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Abstract
Passwords remain the primary way to authenticate users on-
line. Yet little is known about the characteristics of login
requests submitted to login systems due to the sensitivity of
monitoring submitted passwords. This means we don’t have
answers to basic questions, such as how often users submit
a password similar to their actual password, whether users
often resubmit the same incorrect password, how many users
utilize passwords known to be in a public breach, and more.
Whether we can build and deploy measurement infrastructure
to safely answer such questions is, itself, an open question.

We offer a system, called Gossamer, that enables securely
logging information about login attempts, including carefully
chosen statistics about submitted passwords. We provide
a simulation-based approach for tuning the security-utility
trade-offs for storing different password-derived statistics.
This enables us to gather useful measurements while reducing
risk even in the unlikely case of complete compromise of the
measurement system. We worked closely with two large uni-
versities and deployed Gossamer to perform a measurement
study that observed 34 million login requests over a seven
month period. The measurements we gather provide insight
into the use of breached credentials, password usability, and
other characteristics of the submitted login requests.

1 Introduction

Despite the prevalence of password-based authentication
across the internet, little is known about the passwords sub-
mitted to login systems. Knowing the characteristics of such
login information would help practitioners make better se-
curity policies to improve both usability as well as attack
detection. A key challenge hindering progress is that pass-
words are highly sensitive, and as a result prior work has only
performed very limited measurements.

Two prior works are particularly relevant. Bonneau et
al. [10] instrumented Yahoo login servers for 48 hours to learn
the distribution of actual user passwords. But his technique
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could not record other information about submitted (valid or
invalid) passwords, such as the similarity between the succes-
sive password submissions. Chatterjee et al. [11] were the
first to investigate incorrect password submissions from the
viewpoint of a login server. They instrumented Dropbox’s lo-
gin service for 24 hours to investigate how often users submit
a fixed set of easy-to-correct typos. However, their study was
limited to only a specific set of typos, and does not provide a
general framework for analyzing submitted passwords. Thus
the question remains: Can we build login measurement in-
frastructure that monitors password submissions, but doesn’t
endanger security?

In this work, we design, build, and deploy a measurement
system, called Gossamer, that securely records login requests,
including statistics about submitted passwords. Doing this
safely required extreme care, and our main contribution is a
holistic approach that combines systems security features, a
simulation-based framework to guide selection of password-
derived statistics, and procedural safeguards. Ultimately, our
initial deployment at two large universities is able to answer,
for the first time, basic questions about submitted passwords—
such as how often legitimate users are making typos or repeat-
edly submitting the same incorrect password, whether attacks
are detectable as credential stuffing, and more.

Performing such measurements requires jointly analyzing
passwords submitted at different points in time. Prior measure-
ment studies computed a (keyed) hash over a correctly submit-
ted password [10] or compared the hashes of a small handful
of variants of a submitted password to the real user’s pass-
word hash [11]. Neither approach allows inferring whether
users are submitting the same password multiple times or, if
not, how many unique passwords they submit.

To enable such measurements, Gossamer’s design uses a
two-service logging infrastructure to ensure least privilege.
Gossamer has a specialized measurement service that receives
a copy of login requests from login servers, processes them
by computing password statistics and encrypting submitted
usernames, and outputs sanitized logs to a persistent database
on a different machine. The measurement service, like login
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servers, has access to plaintext passwords. Thus we designed
it to match or exceed the security properties of login servers: It
is safe-on-reboot [31] (no sensitive data such as passwords are
ever stored on disk), deletes all in-memory data periodically
to limit the scope of what would be exposed in the case of
a breach, and is administered by the same security staff in
charge of login servers.

Researchers use a separate analysis service to access the
sanitized logs stored in the persistent database. The sanitized
logs and analysis service are still treated as sensitive, and
cannot be made publically available. To assess the risk to user
passwords in the unlikely case of complete exposure of both
a login system’s password hash databases plus Gossamer
logs, we developed a new simulation-based approach to ana-
lyze the speed-up of brute-force cracking attacks that attempt
to additionally exploit Gossamer logs. For example, simu-
lations show that storing raw strength scores (as measured
by zxcvbn [47]) can provide up to a 20% increase in crack-
ing efficacy (using up to 109 hash computations), leading us
to reduce the granularity of strength scores. Ultimately, our
simulations suggest that the best performing attack increases
password recovery rates using Gossamer logs by less than 2%
using 109 queries.

To showcase the utility of Gossamer, we worked in close
collaboration with two large universities’ information tech-
nology (IT) security departments to perform a measurement
study of login behavior. Our measurement study protocols, in-
cluding Gossamer’s design and implementation, went through
a thorough, multi-step review process that included reviews by
the security engineering teams from both universities, repre-
sentatives of each university’s administration, and the relevant
IRBs. This process culminated in a determination that Gos-
samer poses minimal risk. We deployed Gossamer for seven
months at University 1 (U1) and for three months at Univer-
sity 2 (U2). We observed 34 million login requests (combined)
for approximately 500 K users who regularly log in to access
various university-provided critical online services such as
email, course enrollment, and employment information.

This enables first-of-their-kind measurements of password
usability and security. We saw that 1.9% of valid users at U1
and 4.6% at U2 changed their password in the data collection
period. We found that 6.5% of usernames at U1 appearing
in public breaches are still using a password that is only a
small variant of one of their leaked passwords. This motivates
deployment of password breach alerting services that take
into account similarity [35]. On the usability front, while the
Dropbox study reported that 5% of failed attempts were due to
easily correctable typos, our measurements indicate that 65%
of failed attempts could be typos (within edit distance two
from the actual password), suggesting this is a much larger
cause of user frustration than previously imagined. We also
report on the rate of login retries, the success and failure rate
of app-based two-factor authentication, and the possible adop-
tion of password managers. Finally, we are able to report a

few high-volume attacks, with insights enabled by Gossamer
to characterize the attacker behavior involved.

Summary. In summary, our paper is the first to propose a
measurement framework for passwords that can safely help
answer basic questions about password use. Our contributions
include:
• Design of Gossamer, which combines systems security,

simulation-based selection of password statistics, and pro-
cedural safeguards to enable measurement studies of
password-based login behavior.

• We worked with two large universities’ IT departments to
deploy Gossamer for multi-month measurement periods.

• We report for the first time on a variety of aspects of
password-related usability and security, and discuss the
implications of these measurements. For example, our mea-
surements motivate the need for password breach alerting,
suggest ways to improve lockout mechanisms, and more.

Finally, we hope that Gossamer can serve as a platform to
help drive future research on improving usability and security
of passwords. As such we are releasing Gossamer as a public,
open source project that may be useful for security researchers
both in industry and academia.

2 Background and Related Work

Current login systems still heavily rely on password-based
authentication. Users typically enter their usernames and pass-
words to a form on a web client, which submits them along
with other information relating to the user or machine such as
HTTP headers, cookies, IP, and user agent to the login server
over HTTPS. The server hashes the password (and a salt),
checks if the username and hash pair is present in the login
database, and if so, allows the user to log in or prompts for
further authentication checks. Otherwise the request fails.

Single sign-on (SSO) systems allow a user to log into multi-
ple different web services using the same username and pass-
word. When a user accesses a service, the service provider
(SP) redirects the user to obtain a proof of authentication
from the identity provider (IdP). The IdP provides the proof
immediately if the user has recently authenticated with it, or
requires the user to authenticate and provides the proof if the
authentication is successful. The OAuth framework [8] is a
common way to achieve SSO.

Looking ahead we perform measurements at two large
universities. Both U1 and U2 use SSO with Microsoft Active
Directory Federation Service (ADFS). While at U2 all login
traffic goes through ADFS, at U1, only a portion of traffic is
via ADFS. This is part of the reason we see a lower rate of
logins per day at U1 compared to U2 (Section 4).

Studies about passwords. Prior works [20, 26, 30, 32, 46]
have investigated guessability of user-chosen passwords.
Most of these rely on breached password data to understand
the distribution of user-chosen passwords. Several studies
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have used Amazon Mechanical Turk (AMT) to understand
user choice of passwords [22, 24, 43], under different factors
such as password requirements [24], presence of a password
strength meter [43], and use of a password blocklist [18].

