive equipment), (#) - is
ineffective against the methods.

Limiting the sale of spying equipment - Limiting the
availability of equipment associated with spying (e.g., laser
transceiver) to specific entities (e.g., police departments). This
method prevents eavesdroppers from acquiring the equipment
needed to obtain data that can be used to recover sound ( -

against laser microphone [23]). However, many sensors/de-
vices that are not associated with spying were also found
effective at obtaining data that can be used to recover sound
(#- [7, 8, 12, 14, 15, 18, 22, 27, 28, 31, 32, 35], including Lam-
phone).

Preventing leakage - Containing the data or physical side
effect inside the room and preventing the leakage of infor-
mation from the room using software (e.g., a firewall used
to prevent the exfiltration of data) or a physical apparatus
(e.g., a curtain used to eliminate the line of sight to a vi-
brating object), or by changing the location of the targeted
room (e.g., targeting an inner room with no windows). Such
countermeasures are highly effective against methods that
recover sound by obtaining data over the Internet and via op-
tical sensors ( - against [7, 8, 12, 14, 15, 18, 22, 23, 27, 28, 35],
including Lamphone). However, such countermeasures are in-
effective against methods that recover sound from RF signals,
because it is difficult to prevent the leakage of RF signals (#-
against [31, 32]).

Creating a safety perimeter - Limiting/decreasing the
ability of eavesdroppers to recover sound by forcing the
eavesdropper to apply the attack from a distant location
(e.g., by installing a fence around a house or by moving
the surface on which the desk lamp is placed away from
windows). Such countermeasures can limit eavesdroppers’
ability to obtain the RF and optical data required to recover
sound. However, eavesdroppers can use improved equipment
(e.g., antennas, telescopes) to obtain radio signals and cre-
ate a line of sight (G#- [12, 23, 31, 32], including Lamphone).
Such countermeasures are ineffective against methods that
recover sound by obtaining data over the Internet (#- against
[7, 8, 14, 15, 18, 22, 27, 28, 35]).

8.3 Detection
Countermeasures used to identify the application of meth-

ods used to exploit the vulnerability. The countermeasure: ( )
- can detect the application of a method to recover sound, (#)
- is ineffective against the methods.

Detecting active attacks - Deploying software used to
detect attempts to compromise a network and exfiltrate data
(e.g., by using an IDS) and deploying a device used to detect
the use of a laser transceiver (e.g., by using an optical sensor).
Such methods are effective at detecting the preliminary stage
of compromising a device in order to obtain data from a
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Table 5: Effectiveness (high ( ), medium (G#), low (#)) of countermeasures against sound eavesdropping methods.
Prevention Mitigation Detection

Removing potential
diaphragms from offices

Limiting the sale of
spying equipment Preventing leakage

Creating a safety
perimeter

Detecting the use
of active attacks

Methods relying on a
compromised device
[7, 8, 14, 15, 18, 22, 27, 28, 35]

 #  #  

RF-based methods [31, 32]  # # G# #
Visual microphone [12]  #  G# #
Laser microphone [23] #   G#  
Lamphone  #  G# #

target device ( - [7, 8, 14, 15, 18, 22, 27, 28, 35]) and the use
of the laser microphone ( - [23]). However, this method is
ineffective against passive external methods (#- [12, 31, 32],
including Lamphone).

8.4 Conclusions
By analyzing the effectiveness of the countermeasure meth-

ods described above and presented in Table 5, we concluded
that victims cannot rely on regulations limiting the sale of
equipment needed for the Lamphone attack to prevent eaves-
droppers from recovering sound, since Lamphone relies on a
photodiode (a commonly used sensor that is not associated
with spying), unlike the laser microphone which relies on a
laser transceiver. In addition, victims cannot install a dedi-
cated mechanism to detect the use of Lamphone, because its
implementation does not provide any indication regarding its
application, unlike the laser microphone where a dedicated
optical sensor can be used to detect its use. Given this, poten-
tial victims should take care to protect themselves from the
threat posed by the Lamphone attack. For example, simple
but effective adjustments to a home office could be made,
including installing curtains to eliminate the line of sight or
replacing desk lamps with other lighting solutions to elimi-
nate the vulnerability. Alternatively, an inner room without
windows could be used for sensitive conversations, or a home-
owner could install a fence to increase his/her distance from
potential eavesdroppers and mitigate the attack.

