
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Ferry: State-Aware Symbolic Execution for
Exploring State-Dependent Program Paths

Shunfan Zhou, Zhemin Yang, and Dan Qiao, Fudan University; Peng Liu,
The Pennsylvania State University; Min Yang, Fudan University; Zhe Wang

and Chenggang Wu, State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences

https://www.usenix.org/conference/usenixsecurity22/presentation/zhou-shunfan

Ferry: State-Aware Symbolic Execution for Exploring
State-Dependent Program Paths

Shunfan Zhou, Zhemin Yang, Dan Qiao, Peng Liu†, Min Yang, Zhe Wang‡ and Chenggang Wu‡

Fudan University, †The Pennsylvania State University, ‡State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences

{sfzhou17, yangzhemin, dqiao18, m_yang}@fudan.edu.cn, †pxl20@psu.edu, ‡{wangzhe12, wucg}@ict.ac.cn

Abstract
Symbolic execution and fuzz testing are effective ap-

proaches for program analysis, thanks to their evolving path
exploration approaches. The state-of-the-art symbolic execu-
tion and fuzzing techniques are able to generate valid program
inputs to satisfy the conditional statements. However, they
have very limited ability to explore the finite-state-machine
models implemented by real-world programs. This is be-
cause such state machines contain program-state-dependent
branches (state-dependent branches in this paper) which de-
pend on earlier program execution instead of the current pro-
gram inputs.

This paper is the first attempt to thoroughly explore the
state-dependent branches in real-world programs. We intro-
duce program-state-aware symbolic execution, a novel tech-
nique that guides symbolic execution engines to efficiently
explore the state-dependent branches. As we show in this pa-
per, state-dependent branches are prevalent in many important
programs because they implement state machines to fulfill
their application logic. Symbolically executing arbitrary pro-
grams with state-dependent branches is difficult, since there
is a lack of unified specifications for their state machine im-
plementation. Faced with this challenging problem, this paper
recognizes widely-existing data dependency between current
program states and previous inputs in a class of important
programs. Our insights into these programs help us take a suc-
cessful first step on this task. We design and implement a tool
Ferry, which efficiently guides symbolic execution engine
by automatically recognizing program states and exploring
state-dependent branches. By applying Ferry to 13 different
real-world programs and the comprehensive dataset Google
FuzzBench, Ferry achieves higher block and branch cover-
age than two state-of-the-art symbolic execution engines and
manages to locate three 0-day vulnerabilities in jhead. Our
further investigation shows that Ferry is able to cover more
hard-to-reach code compared with existing symbolic execu-
tors and fuzzers. Further, we show that Ferry is able to reach
more program-state-dependent vulnerabilities than existing
symbolic executors and fuzzing approaches with 15 collected

1 int box_size, box_type, saved_size = -1;
2 while(true) {
3 box_size = read_box_size();
4 box_type = read_box_type();
5
6 switch(box_type) {
7 case encode("tx3g"):
8 int size;
9 if(saved_size < 0) {
10 // default branch
11 size = 0;
12 } else {
13 size = saved_size;
14 }
15 // integer overflow when size > 0
16 uint8_t *buf = new uint8_t[size + box_size];
17 // buffer overflow
18 read_payload_to(buf + size);
19 continue;
20 case encode("trak"):
21 saved_size = box_size;
22 // other 84 cases
23 ...
24 }
25 }

box_size

8
box_type

trak
box_type

tx3g
payload

...
box_size

0xFFFFFFF8

Data box 1 Data box 2

Figure 1: A motivating example.

state-dependent vulnerabilities and a test suite of six promi-
nent programs. Finally, we test Ferry on LAVA-M dataset to
understand its strengths and limitations.

1 Introduction
Symbolic execution [48] and fuzz testing [25] (or fuzzing)
are well-known as effective approaches for dynamic analysis
and software testing, thanks to their efficient program path
exploration approaches. Unlike early work [77] which relies
on randomly generated program inputs, state-of-the-art ap-
proaches [63, 68, 73–75, 78, 90, 91, 93, 96] focus on how to
generate valid program inputs which satisfy the conditional
statements and achieve high code coverage by reaching the
branches behind them.