As passwords chosen in this environment may not represent
passwords on real websites, several studies have inspected
real user passwords through client-side, server-side, or offline
instrumentation [14, 15, 36]. On the client side, Florencio and
Herley [14] installed a Windows Live Toolbar component for
five hundred thousand volunteer participants and analyzed
their password behavior over 85 days. Similarly, Forget et
al. [15] created a client-side data collection tool to observe
user’s password behavior in its natural environment [15, 36].

Measurement studies with login systems. To our knowl-
edge, three studies have looked at user passwords by instru-
menting the login servers. Bonneau et al. [10] instrumented
Yahoo’s login servers to receive login requests (including
user passwords) and construct histograms of password char-
acteristics based on user demographics. Mazurek et al. [29]
correlated password strength with demographic information
in an offline study with reversibly encrypted passwords on
an access-restricted computer. Chatterjee et al. [11] instru-
mented the login code at Dropbox for failed login attempts
to test whether applying a typo correction to the submitted
password would have produced the correct password.

Open questions. Many open questions remain about the
characteristics of the passwords submitted to a login system.
For example, how often do users log in from multiple devices,
how often do users submit the same incorrect password mul-
tiple times, and how often do users submit passwords that are
similar to one of their leaked passwords? More importantly,
can we collect information about the submitted password that
allows analyzing login characteristics without degrading the
security of user passwords? Such a framework would help
practitioners make data-driven login security policies, such
as account lockout thresholds, that better balance between
usability and security.

3 Designing a Secure Measurement
Architecture

To analyze the passwords submitted to a login system, we
need to instrument live login services and monitor login re-
quests, including the submitted username and passwords. User
passwords are highly sensitive and should never be logged.
We therefore designed a secure instrumentation architecture
that preserves the privacy of login requests while allowing
meaningful analysis. We refer to it as Gossamer and deploy
it at two login systems used at two universities in the United
States. Gossamer is designed in close collaboration with the
security engineers at these universities. Below we describe the
built-in security considerations in our design and the integra-
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Figure 1: The main components of Gossamer.

tion with the existing login infrastructure at these universities.

The architecture. Gossamer enables instrumentation of typ-
ical web login servers, such as those used for single sign-on
(SSO). An overview of Gossamer’s architecture appears in
Figure 1. A lightweight hook is deployed within the login
server that, on every received login request, sends a stripped-
down copy of the request to our instrumentation infrastructure
on a separate, in-network machine. This is done using a sep-
arate thread to avoid any noticeable latency impact by the
instrumentation on login behavior. A login request includes
the username, password, IP address, a subset1 of the HTTP
headers, timestamp, login result (success or failure), and fi-
nally an application-specific result code for the login attempt.

A measurement service receives this forwarded login infor-
mation. It is responsible for processing the raw login data in
a secure manner, converting it into sanitized logs, and storing
them in a persistent database. The persistent database can be
accessed by analysts (in our case, researchers) via a dedicated
analysis service for understanding user login behaviors. As
such, we partition Gossamer’s architecture into two security
levels: The lightweight login hook and measurement service
run at a higher privilege level and are administered by IT se-
curity staff; the analysis service is instead at a lower privilege
level, accessible by analysts (researchers).

We explain more about these two services further below,
but first describe our security and design goals.

Security properties and design goals. We design Gos-
samer to resist a variety of attacks. We note that all our net-
work traffic is encrypted using TLS, and as such we do not
discuss network adversaries further. Instead, we focus on the
threat of complete compromise of each (or both) of the ser-
vices, as well as the weaker adversarial threat of exposure of
logs generated by Gossamer.

To protect against these threats, we design Gossamer to

1The login server removes sensitive cookies specified by the security
engineers from the HTTP header, as some content can be more sensitive
than user passwords. For example, an “authentication cookie” could bypass
MFA requirements.
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conform to four security properties.

• Least privilege access to password data. The system must
ensure that the analyst receives only the information nec-
essary for analyzing login behaviors, while plaintext pass-
words remain restricted to particular services.

• Bounded-leakage logging. The system persistently logs
a small set of statistics about user passwords. The set of
statistics is carefully designed to bound the improvement
in guessing attacks against user passwords, even in the
case of complete compromise of the analysis service.

• Periodic deletion. The system should expunge all raw, sen-
sitive data older than 24 hours to reduce the exposure of
any data should the system get compromised.

• Safe-on-reboot. Finally, we must ensure that all sensitive
data from raw HTTP requests is destroyed on reboot. This
property was first introduced in [31] for the Bunker secure
network tracing system.

We will return to these properties as we elaborate on the
details of the architecture.

Security considerations in Gossamer. As mentioned, Gos-
samer uses two services running at different privilege levels
on two different machines — a measurement service for pro-
cessing the raw login data and storing the anonymized statis-
tics of user logins into a secure, persistent relational database,
and an analysis service for analyzing the data from the persis-
tent database. Separating measurement from analysis enables
us to maintain the same privilege requirements for access to
password data as there are without Gossamer. The high-level
architecture diagram of Gossamer including privilege levels
is shown in Figure 1.

The measurement service runs on a heavily access-
restricted machine that receives a copy of the login request
over an encrypted channel from the login servers. The service
then computes measurements over the submitted password
and stores them in the persistent database. Some interesting
statistics require the plaintext submitted password across mul-
tiple requests — for example, the number of unique passwords
submitted by a single user or from a single IP address. There-
fore, the measurement service stores passwords encrypted
using an in-memory key in the ephemeral database. The key
is stored only in memory and is automatically replaced with
a new key every day at midnight local time. The ephemeral
database is placed in a memory-based file system, such as
the /tmp directory. The key rotation cryptographically erases
the data stored in the ephemeral database every 24 hours.2 If
the measurement service is killed or the device is rebooted,
all ephemeral data is effectively deleted. This ensures our
periodic deletion and safe-on-reboot requirements.

2Key rotation at midnight deletes the data received, say, an hour before
midnight, limiting our ability to correlate between passwords received before
and after midnight. It is an open question how to design an efficient key-
rotation technique that will allow secure deletion without requiring storing
linear number keys in memory.

The ephemeral database allows us to calculate a number
of measurements referencing the passwords submitted across
multiple logins. These measurements (given in Section 4) al-
low us to characterize user behavior and could help in building
attack detection mechanisms. The output of the measurement
is stored in a persistent database outside the privilege bound-
ary, where it can be accessed by the researchers. This database
is placed in a disk-encrypted volume, providing another layer
of protection in case the volume is backed up to an unpro-
tected machine or is compromised. The key to the encrypted
volume is only known to a subset of researchers, as the IT
security engineers did not need it .

Protecting user privacy. To protect the privacy of users,
Gossamer anonymizes the usernames before storing in the
persistent database by encrypting them using a deterministic
encryption scheme [19]. The encryption key is only accessi-
ble from within the measurement service. The deterministic
nature of encryption allows us to cross-reference the logins
against a username without knowing the actual username,
while also allowing us to report compromised usernames to
the security engineers, should we discover any. We do not
record any personally identifiable information about the user,
including their real name, affiliation, or account type (such
as student, faculty, or staff). We do record the source IP ad-
dress for requests, which is needed to analyze client and attack
behaviors.

Of course re-identification attacks [33, 41] may be possible
given access to these logs, and for this reason alone logs are
not suitable for public release. We have strict policies against
re-identification for the limited set of researchers who access
the analysis service. All analysis is performed on the analysis
server with encrypted usernames, and only summary statistics
leave the analysis service.

Both the persistent and ephemeral databases are instan-
tiated as MySQL databases. The measurement service is a
Python Flask application running on an Apache server. We
use the Python Fernet [4] library to encrypt user passwords
in the ephemeral database using AES-256, and we use the
Python Miscreant [5] library to deterministically encrypt and
decrypt the usernames using AES-SIV.

Integration with other data sources. Looking ahead, in
both of our deployments there are other relevant data sources
available that we would like to analyze. Namely, it is common
for organizations to have a database that contains reports
about potentially compromised accounts which can provide
insights into what attacks are (not) being caught by current
security mechanisms. At the universities we worked with,
these reports are generated when a user alerts IT security to a
compromise, or because existing alert generation mechanisms
(including third-party breach alerting services the universities
subscribe to) flag an account. In both cases, an IT analyst
manually inspects existing logs to attempt to determine if a
compromise occurred.
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To make use of these compromise reports, we add to
the measurement service the ability to accept such logs,
anonymize them by encrypting all usernames (using the same
key as above), and transfer the resulting data to the persistent
database. A similar approach can be used in other deploy-
ments of Gossamer to incorporate other relevant data sources,
such as logs from MFA services.