9 Limitations, Discussion, and Future Work
The purpose of this research was to raise awareness of the

feasibility of recovering sound by analyzing the vibrations of
a desk lamp light bulb. While we are the first to demonstrate
this method in the academic realm, we wonder whether our
method is already known within the military and espionage
realms. While we can only hypothesize about the answer to
this question, for the following reasons we believe that we
are not the first to exploit a light bulb to recover sound: (1)
desk lamps and tabletop lamps have existed for many years,
and (2) sound recovery is of interest to various entities (NSA,
FBI, etc.) around the world. In addition, the case of the "Great
Seal Bug" [9] showed that a new technology, the RFID, was
used secretly by Soviet agencies to eavesdrop sound three
decades before it was scientifically discovered and published
in 1973 [19].

As was indicated in Section 7, Lamphone’s primary dis-
advantage is the fact that the quality of the sound recovered
is proportional to the quality of the equipment used by the
eavesdropper. As a result, better equipment (e.g., an ADC
with a lower self-noise level, a more sensitive electro-optical
sensor, a telescope with a wider lens, and dedicated optical
lenses) is required to recover sound from longer distances
between the eavesdropper and the light bulb, and the victim
and the light bulb.

We believe that over the next few years, new studies will im-
prove Lamphone, so it will pose a greater threat to individuals’
privacy, improving the method so that it could be applied by
eavesdroppers with less resources and from a greater distance.
An important question to consider is how long will it take the
scientific community to improve this method sufficiently so it
poses a major threat to individuals’ privacy. An analysis of the
scientific progress of another eavesdropping method might
help answer this question. The Gyrophone method of recover-
ing sound from a smartphone’s motion sensors [22] was first
introduced at USENIX 2014. The main disadvantage of Gyro-
phone at that time was the low accuracy of the model used to
classify isolated words (the accuracy was only slightly better
than a random guess). However, over the years, additional
research led to improved understanding of this eavesdropping
technique and the threat model [7, 15, 35], and a recent study
presented at NDSS 2020 was able to improve this method
such that it could be used to classify isolated words from a
smartphone’s accelerometer with 99% accuracy [8]. Based on
the progress made in the seven years since Gyrophone was
first introduced, we believe that future studies will improve
our understanding of Lamphone and suggest new ways of
recovering sound from light bulbs. Improved understanding
regarding optical sound recovery could extend Lamphone’s
scope to hanging light bulbs located farther away from the
victim (as opposed to a desk lamp light bulb).

For future work, we suggest investigating how the OAT can
be improved by integrating advanced algorithms for speech
processing (e.g., [16, 17, 20, 24, 25]) and denoising (e.g., the
use of autoencoders), and how to apply the attack by using
more compact equipment. We also suggest investigating the
accuracy of a light to text model by training a neural network
that receives optical signals and outputs transcription/text.
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10 Appendix

Figure 21: A gyroscope attached to the bottom of a desk lamp
light bulb.

Algorithm 1 Recovering Audio from Optical Signal

1: INPUT: optical-stream, fs, equalizer-function
2: bulbFs = 100
3: while (!isEmpty(optical-stream) do)
4: /*Read from optical-stream to a buffer*/
5: opt[] = read(optical-stream,fs)
6: snd* = opt
7: /*Filtering side effects*/
8: for (i = bulbFs; i < fs/2; i+=bulbFs) do
9: snd* = bandstop(i,snd*)

10: /*Scaling to [-1,1]*/
11: min = min(snd*), max = max(snd*)
12: for (i = 0; i < len(snd*); i+=1) do
13: snd*[i] = -1 + (snd∗[i]−min)∗2

max−min

14: /*Noise reduction*/
15: snd* = spectral-subtraction(snd*)
16: /*Balancing*/
17: snd* = equalizer(snd*,equalizer-function)
18: play (snd*)
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Figure 22: fadg0,mccs0,mabw0 sa1: "She had your dark suit in greasy wash water all year." - recovered (top) and original
(bottom) speech.

Figure 23: fadg0,mccs0,mabw0 sa2: "Don’t ask me to carry an oily rag like that."- recovered (top) and original (bottom) speech.

Figure 24: "We will make America great again!" - original (top) and recovered (bottom). The speakers are located 25 cm from
the light bulb.
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Figure 25: "We will make America great again!" - original (top) and recovered (bottom). The speakers are located 50 cm from
the light bulb.
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