USENIX Association 31st USENIX Security Symposium 4365

Despite the measurable success of previous works [68,
73, 90, 91, 96], existing approaches and tools have very lim-
ited ability to explore program-state-dependent branches in
the finite-state-machine models implemented by programs.
We now illustrate this issue through a real-world example
shown in Figure 1. It implements a state machine to parse
the incoming inputs of videos. State-of-the-art approaches
can effectively explore the branches of line 6 since the value
of box_type is unconditionally loaded from input in each
iteration of the loop. However, to facilitate stateful program
logic, real-world programs use certain variables to store the
internal states of programs, and conditional statements can
depend on the internal states instead of the current program
inputs. For example, line 9 in Figure 1 depends on a program
variable saved_size. When it is executed, saved_size is
not determined by the program inputs processed in the current
iteration (in which box_type is “tx3g” and line 7 branch is
taken), instead, it has to be modified in an earlier iteration
(which takes line 20 branch when box_type is “trak”). In
this paper, we call saved_size a state-describing variable,
and branches guarded by conditional statements which are
data-dependent on such variables state-dependent branches.

The motivating example is bug-free in its default state
where saved_size is -1 (so branch in line 11 will always be
taken). Only a special set of input sequences can change the
program state and trigger the integer overflow vulnerability in
line 16: The sequence consists of two inputs, and each input
is conceptually a data box. Each data box contains necessary
meta-data box_size and box_type to describe its size and
type, respectively, with optional payload data. The program
implements a loop, and data boxes are handled sequentially
during different iterations of the loop. The first “trak” data box
changes program state by setting saved_size to its box size
(a positive value). During the next iteration that handles the
“tx3g” box, size is larger than 0 (since line 13 is taken), so
attacker can trigger the vulnerability with a carefully-specified
box_size value.

Such state-sensitive program logic breaks a de facto (im-
plicit) assumption of state-of-the-art techniques [73, 74, 96].
That is, programs handle each part of inputs from a single file
independently, and the effect of state changes caused by earlier
inputs on how a later input is processed can be ignored. In-
stead, we observe that many real-world programs implement
state-dependent branches in the context of state machines, to
fulfill their application logic. Existing symbolic executors can-
not efficiently explore the state-dependent branches and locate
the vulnerability in our example (as discussed in Section 2),
and we will show how our method finds it in Section 4.

We find that state-dependent branches are prevalent in many
important real-world programs. Our manual vetting of the
seven prominent programs of different categories which con-
cern previous works [73, 74, 96] in Table 1 shows that they
all implement non-trivial state machines containing tens or
even hundreds of state-dependent branches. The existence of

Table 1: Real-world programs of concern to QSYM, Angora
and Matryoshka which contain state-dependent branches.

Program Category

ffmpeg [23] Audio/Video Converter
djpeg(libjpeg) [32] JPEG Image Library
readpng(libpng) [35] PNG Image Library
tiff2ps(libtiff) [14] TIFF Image Utility
mutool(mupdf) [43] PDF Viewer
readelf(GNU Binutils) [26] ELF File Utility
file [9] File Type Checker

state-dependent branches degrades the path exploration effi-
ciency of existing approaches in two ways. First, with scant
knowledge of the internal program states, existing approaches
cannot generate desired program inputs that explore a large
set of program states, leading to a very limited exploration of
state-dependent branches. Furthermore, a program statement
can have various behaviors in different program states (e.g.,
line 16 in our motivating example is bug-free by default and
only vulnerable when program state is changed), which means
that it is not enough to just reach the statements once. Instead,
they should be fully examined in different program states.
This calls for a new metric to evaluate the state exploration
capabilities of existing tools.