4 Password-Derived Measurements
and Security Analysis

Gossamer enables analyses based on the passwords submitted
during login, which will improve our ability to characterize
user login behaviors. Passwords, however, cannot be made
available to analysts for security reasons. We therefore design
Gossamer to only collect limited, useful statistics about the
submitted passwords without storing passwords persistently.
However, even just statistics computed over user passwords
could leak information about the password, so care must be
taken on which statistics are persistently stored and made
available to the analysts.

In this section, we discuss how we assessed the security
implications of the Gossamer logs storing different kinds of
password-derived measurements.

4.1 Password-derived measurements
To assess risks related to password-derived measurements,
we adopt an iterative, simulation-based methodology. We
consider a potential logging schema, namely the set of mea-
surements that we log about login attempts. For a candidate
schema, we perform a simulation-based risk analysis that con-
sists of (1) defining a threat model including log exposure; (2)
determining a baseline attack that does not exploit exposed
logs; (2) developing a log-exploiting attack that incorporates
information leaked via fields from the candidate schema; and
(3) running simulations using leaked passwords to assess the
increased success rate of the log-exploiting attack over the
baseline. This allows quantifying risk, and if it is too high we
adjust the logging schema and repeat the process until we are
satisfied that risk is relatively low.

First we identify potential fields to include in a schema.
Figure 10 in Appendix A lists the fields we ultimately utilize
in Gossamer. We also considered several other fields that we
eventually discarded as too risky, as we now explore.

To understand password strength, we consider including a
zxcvbn strength score [47], and whether or not it belongs to
one of the popular password guessing lists (the most frequent
5,000 passwords in RockYou [6] or the top 5,000 passwords
generated3 by Hashcat [40]).

To understand how often breached passwords are submit-
ted, we consider marking passwords as being in well-known,

3We use the rule list best_64.rule [7] (a rule list compiled by the
Hashcat community of what are considered to be the best 64 rules) with
RockYou to generate the guesses.

public breaches, which makes those users vulnerable to cre-
dential stuffing attacks. For this we use a dataset of 1.3 bil-
lion breached username-password pairs [45] and the Com-
pilation of Many Breaches (COMB) containing 3.2 billion
pairs [37] released in February 2021. For each attempt, we
logged whether the username, the password, or the username-
password pair appeared in this breach dataset. We also con-
sider vulnerability to credential tweaking attacks [12, 34, 44]
that target passwords similar to a user’s other breached pass-
words. We therefore consider recording the submitted pass-
word’s edit distance, PPSM similarity [34], and Pass2Path
similarity [34] from each breached password for the given
username, if it is present in the breach. We also consider
logging the edit distance of the submitted password from pre-
vious passwords submitted for that username and IP in the
same 24 hour window, which would shed light on whether
users are making typos or submitting distinct passwords, and
what types of password-guessing strategies attackers employ.

4.2 Security analysis of measurements
We now turn to making risk assessments about candidate
measurements schemas and, in particular, how exposure of
Gossamer logs using a candidate schema can be exploited to
improve password guessing attacks.

Threat models. As discussed in the last section, we designed
Gossamer and our deployment procedures to limit the risk of
illicit access to Gossamer logs, but the principle of defense-
in-depth suggests that we consider when these mechanisms
and procedures fail. For example, an insider attacker could
leak the logs to the public internet, or a smash-and-grab attack
could somehow compromise the analysis service and exfiltrate
the logs.

We therefore consider two threat models. Both threat mod-
els assume the attacker obtains a copy of Gossamer logs, can
re-identify4 usernames within the dataset, and seeks to infer
the password associated to some particular username. In the
first threat model, the attacker can mount an online guessing
attack by querying the login service. In the second threat
model, the attacker is assumed to additionally have access
to some salted hash of the password and so can perform an
offline guessing attack. The only difference between the two
threat models for our purposes is the expected guessing bud-
get q, which would be on the order of tens to thousands in the
online case and hundreds of millions in the offline case.

Looking ahead, it will also be material whether or not the
targeted username appears in an attacker-known password
breach. If not, the best strategy is for the attacker to modify a
target-agnostic password guessing attack (e.g., a dictionary
attack) to incorporate relevant information leaked via the
log file. In the targeted guessing threat model, the username

4Recall that the persistent database contains masked usernames, and it is
not exactly clear how attackers would re-identify in this setting. Nevertheless,
we conservatively assume that re-identification is perfect.
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appears in data breaches known to the attacker, and so the
best strategy is to modify a targeted password guessing attack
(e.g., [34]) to incorporate relevant information leaked via the
log file. We detail particular attacks more below.

In each threat model we consider also a baseline attack
(specified below) which performs either targeted or untargeted
guessing without exploiting the log files.

Dataset for simulations. The simulations discussed below
are based on the breach data used in prior work [25, 34] con-
taining 1.3 billion username-password pairs. There are 370
million unique passwords between length 6 and 30, associ-
ated with 1.12 billion usernames. We removed passwords
shorter than 6 characters and longer than 30 characters as
done in [25, 34]. We split this data so that the attacker has ac-
cess to 80% to inform a guess list, and we randomly sampled
10,000 passwords with replacement from the remaining 20%
as target user passwords that the attacker is trying to guess.

Password strength measurements. We first focus on four
of the password-derived measurements: (1) whether the pass-
word is in the top 5,000 RockYou passwords (RY), (2) whether
it’s in the first 5,000 Hashcat-generated passwords (HC), (3)
the binary zxcvbn (ZB) score of the password that we explain
below, and (4) the raw zxcvbn [47] score of the password for
comparison. By default, zxcvbn returns a password strength
between 0 and 4. We hypothesized that this level of granu-
larity would leak too much information about the password
and speed up a guessing attack. Therefore, we also consider
a modified zxcvbn score, where we record 0 if the zxcvbn
score is 0, and 1 otherwise; we refer to this as the binary
zxcvbn score (ZB). We also consider a combined measure-
ment of all three measurements described above (except the
original zxcvbn score) — that is, whether the values of all
three measurements match between two given passwords.

Each of these password-derived measurements can be rep-
resented as a function M(w) that outputs the result of the
measurement as a boolean, an integer, or a tuple. Given a
measurement value m = M(w̃) about a randomly chosen tar-
get password w̃, the attacker wins if they can guess the target
password within q guesses. This is also called the q-success
rate (λq). We measure λq for different values of q. An at-
tacker, given a measurement m = M(w̃), can filter its list of
guesses W to only the passwords w ∈W that match the mea-
surement, i.e., m = M(w). We let λM

q be the success rate of
this attack. The baseline success rate λ0

q is given by the recov-
ery rate of the attack that simply queries the attacker guess list
in descending frequency order (without filtering). Thus, we
measure the increase in attacker success as ∆q(M) = λM

q −λ0
q.

The results of our simulations are shown in Figure 2. We
first discuss the online context, where q≤ 1000. Among dif-
ferent measurements, revealing the zxcvbn score provides the
largest improvement in attack efficacy, enabling an attacker
to guess 1.6% more passwords in less than 1,000 guesses,
compared to the baseline (of 1.8% passwords). The binary
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Figure 2: Relative improvement in password guessing success
rate (∆q) due to access to password-derived statistics from
Gossamer over the baseline in q≤ 108 guesses.

zxcvbn score reduces the guessing advantage by a modest
amount. Overall, all three measurements combined — Rock-
You top 5,000, Hashcat top 5,000, and the binary zxcvbn score
— would enable an attacker to guess ∆103 = 3.1% more pass-
words compared to not having access to the password-derived
measurements. Note that this is without any password policy
(except the minimum length requirement of 6 characters).

We also check the success rates for passwords containing
at least three character classes (uppercase, lowercase, digits,
and symbols), a common requirement. Both universities have
three character classes as part of the password policy for cur-
rent students, staff, and faculty, although old alumni accounts
may not satisfy this requirement. When looking at passwords
that meet this policy, only 0.8% of passwords are guessed
within the first 1,000 guesses without any password-derived
information, and the combination of password-derived fields
brings this percentage up to just 1.3% (∆103 = 0.5%).