In this paper, we propose the first program-state-aware
symbolic execution framework Ferry, which requires no prior
knowledge about program source code and input sequences.
Ferry operates on compiled binaries. It automatically recog-
nizes state-describing variables, uses them to guide symbolic
execution and explores state-dependent branches. Besides,
we propose several optimizations to further improve the ef-
ficiency of Ferry. We compare Ferry with two widely-used
symbolic execution engines angr and KLEE, and three pop-
ular fuzzers AFL, Angora and QSYM on 13 real-world pro-
grams, including the seven programs listed in Table 1 and
Google FuzzBench [56]. Our experiments show that with
inferred state-describing variables, Ferry is able to cover an
average of 38%/42% more basic blocks and 42%/47% more
branches than these two symbolic executors, 18%/21%/8%
more basic blocks and 22%/21%/8% more branches than three
fuzzers, respectively. During experiments, Ferry successfully
locates three 0-day vulnerabilities in jhead [8]. Furthermore,
we demonstrate that Ferry can cover more program states.
Specifically, we construct a test suite River which consists of
six programs and 160 inserted vulnerabilities. The inserted
vulnerabilities are distributed over different state depth, i.e.,
the least number of state-dependent branches involved in the
path to the vulnerability. The test suite is then used to eval-
uate the symbolic executors and fuzzers above. Given the
same time limit, Ferry locates all the 160 vulnerabilities while
the other tools report at most 41% of the inserted vulnera-
bilities with shallow depth. We believe this test suite clearly
showcases the effectiveness of Ferry, and provides a mean-

4366 31st USENIX Security Symposium USENIX Association

ingful benchmark for future works to evaluate their abilities
to explore the deep logic (e.g., state-dependent branches) of
real-world programs.

The main contributions of our work are as follows.

• We introduce program-state-aware symbolic execution,
a new research direction that focuses on an under-
investigated problem for symbolic execution.

• We offer new insights into addressing the non-trivial sym-
bolic execution challenges faced by real-world programs
with state-dependent branches. We propose novel algo-
rithms and heuristics to implement a program-state-aware
symbolic execution engine Ferry.

• We recognize practical challenges when applying Ferry to
real-world programs and propose optimizations to further
improve the efficiency and scalability of Ferry.

• We evaluate Ferry, showing that it is far more effective and
efficient than state-of-the-art approaches and tools at lo-
cating “deep” security-related vulnerabilities in real-world
programs.

2 Problem Statement and Analysis
Insight 1: A major hindrance to a symbolic execution en-
gine is the ignorance of a program’s internal states, which
leads to an inefficient exploration of state-dependent
branches.

State-of-the-art symbolic execution engines [68, 75, 90, 97]
cannot efficiently explore the state-dependent branches (e.g.,
line 9 in motivating example), due to the difference between
the logical program states and the symbolic states (discussed
in other symbolic execution works [68, 90, 97], including ex-
ecution paths, together with path constraints and mapping
between all variables and symbolic expressions). The exam-
ple in Figure 1 has three different logical program states1,
described by the different value combinations of box_type
and saved_size: (1) “tx3g” with negative size value, (2)
“tx3g” with non-negative size value and (3) “trak” with any
size value. However, the given example has infinite number
of symbolic states. For example, if an execution path keeps
taking the “tx3g” branch in each iteration, it will shift to a
new symbolic state every time it enters the loop, since each
iteration introduces extra path constraints on inputs (i.e., ap-
pending a new “tx3g” data box). It can create an infinite
number of different symbolic states, while it is actually ex-
ploring the same program state repeatedly. Such redundant
exploration is meaningless and can easily lead to path ex-
plosion. Existing symbolic executors are not aware of such
state-dependent semantic. They can either enumerate all the
possible combinations of different box types, or hope that
the engines “happen to” explore the program in the expected
order.

1We ignore the omitted switch cases, while the number of program states
is still far less than the number of execution paths even if we consider other
cases.

It is worth noting that Figure 1 only shows a trivial example
of state-dependent branch. Many modern programs have as
many as thousands of state-dependent branches, and these
branches can be nested. Carefully-specified state machines
help developers avoid making mistakes when writing a pro-
gram containing complicated application logic. Unfortunately,
as illustrated above, their state-dependent branches prevent
analysts and researchers from finding bugs and vulnerabilities
within and behind them.

2.1 Challenges to Conduct Program-state-aware Sym-
bolic Execution

Challenge 1: Program state inference. To bridge the gap be-
tween traditional symbolic execution engines and a program-
state-aware symbolic execution, the most critical issue is how
to infer the internal states of a given program. Unlike states of
operating systems which are well-documented (as discussed
in Section 7.3), in general, a program’s states are bound to its
implementation, and there is no explicit specification.