Next we discuss the success rate of an attacker for a large
guessing budget q ∈ [103,109]. As before, the zxcvbn score
can be damaging to the privacy of user passwords, resulting
in as high as a 20% increase in attacker success. The binary
zxcvbn score provides less information and never leads to
more than a 2% increase in attacker success even with a very
high number of guesses. Combined measurements also lead to
a bounded increase in the fraction of passwords cracked by the
attacker, who can guess at most 4% more passwords with the
measurement information in an untargeted attack compared to
an attacker without the information. More importantly, most
of the improvement occurs for passwords guessed in less
than 10,000 guesses because the statistics allow an attacker
to rule out many popular passwords when guessing already
vulnerable, weak passwords.

Thus we conclude that while including full zxcvbn would
be too risky, the increase in attacker success when given the
other password strength measures (with the binary zxcvbn
score) is sufficiently small.

Edit distance measurements. Other measurements we con-
sider are the edit distance from breached passwords for the
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appropriate username and the edit distance from other submit-
ted passwords, including the correct ones. Early versions of
Gossamer recorded the precise edit distance; we instead now
suggest quantizing to just indicate whether a submitted pass-
word is within edit distance two of a breached password or
other submitted password. Our current implementation does
so, and we quantized the data in previously gathered logs.

To come to this conclusion, we observe that an attacker
in our threat model can check whether a username is in a
breach. (Recall that we conservatively assume the attacker
can perfectly reidentify usernames and that they have access
to all the breach data used by the measurement system). If the
username is not in a breach, then the attacker can proceed as
above through a general guess list. If it is, then the attacker
can mount a targeted credential tweaking attack in the follow-
ing way. They start by generating guesses using the state-of-
the-art credential tweaking attack based on pass2path [34],
seeding it with the passwords in the breach for the targeted
username. They can then use the edit distance fields in the
log data to filter this guess list by removing any guesses that
are the incorrect edit distance from the breached passwords,
or not within the appropriate quantized edit distance from the
breached password, depending on which schema option we
are evaluating.

To assess the improvement in attacks, we compare the
modified attack to a baseline one that just applies pass2path.
For simulations, we randomly selected 10,000 username-
password pairs from the 20% test data described above, but
conditioned on the usernames also appearing in the 80%
leaked dataset. We exclude cases where the password is the
same on both sides of the split (such passwords would be eas-
ily guessed via credential stuffing). For each target username-
password pair, we give the attacker the edit distance of the
target password from all the breached passwords associated
with that username. Then λed

q is the success rate for pass2path
with guesses filtered to only those that have matching edit
distance information. The baseline attacker’s success λ0

q is
vanilla pass2path’s success rate.

The baseline success rate in the online setting is λ0
103 =

21.6%. With precise edit distances knowledge, the attacker
can instead achieve λed

103 = 85.2%. This is an uncomfortably
large jump in attacker’s success. Quantizing to just edit dis-
tance ≤ 2 yields a 22.5% success rate, just a 0.9% increase
over the baseline. For larger query budgets (relevant in offline
cracking attacks), the improvement for quantized edit distance
is even less, at 0.25% increase over baseline for q = 108.

Discussion. Our simulations suggest that including even
moderately granular data such as zxcvbn scores or edit dis-
tances in log files might be a risk factor in the case that per-
sistant logs are somehow leaked to adversaries. Therefore we
suggest a conservative approach and select logging schemas
that avoid improving guessing attacks significantly. contribu-
tion of this work, as it allows reasoning in a structured way
about risk of password-derived fields.

One current limitation of the framework is that it focuses
thus far on attacks against a single user, and so we do not
yet know how best to assess the risk of measures capturing
similarity of passwords across usernames. Future work could
look at extending the framework to look at multi-user attacks.
Another limitation is that we rely on best-known attacks (such
as pass2path), and as such future work could yield improved
attacks. It is therefore important to retain the ability to sanitize
or delete older logs should new results surface previously
unforeseen risks.

A full list of measurements logged by Gossamer can be
found in Appendix A Figure 10.

5 Deploying Gossamer

We partnered with security engineers at two large universities
to deploy Gossamer and collect data, beginning in December
2020. We collected data for seven months at U1 and three
months at U2 (a shorter timeframe due to the preferences
of the IT department) . This timeframe encompassed mid-
semester, exam, and break periods, so we were able to observe
different levels of activities. Throughout this timeframe, we
occasionally made updates to some of the measurement mech-
anisms; these updates were done after careful review of the
code by pulling from a git repository accessible to the virtual
machine running the measurement service, and any summary
statistic that may be affected an update was calculated using
the data after the update was made .

Review process and ethical considerations. Although our
research could help understand characteristics of password
submissions received by login systems, we must also consider
the privacy and security risks of inadvertent exposure of the
sensitive information in the logs. Our design of Gossamer,
therefore, strives to balance these risks with the benefits of
protecting user accounts. We conducted a nearly year-long
design and implementation effort that entailed a number of
external review processes to help guide our research study
and reduce potential privacy and security risks to users.

As noted in Section 3, Gossamer logs do not include PII.
Researchers (with one exception mentioned below for com-
promise reporting) do not have access to usernames or email
addresses. They do have access to IP addresses from where
login requests originate.

To protect sensitive data, Gossamer uses a layered ap-
proach to security with an encrypted disk, strict firewall rules,
and MFA login to access the analysis service. Moreover, Gos-
samer never stores plaintext passwords on disk; it instead
stores a set of password-derived measurements in the per-
sistent database for analysis. Even in the case that these are
somehow leaked the chosen measurements represent little
additional risk of password disclosure (see Section 4).

The research group had ground rules for handling the data,
including minimizing granularity of information shared out-
side the confines of analysis systems, restricting persistent
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Figure 3: Successful and failed login attempts per day at two universities (for a total of 196 K unique users at U1 and 309 K at
U2). Potential high-volume attack campaigns we discovered are also shown.

database access to only a subset of researchers, and setting
clear expectations about (in)appropriate use of access (e.g.,
prohibiting re-identification attacks attempting to identify a
user from the obfuscated data).

We also went through a careful vetting and approval process
with university leadership and their information technology
(IT) security departments. This involved presenting to the
university leaderships about the goals, design, and procedures
associated with the measurement studies, and working closely
with our universities’ security engineers to design and imple-
ment Gossamer. Satisfied with our process and the potential
benefits to university account holders, we received approval
from university leadership for the deployment of Gossamer.

Before deploying the system, we submitted our study de-
signs for IRB review at each university. The study protocols
at the two universities were slightly different in how we report
to IT security compromised user accounts. At U1, researchers
never had access to plaintext usernames, and the security en-
gineers handled the decryption of reported (encrypted) user-
names. Therefore, we received an IRB exemption at U1, which
found that the research study does not qualify as human sub-
jects research. At U2, security engineers requested that we
report the plaintext usernames for operational simplicity. One
researcher decrypts the username before reporting compro-
mises. Therefore, we received IRB approval at U2, finding
the study as a minimal risk human subject research. We did
not seek consent from individual users, as we do not know
their usernames or email addresses. Instead we obtained ex-
plicit approval for conducting this study from the universities’
leadership and IT departments who provide the login services.
Such waivers of explicit consent from participants were used
in prior work (e.g., [21]) and are discussed as an acceptable
approach in the Menlo report [23].

Deployment configuration. As mentioned in Section 3,
Gossamer consists of two services — a measurement ser-
vice and an analysis service. For U1, we used Amazon EC2
in a virtual private network to host the measurement service
as recommended by the U1 security engineers, and we used

an on-premise dedicated server for analysis. For U2, we used
two separate on-premise virtual machines for running the
measurement service and the analysis service. The persistent
storage is hosted inside the VM running the analysis.

Strict firewalls were set up for all machines (on-premise or
EC2) that block all incoming and outgoing requests except
from inside the private network of the respective universi-
ties. Only a subset of the researchers have access to these
machines via SSH, and the access requires two-factor authen-
tication. All incoming and outgoing network connections are
logged by the firewall and regularly checked by the security
engineers for signs of intrusion attempts. Relevant security
patches are checked regularly and applied immediately. The
persistent storage uses a MySQL database, which uses TLS
for all communication and the underlying disk is encrypted
at rest. The login server and the measurement service also
use TLS with pinned certificates [13] for all communications.
All passwords used are longer than 12 characters, randomly
generated, and stored in a password manager. The security
engineers also ran scans on the code of Gossamer and the
VMs to check for known vulnerabilities.