Since a program usually keeps track of its states with spe-
cific variables, i.e., state-describing variables, by identifying
the state-describing variables, we can infer the program states.
Unfortunately, recognizing such variables is challenging itself
since there is little semantic or structural difference between
state-describing variables and irrelevant ones. For example,
a real-world program can remember a state with a variable
of any type and with arbitrary name. The identification of
state-describing variables greatly affects the effectiveness of
program-state-aware symbolic execution. On one hand, if
some state-describing variables are omitted, our symbolic ex-
ecution may treat different states as the same one, leaving part
of the states untouched. On the other hand, if we treat irrel-
evant variables as state-describing ones, the same program
state may be executed many times, causing the exploration
space of symbolic execution to explode.
Challenge 2: Runtime program state recognition. Even
if we can identify the state-describing variables of a given
program, it is non-trivial for a symbolic execution engine
to recognize the current state. Specifically, real-world pro-
grams may not employ a specific enumeration variable to
remember its current state. For example, the code snippet in
Figure 1 can be thought to have two states: a normal one with
saved_size≤ 0 and a vulnerable one with saved_size> 0.
As a result, it is difficult to recognize the current program
state and determine whether a given program is executed in
an explored state.

2.2 Characteristics of Real-world Programs with State-
dependent Branches

To address the challenges above, we conduct an investiga-
tion on real-world programs with state-dependent branches
to understand their characteristics. Specifically, we start from
106 independent programs of concern to and analyzed by
AFL [18] (we exclude other 54 programs, e.g., Mozilla Fire-

USENIX Association 31st USENIX Security Symposium 4367

fox and Internet Explorer which use multiple libraries or are
not open-source)2. Our manual investigation shows that 91 out
of 106 (86%) programs contain at least one state-dependent
branch. Programs containing state-dependent branches are
widely used as essential components in various aspects of
software systems from network data transmission to mul-
timedia data processing. More importantly, many of them
are the building blocks of large projects and systems. For
example, the Chromium project is powered by several li-
braries with state-dependent branches including libpng [35]
and libtiff [14]. We further conclude their characteristics as
follow.

• C1: They receive a sequence of inputs from a sin-
gle input source. Apart from the configuration options
(from global configuration files, environment variables or
command-line arguments), each program receives input
sequences from a single external input source such as a
file or a socket. And since these programs are command-
line applications or libraries, they receive no asynchronous
inputs like signals or UI events.

• C2: They handle inputs sequentially. Instead of handling
the entire input sequence at once, these programs handle
one input (in the input sequence) at a time. Our motivat-
ing example is a typical example that contains an input-
handling loop to continuously read data from a file. The
input handled in current iteration of the loop is called the
current input, and the inputs handled in previous iterations
are called earlier inputs.

• C3: They maintain the program states with one or more
state-describing variables. Program states are affected
by some earlier inputs when there is a data dependency
between the values of state-describing variables and these
inputs. And these variables further change the program
behaviors by affecting the branches taken for certain con-
ditional statements.

In-scope Programs. Instead of trying to efficiently analyze
any programs with internal states, we explicitly define the
scope of target programs in this paper as the real-world pro-
grams with the above three characteristics.
Problem Statement. For programs with the above-mentioned
characteristics, how to address the challenges identified in
Section 2.1 for real-world programs so that state-dependent
branches, such as the one shown in Figure 1, can be efficiently
explored?

2.3 Model of Ferry

Definition of Program States. A state in a program can be
characterized as follows: (1) a state is described by a set of
state-describing variables; (2) when two states are different,
at least one state-describing variable holds different values;

2We present the detailed information of all the 160 inves-
tigated programs in https://drive.google.com/open?id=
17XQpmufR0zdKv0c0hU70JTiMQkkOHCz-.

(3) the program has different behaviors (i.e., taking different
branch directions) in different states.