6 Login Statistics, Patterns, & Observations

We collected data at U1 for seven months and at U2 for three
months starting in December 2020. Overall, we observed 10
million requests at U1 and 24 million requests at U2. We
show the daily successful and failed requests in Figure 3. On
average, 5–8% of requests failed; however, on a few days
we observed a spike in the failure rate (> 50%). These were
high volume attacks that we discuss below. After removing
the noise caused by these attacks, we found that users sub-
mitted login requests on average 1.99 times per day at U1
and 2.05 times per day at U2. We see fewer login requests at
U1 because some login requests are handled via a different
authentication server that is outside of our instrumentation.

We saw 196 K unique usernames submitted to U1, out of
which 177 K were valid usernames, of which 154 K users had
a successful login at least once during our instrumentation
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Univ. 1 Univ. 2

Session Statistics (with a 360s threshold)
Avg. session size 2.25 2.21
99th percentile session size 10 6
% abandoned sessions 5.47% 1.96%

User Statistics
# of unique usernames seen 196,424 309,801
# of valid users 177,286 169,774
# of active users 130,695 110,476
% valid users w/ weak passwords 0.03% 0.06%
% valid users w/ username in breach† 5.79% 3.27%
% valid users w/ passwords in breach† 2.92% 9.34%
% valid users w/ user-pw pair in breach† 0.01% 0.15%
% valid users w/ tweaked password 1.22% 0.66%
% valid users who may be using password
managers

24.76% 27.34%

Avg. devices per user per day 1.51 1.91
Avg. devicesper user (over whole time period) 14.51 14.97
Avg. num unique passwords per user 1.96 9.59

Login Statistics
Avg. Login requests per day 49,302 246,274
Avg. # of submitted usernames per day 24,822 61,798
% of requests succeeded 94.99% 92.35%
Avg. # requests per day per user 1.99 2.05
% of requests from mobile device 31.00% 35.57%
% IPs from VPNs, proxies, or Tor nodes 22.08% 4.91%

Submitted password statistics
% req. w/ password in breach† 2.71% 0.10%
% req. w/ user-pwd pair in breach† 0.07% 0.01%
% failed req. containing a typo 29.67% 12.04%
% failed req. (with edit dist msmt) containing
a typo

62.39% 58.37%

% failed req. from mobile device containing a
typo

38.63% 38.36%

% failed req. (with edit dist msmt) from mo-
bile device containing a typo

72.69% 81.87%

% pwds tweaked 0.92% 0.34%

† Statistics related to breach data were calculated for data beginning Jan 27 ’21 after
we added more breach data to the instrumentation.

Figure 4: Summary statistics of login requests recorded by
Gossamer at U1 and U2. More statistics can be found in
Appendix A Figure 12.

period. At U2, we saw 170 K users with at least one successful
login during our instrumentation period and 15 K additional
users who tried to log in with a valid username but could not
complete login due to errors. We consider a user active if they
have at least one successful login every month. We found
about 130 K active users at U1 and 110 K at U2.

Requests originated from 526 K unique IP addresses (ap-
proximately 88 K per month) at U1 and 513 K (171 K per
month) at U2, and they were associated with 44 K unique
user agents at U1 and 31 K at U2. We also used the GeoIP2
database published by MaxMind [27] to find location infor-
mation for IPs; the majority of login requests at both schools
originated from within the United States, followed by China
and India. Summary statistics that we report on these login
requests can be found in Figure 4, with additional statistics in
Figure 12 in Appendix A.

6.1 Characteristics of high volume attacks

We observed three high volume attacks during our instrumen-
tation. Since we are focusing on understanding the full picture
of user behavior, we first report on these attacks and then re-
move them from the dataset to avoid skewing other statistics
we report. In total, we removed 54 K requests at U1 and 81 K
requests at U2.

Attack 1: Naïve, multiple-IP, high-volume credential stuffing
attack campaign at U1. Over January 25–26, 2021, four IPs
conducted a credential stuffing campaign consisting of 36 K
attempts to 19 K users. Two of these IPs were identified by
the MaxMind GeoIP database [28] as coming from NordVPN,
one from Microsoft, and one from Inwi Mobile [3]. All IPs
were active in non-overlapping time periods and submitted up
to 100 requests per second. More than 99% of requests from
these IPs in this time frame had null user agents. Almost a
third of the attempts (29%) of submitted username-password
pairs from these IPs were directly from prior breaches, and
60% of submitted passwords were present in prior breaches.

The attack campaign successfully compromised 23 ac-
counts at U1, all of which had been flagged by security engi-
neers and had their passwords scrambled to prevent access.
We observed some duplicate username-password pairs sub-
mitted across IPs; thus we hypothesize that the attacker used
an automated script that iterates through an unfiltered list of
breach data using a variety of IPs.

Attack 2: Credential stuffing attack using Sentry MBA tool
against U1. An IP hosted in Google Cloud [2] executed
another credential stuffing attack at U1 on March 14th, 2021
from 18:42 - 22:22 UTC. This IP submitted over 17 K re-
quests to 15 K unique usernames, submitting approximately
80 requests per second. Of these attempts, 22% of the sub-
mitted username-password pairs and 56% of the submitted
passwords were directly from the breach data we used with
Gossamer. The attacker successfully guessed the passwords
for 14 users. Among those, 13 were already recorded as com-
promised by security engineers; we reported the remaining
encrypted username to the security engineers as a potentially
compromised account.

Although both Attacks 1 and 2 were credential stuffing
campaigns, we suspect that the respective attackers were using
two different sets of breach data, as there was little overlap in
the users targeted.

We noticed that the attack traffic in this campaign was
evenly split between five distinct user agents that were not
present in the rest of our data; these five user agents are the
default user agents for a tool called Sentry MBA [42]. Sentry
MBA is a credential stuffing tool where the user can specify
a list of usernames and passwords, a config file for specifying
the HTML fields on the target login page, and a list of proxies
from which to send traffic.

Attack 3: High volume, password spraying attack at U2. On
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December 22nd, 2020, a total of 12 unique IPs belonging to
Digital Ocean Cloud [1] carried out a high volume password
spraying attack by targeting 76 K unique users with 169 K
requests at an average of 262 requests per minute. The at-
tacker pretended to send requests from SMTP and IMAP clients.
The number of usernames targeted by each IP was evenly dis-
tributed among the IPs, and these IPs were active only during
the attack period. Less than 3% of submitted passwords were
from prior breaches, and none of the submitted usernames
were present in prior breaches. We also noticed that all of the
login attempts were for non-U2 usernames, indicating that the
breach data was not filtered before the attack. Consequently
during this attack campaign, there were no successful logins.

Filtering out attacks. We remove requests from IP ad-
dresses corresponding to these three attacks on the respective
days for all subsequent statistics to avoid skewing the statis-
tics. Although we did have access to compromised usernames,
there was no clear way to determine which IP address compro-
mised a given user. In Section A.2, we show why excluding
all IP addresses that contacted a compromised user would
not have significantly affected the statistics. This filtering ap-
proach works for our setup but may not generalize to other
systems. Similarly, although there could be other low-volume
attacks that we did not detect, we believe they will not impact
the statistics we report.

6.2 User and client statistics

Gossamer observed login attempts for 196 K unique user-
names at U1. Among the users who could never login, 42 K
(21%) of them used a username that does not exist in the
U1 login database; however, only 0.1% of these usernames
appeared in our breach data. At U2, we saw 310 K users who
tried to login, 170 K (55%) that were successful, and a stag-
gering 139 K (45%) usernames that do not exist. We are not
sure what caused such a high volume of login submissions
with invalid usernames.

More summary statistics on these login requests can be
found in Figure 4 and are elaborated in more detail below.

IP and client characteristics. Requests originated from
539 K unique IP addresses at U1 and 2.47 M at U2. There
were 44 K IPs that sent requests to both universities; of these,
621 IPs had no successful logins.

We also recorded the user agent strings present in the HTTP
header of the login requests. We observed about 5 K unique
user agent strings at U1, and about 31 K at U2. The top 10
user agents at each school are listed in Appendix A Figure 13.
In 22% of requests at U2, the user agent string was set to
an empty string; all of these requests were through basic
authentication [16]. U1 does not support basic authentication,
and less than 1% of the requests had an empty user agent field.
We suspect that attempts with an empty user agent field were
submitted via an automated script that neglected to set the user

agent field. A breakdown of operating systems mentioned in
the user agent string appears in Appendix A Figure 11.

Prior work [17] has suggested that attempts from multiple
devices for a user is suspicious and should require additional
authentication steps. Freeman et al. defined a device as a pair
of a unique IP address and a user agent [17]. We observed
that on average, 3% of users at U1 and 19% of users at U2 log
in from two different devices per day. 11% of users at U1 and
6% of users at U2 have logged from more than fifty devices
over the course of the study period.

To find what fraction of IPs were public VPNs, proxies, or
Tor exit nodes, we used the Blackbox5 API. We found that
22% of IPs at U1 were VPNs, proxies, or Tor exit nodes. How-
ever, at U1, 16% of all IPs are 10-space IPs, all of which are
marked as VPNs/proxies, contributing to this high percentage.
These IP addresses are set up by the university IT department
and are not accessible outside of the university network. At
U2 about 5% IPs were flagged as VPN/proxies by Blackbox
API, and 3.6% of all IPs are 10-space IP addresses. Because
users may be sharing a VPN or proxy network, it is possible
that some users may have the same IP; thus we report most
statistics based on device, since it is less likely two different
users would also have the same user agent.

The IP address of a user’s device might change over time
due to DHCP churn or switching between multiple networks.
Therefore a login from the same device and browser may
appear as if it’s from multiple different devices, according to
the previous definition. So, we conservatively estimate the
number of different browsers per user based on the user agent
string. At U1, 21% of valid users, and at U2 29%, successfully
logged in with ten or more user agents. Thus, many users log
in from different browsers, and login security mechanisms
must consider this while designing policies.

We were also interested in determining what percentage of
users logged in on their mobile device (smartphone or tablet)
versus on a laptop or desktop computer. To do this, we used a
regular expression that matched mobile devices on the user
agent. We found that at U1, 31% of requests originated from a
mobile device; out of those, 84% of requests originated from
iOS devices and 16% from Android devices. At U2, 18% of
requests (80% of which were iOS and 20% Android) came
from a mobile device. At both schools, iOS devices were
significantly more popular.

These findings may be useful in developing attack detection
mechanisms. For example, if a user always logs in from an
Android device, it may be suspicious if they attempt to log in
from an iOS device.

6.3 Password security
The strength and guessability of a password directly affect
the security of a user’s account. Using the visibility into pass-
words provided by Gossamer, we investigate password se-

5https://blackbox.ipinfo.app/
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Figure 5: Cumulative distributions of unique passwords per
username and IP for February 2021. The X-axis is log scale.

curity in terms of strength, the number of unique passwords
submitted for a username, and the use of breached credentials.

Password strength. We used four different measurements
in Gossamer to measure password strength. We record the
bucketized zxcvbn score, as described in Section 4; whether
the password appears in the top 5k most common RockYou
passwords; whether the password appears in the top 5k pass-
words generated by Hashcat on the RockYou dataset with
the best64 ruleset [7]; and finally, whether the password ap-
pears in the top 1000 most common passwords in our breach
compilation dataset.

Exact percentages of requests matching each of these pass-
word strength metrics can be found in Appendix A Figure 12.
In summary, we found that the vast majority of valid users
were using strong passwords by these metrics. Both universi-
ties use strong password policies, requiring a minimum length
of 8 and at U1 three different character classes; so this finding
is not surprising.

Unique passwords. We also measure the number of unique
passwords submitted for a given username or from a given IP
address on a certain day.

We observe that a median of one and a 99th percentile of
seven unique passwords are submitted against a single user-
name per day. Slightly more unique passwords — a median
of one and 99th percentile of nine — are submitted from a
single IP address at U1 (unfortunately we do not have this
measurement at U2 because of a configuration issue) . Both
distributions are shown in Figure 5. More unique passwords
are submitted from a single IP address than for a single user-
name, which makes sense because an IP address may submit
to multiple different users, especially if it is a VPN/proxy.

We noted earlier that some organizations may lock accounts
that receive a certain number of failed attempts in a given time
period. However, these lockout mechanisms do not take into
account whether a user submitted the same password multiple
times. Creating a lockout threshold based on the number of
unique passwords tried instead of the total number of attempts
would improve usability without any improvement in attacker
success rates.

To demonstrate this, we consider a lockout threshold of
10 and calculate the number of accounts that would have
been locked by counting the number of attempts on a given
day instead of the number of unique passwords. We find that
17,863 accounts would have been locked under the simple
policy, versus just 2,220 accounts under the policy that counts
by unique passwords — an 88% decrease. Similarly for a
lockout threshold of 5, implementing the more complex policy
would decrease the number of lockouts by 91% from 280,360
to 23,919.

Such a lockout policy could be implemented relatively sim-
ply by storing the password hashes submitted for a given user
for the last day. Then a lockout policy would check the num-
ber of unique hashes submitted in the designated time period.
This new policy would improve usability with only a slight
increase in implementation complexity and no benefit to a
potential attacker.

Breached credential use. To measure the usage of breached
credentials, Gossamer records for each attempt whether the
username, password, or username-password pair appeared in
our breach dataset. Usernames were stripped of a domain
name, if applicable, before performing the match. We find
that nearly 6% of valid users at U1 and 3% of valid users
at U2 appear in our breach dataset, indicating that they have
appeared in some data breach in the past. Additionally, we
find that 3% of submitted passwords at U1 and 0.1% at U2
appeared in a breach; finally, 0.07 % of username-password
pairs at U1 and 0.01% at U2 appeared in a breach. Most of
these were failed attempts, but we find that 23 users (0.01% of
valid users) at U1 and 254 users at U2 (0.15% of valid users)
were still using a breached password as their actual password.

These users are vulnerable to credential stuffing attacks,
and this motivates the deployment of breach alerting tools in
login systems that would prevent users from continuing to
use breached passwords.

For each attempt, we also check for tweaked passwords
by recording the similarity of the submitted password to a
breached password using three metrics — edit distance, PPSM
similarity, and pass2path rank [34]. We define a password as
being tweaked if the edit distance is less than or equal to
two, the PPSM similarity is zero (indicating that they are
similar), or the pass2path rank is less than or equal to 1,000.
We found that at U1, 0.92% of all passwords submitted were
tweaked, and 2,164 users (1.22% of valid users) were using
a tweaked password. At U2, 0.34% of passwords submitted
were tweaked, and 1,125 users (0.66% of valid users) were
using a tweaked password.

However, due to the design of the system, we can only
determine whether a user has a tweaked password if they
had a previously breached password in our dataset to which
we can compare. When we take this into account, we find
that nearly 7% of users at both universities with at least one
breached password were using a tweaked password. A recent
study by Pal et al. [34] reported a slightly higher rate of 8.4%.
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We hypothesize that users may append a single character to
their old, breached password, causing them to be vulnerable
to credential tweaking attacks, in which an attacker tries close
variants of breached passwords in an attempt to guess user
passwords. Implementing a breach alerting system such as
Might I Get Pwned [35] or using a personalized password
strength meter [34] in the password change flow could alert
users when they attempt to change their password to one that
is vulnerable to credential tweaking attacks.

Password changes. Neither of the universities have any pe-
riodic password change policies. At U2, users are recom-
mended to change their passwords twice a year, but this is
not enforced. New passwords are recommended to not be
the same or similar to any previous passwords, but this is
not enforced either. Although we did not instrument the pass-
word change system, we are able to estimate a subset of the
password changes made using the password’s edit distance
from the previous submissions for a user logged by Gos-
samer. Because previous submissions are cleared every 24
hours, though, we can only use this measurement in instances
when the user logged in with their old and new password on
the same day. We find 9,011 total password change events
made by 2,893 unique users — 78 of which appeared in the
compromise database — at U1. At U2, we saw 42,827 total
password change events made by 7,812 unique users — 211
of which appeared in the compromise database. Of the pass-
word change events at U1, 100 resulted in a new password
that was in our breach dataset, and 125 resulted in a new pass-
word that was a tweaked version of one in our breach dataset.
At U1, at least 1.9% of valid users changed their password at
one point during the seven month measurement period (about
1.3 K per month) and at U2, at least 4.6% (14 K per month).
This is only a lower bound, since we can only measure a frac-
tion of password changes, and prior work is consistent with
this bound, reporting higher password change rates [10, 14].

6.4 Usability
A longstanding complaint about passwords is their usabil-
ity. Users often have trouble remembering strong passwords,
and they may commit typos especially if they do choose a
stronger, more complex password [11, 38, 39]. A key benefit
of Gossamer is that it provides a new observation point for
measuring password-based login usability.

Login sessions. A user can retry logging in if a login attempt
fails (probably due to submitting an incorrect password). To
better understand a user’s pattern of login retries, we define a
login session as a sequence of login attempts to a username
from the same device ending either in a successful attempt
or in a period of inactivity (indicating that the user has given
up after a series of failed attempts). We define a device as
a tuple of an IP address and a user agent. It is possible that
more than one user may use the same internet connection
and thus have the same IP address. In this case, it’s possible
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Figure 6: Cumulative distribution of interarrival time between
requests for different inactivity thresholds for February 2021.
The X-axis is log scale.

that they may appear in the same login session if they both
submit login requests to the same username in a period of
time and share the same user agent as well; however, this
seems an unlikely scenario. The definition of login session is
parameterized by the length of the period of inactivity, which
we call the inactivity threshold. We refer to a session that did
not end in a successful login as an abandoned session and the
number of login attempts in a login session as session size.

We examine the time between successive login requests,
termed as interarrival time, to determine the inactivity thresh-
old that provides stable session size. Because a successful
login request indicates the end of a login session, we specifi-
cally investigate pairs of successive login requests where the
first request was not successful. We show this distribution in
Figure 6 at both universities for the month of February 2021,
as a representative month for which the data collection pe-
riods overlap. We limit the X-axis to 15 minutes for easier
viewing. At U1, 81% of successive attempts are executed
within 60 seconds of the previous attempt, 90% of requests
are executed within 361 seconds (6 minutes), and 95% of
requests are executed within 13 minutes.

We can also see by looking at the average session size for
multiple thresholds (Figure 7) that the choice of inactivity
threshold does not significantly affect the session size. Thus,
we choose 6 minutes as our inactivity threshold for future
statistics involving sessions, since 90% of successive attempts
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Inactivity threshold Average session size
(seconds) Univ. 1 Univ. 2

60 2.16 2.44
360 2.29 2.22
600 2.32 2.99

Figure 7: Average session sizes (number of attempts per ses-
sion) for different inactivity thresholds

occurred within that window.
With this definition, we find that 51% of sessions at U1

required more than one attempt, and nearly 5% of sessions
were abandoned. For U2, 38% of sessions required more than
one attempt, and 2% of sessions were abandoned. With so
many sessions requiring more than one attempt, there is much
room for improvement in usability of password-based logins,
which we elaborate on in our discussions on password typos
and lockout thresholds.

Retries. The session size indicates how many retries were re-
quired before a successful login or the user giving up. Thus we
show the average session sizes for different inactivity thresh-
olds in Figure 7. At U1, we found that 22% of successful
sessions and 14% of abandoned sessions required more than
one attempt; at U2, 38% of sessions required more than one
attempt. Some login systems have a lockout policy, in which
they lock a user’s account after a certain number of failed
attempts have been made. In this case, the 99th percentile of
session size is 10 attempts per session, providing empirical
support for a standard choice for lockout threshold.

We measure the number of sessions per user in a single
day, as this will inform how often a user needs to go through
the login process, how important it is to have a frictionless
login process, and how effective single sign-on is. We find
that a user attempts to log in a median of one session per
day and a 99th percentile of six sessions per day; we show
the distribution of the number of sessions per user per day in
Figure 8. However, the tail end of the graph shows that some
users attempted up to 112 sessions in a single day. Given that
the 99th percentile is six sessions per day, this is probably
indicative of suspicious behavior, and in future work this
metric may be used in conjunction with the other metrics
we’ve reported to further investigate possible attacks.

To investigate the password-based login usability of mobile
devices, we compare the session size and frequency of ses-
sions per day for mobile and non-mobile sessions. We break
mobile devicesdown even further by comparing iPhone and
Android devices; these distributions are shown in Figure 9.
We can see from these graphs that users of iOS devices tend
to require more attempts than Android ones.

Password typos. One of the areas of friction in a login sys-
tem may be password typos, especially for stronger, more
complex passwords. With the ephemeral datastore in Gos-
samer, we computed whether a password submission was
within edit distance two of the actual password.

100 101 102 103

0

0.2

0.4

0.6

0.8

1

Number of sessions per user per day

C
um

ul
at

iv
e

fr
ac

tio
n

of
us

er
na

m
e-

da
te

pa
ir

s

U1
U2

Figure 8: Cumulative distributions of number of sessions per
user per day for an inactivity threshold of 360s for February
2021. The X-axis is log scale.
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Figure 9: Cumulative distributions of session sizes (number
of attempts per session) for mobile devices for February 2021.
The X-axis for U2 is limited to 10 for comparison with U1
(although the maximum session size consisted of 54 attempts).

We can estimate the number of password typos using this
measurement; however, we only have this measurement for
users that later logged in successfully on the same day, which
is only 45% of all failed attempts at U1. Thus we find that at
U1, 62% of failed requests where we have this measurement
contained typos of edit distance two or less, or 30% of all
failed requests. In a study at Dropbox, Chatterjee et al. [11]
estimated the number of typos to be at least 9% of all failed
requests.

Requests originating from mobile devices tend to contain
typos even more frequently. Out of all failed mobile requests
with the edit distance measurement at U1, 72% were typos
(or 39% of all failed mobile requests).

When investigating sessions with two or more attempts, we
found that 12% of eventually successful sessions of size two
or greater initially failed because of a typo. The remaining
failures may be explained by user memory errors (using the
wrong password). These findings further underscore the utility
of password managers, since they help avoid both typos and
memory errors.

Password managers. Although we cannot identify users
with password managers with certainty, we can find the num-
ber of users with a certain number of successful login attempts
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and no failures, and we conjecture that this may be an approx-
imation. For example, we found 25% of valid users at U1
and 27% at U2 have at least ten logins and never had a failed
login over the course of our measurements. Since, as we show
in Figure 4, the majority of users — 99.97% users in U1 and
99.94% users in U2 — are using strong passwords (according
to the zxcvbn score), we believe that these users are using
password managers to enter their passwords.

Duo logs. Both U1 and U2 have introduced the use of Duo
two factor authentication [9] to further strengthen account
security. At U2, we were able to analyze Duo logs for suc-
cessful login attempts and combine them with Gossamer logs
to explore the tension between usability and security with re-
spect to MFA. Unfortunately, our logs and Duo log entries do
not share any unique identifiers. Instead, we try to match each
successful login attempt to a corresponding Duo push within
two minutes of the login request originating from the same
user. If there were multiple matches to a single successful
login attempt, we chose the Duo push closest in time to the
login request.

At U2, out of 15.9 M successful login requests, 62% were
using Basic Auth [16], which does not require users to en-
roll in two-factor authentication. Among the remaining 6.0 M
successful logins, we could match 89% of requests, and the
remaining 11% already had a previously obtained Duo cookie
which remained active for 12 hours after a successful authen-
tication. Among the Duo pushes we could successfully match
with a login attempt, we found that 96.7% were successful,
3.2% were denied, and only 46 (< 0.01%) were marked as
fraud by users. Users on average took 14 seconds to mark
their Duo push as valid, slowing down logins for honest users.

7 Conclusion

We designed, built, and carefully deployed Gossamer, a frame-
work for securely recording statistics about login requests and
submitted passwords during login. Our approach combines
system security mechanisms, a simulation-based approach
to assessing risk of different measurements, and procedural
mechanisms to enable new kinds of measurement studies. In
studies conducted at two large universities in collaboration
with their IT security teams, we were able to gather first-of-
their-kind measurements about login behavior that shed light
on usability, security, and attacker behavior.

Through these measurements, we observed several patterns
in user login behavior. First, we saw that login friction is still
high. Many users require more than one attempt before suc-
cessfully logging in, and Duo two-factor authentication added
on average an additional 14 seconds to their login. One sug-
gestion we have for reducing login friction is to count unique
passwords submitted for a user, rather than every request; we
find that this would reduce lockouts by 88%.

Second, we observe that reuse of breached credentials is a
serious problem: nearly 3% of valid users at U1 and more than
9% at U2 are using a breached password that appears in our

breach dataset. During our data collection period, some users
changed their passwords to either exactly equal to one of their
breached passwords or very similar to their breached pass-
words. To reduce this number, we encourage the deployment
of breach alerting services such as Might I Get Pwned [35]
that could indicate when a user’s password is vulnerable to
credential stuffing.

We also find that visibility into submitted passwords is
helpful for designing security mechanisms and informing new
policies. Similar to how we proposed a new lockout policy,
authentication system developers can use a framework such
as Gossamer to test the effect of new policies before their
deployment. Future analyses with Gossamer may investigate
how password-derived signals help in detecting different types
of password guessing attacks and the efficacy of Duo two-
factor authentication in stopping different types of attacks.
Also, Gossamer can be extended with additional measure-
ments using the same framework and simulation method for
assessing the risk of different measurements. Thus both the
tool and approach can be useful in the future for helping ana-
lysts detect and develop mitigations against attacks. We will
be releasing Gossamer as a public, open-source project.
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A Appendix

A.1 Measurements Taken
We show all data stored in the ephemeral and persistent databases
in Figure 10. Note that the raw password is only stored in encrypted
format for 24 hours in the ephemeral database. The symbol × in-
dicates that a field was stored in plain text and

⊗
indicates it was

encrypted before storing in the indicated level of storage.

A.2 Filtering Out Attacks
We excluded high volume attacks before reporting summary statis-

tics to capture an accurate description of regular user behavior. The
remaining harder-to-detect adversarial behavior appears to be an
insignificant fraction of logins. We were given access to compromise
account reports from the instrumentation time period (as described in
Section 3. We found that an average of 190 compromised accounts
were reported every month. Overall, less than 1% of the total user
population in the monitoring period were compromised, less than
1% of all logins were to accounts that were compromised at some
point in the measurement period, and 2% of IPs were associated with
those requests.

The compromise report database logged compromise usernames,
but not specific requests or IP addresses corresponding to the user’s
compromise; thus it was difficult to exclude all attacks without
filtering out an even larger portion of benign behavior. Excluding all
login requests to usernames that were compromised at any point in
our instrumentation period did not significantly change the summary
statistics we reported. However, filtering out the high-volume attacks,
as we did in the paper, did change some statistics.

To concretize this, one statistic that we believe is more sensitive
to whether attack traffic is included in measurements is the fraction
of requests using a breached password. With the high-volume attacks
included in the calculation, this fraction was 4.73%. This percentage
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Field Eph. Pers.

Basic statistics
username

⊗ ⊗
password

⊗
IP address × ×
receipt timestamp at the login server and at Gossamer × ×
receipt timestamp at Gossamer × ×
HTTP headers × ×
result (success or failure), result code × ×
zxcvbn score (bucketized to 0, 1) ×
password was malformed ×
Credential stuffing measurements
username appeared in the breach data ×
password appeared in the breach data ×
username-password pair appeared in the breach data ×
breach source of the username, password, or pair ×
Credential spraying & dictionary-based guessing
measurements
password appeared in

– top {10, 100, 1,000} most common breached pws ×
– top {2,000, 5,000} hashcat-generated pws ×
– top {2,000, 5,000} RockYou pws ×

was password frequently submitted today? ×
was username frequently submitted today? ×
Credential tweaking measurements
PPSM [34] strength of password ×
guess rank due to credential tweaking attack [34] ×
edit dist. ≤ 2 of pw from
– other submissions for same username ×
– other submissions for same IP ×

Figure 10: Measurements we log in ephemeral (Eph.) and
persistent (Pers.) storage.

decreased to 2.36% when we filtered out high volume attacks, but
only further decreased to 2.34% when we filtered out all requests
associated with a compromised username.

Characterize benign behavior in the presence of attacks is a
fundamental challenge, given the lack of ground truth. Future work
improving the identification of adversial behavior can confirm our
characterization of benign user behavior.

A.3 Login Statistics
We show some additional statistics about the login requests recorded
by Gossamer. Figure 12 shows some additional statistics we re-
ported earlier in Figure 4. Figure 11 shows the distribution of opera-
tion systems as parsed from the user agents of the requests at both
universities; Figure 13 shows the top 10 most common user agents
we saw at both schools.

OS U1 U2

Windows 36.13% 23.96%
Mac OS X 29.47% 19.58%
iOS 26.20% 43.47%
Android 5.04% 3.18%
Linux 2.43% 0.31%
Other 0.73% 8.96%

Figure 11: The distribution of operating systems (OS) as
detected in the user-agent of all the requests (after removing
requests containing empty user-agent string at U2).

Univ. 1 Univ. 2

Submitted password statistics
% req. w/ password in breach† 2.71% 0.10%
% req. w/ username in breach† 5.31% 3.08%
% req. w/ user-pwd pair in breach† 0.07% 0.01%
% failed req.
– containing a typo 29.67% 12.04%
– containing a typo (with edit dist msmt) 62.39% 58.37%
– from mobile device containing a typo 38.63% 38.36%
– from mobile device containing a typo (with

edit dist msmt)
72.69% 81.87%

% pwds tweaked 0.92% 0.34%
% pwds w/ zxcvbn score of 0 0.06% 0.40%
% pwds in top 5k hashcat < 0.01% 0.06%
% pwds in top 5k rockyou 0.02% 0.17%
% pwds in top 1k breach comp 0.01% 0.10%

Session Statistics (with a 360s threshold)
Avg. session size 2.25 2.21
99th percentile session size 10 6
% abandoned sessions 5.47% 1.96%
% sessions with at least two attempts 22.24% 38.22%
% mobile sessions 41.32% 35.45%
% sessions with a typo 2.64% 0.85%
% mobile sessions with a typo 0.01% 0.20%
Avg. num sessions per user per day 1.74 9.23

User Statistics
# of unique usernames seen 196,424 309,801
# of valid users 177,286 169,774
# of active users 130,695 110,476
% valid users w/ weak passwords 0.03% 0.06%
% valid users w/ username in breach† 5.79% 3.27%
% valid users w/ passwords in breach† 2.92% 9.34%
% valid users w/ user-pw pair in breach† 0.01% 0.15%
% valid users w/ tweaked password 1.22% 0.66%
% valid users w/ no failed attempts 33.21% 58.02%
% valid users who may be using pw managers 24.76% 27.34%
Avg. fails before a success 1.18 1.19
Avg. devices per user per day 1.51 1.91
Avg. devices per user 14.51 14.97
Avg. IPs per user 8.70 10.56
Avg. successful IPs per user 10.65 17.63
Avg. user agents per user 6.15 3.99
Avg. unique passwords per user 1.96 9.59
Avg. attempts per unique IP per user 5.86 5.21

Login Statistics
Avg. Login requests per day 49,302 246,274
Avg. # of submitted usernames per day 24,822 61,798
% of requests succeeded 94.99% 92.35%
% of requests with null user agent 0.48% 34.31%
# of requests per day per user

– Average 1.99 2.05
– median 1 2
– 99th-percentile 7 12

% of requests from mobile device 31.00% 35.57%
% of failed requests from mobile device 24.90% 11.96%

† Statistics related to breach data were calculated for data beginning Jan 27
’21 after we added more breach data to the instrumentation.

Figure 12: Summary statistics of login requests recorded by
Gossamer at U1 (from Dec. ’20 to July ’21) and U2 (from
Dec ’20 to Mar ’21).
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User agent % req.

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36 1.54%
Mozilla/5.0 (iPhone; CPU iPhone OS 14_2 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Mobile/15E148
Safari/604.1

0.99%

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36 0.36%
Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:78.0) Gecko/20100101 Firefox/78.0 0.23%
Mozilla/5.0 (Unknown; Linux x86_64) AppleWebKit/534.34 (KHTML, like Gecko) PingdomTMS/0.8.5 Safari/534.34 0.22%
Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36 0.21%
Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Safari/605.1.15 0.15%
Mozilla/5.0 (Macintosh; Intel Mac OS X 11_1_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36 0.14%
Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:84.0) Gecko/20100101 Firefox/84.0 0.13%
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36
Edg/87.0.664.66

0.13%

User agent % req.

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36 3.15%
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36 1.56%
Mozilla/5.0 (iPhone; CPU iPhone OS 14_2 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Mobile/15E148
Safari/604.1

1.54%

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36 1.32%
Mozilla/5.0 (iPhone; CPU iPhone OS 14_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.2 Mobile/15E148
Safari/604.1

1.16%

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36 1.12%
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36 0.88%
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.182 Safari/537.36 0.76%
Mozilla/5.0 (iPhone; CPU iPhone OS 14_4 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Mobile/15E148
Safari/604.1

0.70%

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36 0.62%

Figure 13: Top 10 most common user agents at U1 (top) and at U2 (bottom)
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