Automatically identifying state-describing variables is a
challenging task. Our solution to tackle this challenge is based
on characteristics of analyzed programs: As mentioned in
Section 2.2, each program has a single external data source,
which determines the execution of the program in such a way
that the earlier inputs can affect the values of certain state-
describing variables, which further determine the branches
taken for some conditional statements when the current input
is being processed.

During execution, program state is changing during the
processing of input sequences. In this paper, we classify the
state-changing events in concern into three categories: (1)
a new state-describing variable is initiated; (2) the value of
a certain state-describing variable is changed, which means
that it is assigned a different value or the data constraints of
its symbolic expression are changed; (3) a state-describing
variable is released.

Specifically, the influence of input sequences on runtime
program states can be specified with the following definitions:
Firstly, we define each instruction that loads a part of the input
sequence into a memory cell as an input loading instruction
(e.g., read_box_size() and read_box_type() in Figure 1).
Secondly, we call each instruction that initiates, releases or
modifies the value or data constraints of a state-describing
variable a state-describing variable operation (SDVO) instruc-
tion. With the definition above, the execution of an SDVO
instruction will definitely lead to a state transition. Thirdly,
we define the data dependencies between SDVO instructions
and input loading instructions as follows: whenever a data
dependency exists between a state-describing and an input
loading instruction, we say that the corresponding SDVO in-
structions are data dependent on the input loading instruction.
In practical, we catch such dependencies with dynamic taint
tracking.

An intrinsic characteristic of analyzed programs is that data
dependencies widely exist between SDVO instructions and
input loading instructions. Ferry leverages this characteristic
to identify state-describing variables.
Distinguishing Characteristics of State-describing Vari-
ables. State-describing variables bear the following two char-
acteristics: (1) State-describing variables are explicitly/im-
plicitly data-dependent on input data; (2) State-describing
variables are checked in at least one conditional statement.
Remark. Although our approach directly exploits the three
characteristics identified in Section 2.2, our technique is poten-
tially applicable to all the programs that have the characteristic
above, which means
• For a subset of the essential state-describing variables, their

SDVO instructions are data-dependent on at least one input
loading instruction;

• With different contents (i.e., values) of state-describing
variables, the program may change its behavior by taking

4368 31st USENIX Security Symposium USENIX Association

https://drive.google.com/open?id=17XQpmufR0zdKv0c0hU70JTiMQkkOHCz-
https://drive.google.com/open?id=17XQpmufR0zdKv0c0hU70JTiMQkkOHCz-

Program-state-aware Symbolic Execution

Shortcut Symbolic Execution

File concrete symbolic

State-Describing Variable Recognizion

Data Dependencies
&

Branch Conditions

State-Describing
Variables

Input Partitioning

Program States

s0

s1
s2

s3 s4
s5

Execution Paths

X

Program
State

Figure 2: Overall architecture.

different branches.

3 Design
3.1 Overview of Ferry

Ferry operates in three steps, as illustrated in Figure 2. First,
based on the insight that data dependencies exist between
state-describing variables and inputs of programs, Ferry mon-
itors the execution of a given program, and identifies the state-
describing variables. Second, Ferry recognizes the runtime
program states and drives a symbolic execution to explore a
large set of program states. Furthermore, we observe that the
complexity of real-world programs can affect the effective-
ness of Ferry. Motivated by this observation, our third step
further improves the efficiency by introducing two optimiza-
tions: state-reduction of inactive state-describing variables
and shortcut symbolic execution.

3.2 State-describing Variable Recognition

In Section 2.3, we identify two distinguishing characteristics
of state-describing variables, i.e., they are data-dependent on
inputs (denoted as InputDetermined in the following para-
graphs) and they are checked in at least one conditional
statement (denoted as BranchRelated), and the variables with
these characteristics are StateDescribing. It is worth noting
that such characteristics of variables are recognized globally,
which means if a variable is marked as InputDetermined in
one execution path and marked as BranchRelated in another,
we can mark it as StateDescribing. This section presents our
automatic state-describing variable recognition mechanism
based on the intrinsic characteristics of analyzed programs.

First, we apply a dynamic taint analysis from the external
input source to recognize the InputDetermined variables. Our
goal is to find the state-describing variables that depend on
the input sequences. We tag all the inputs (in this case, from
the video file, e.g., box_size and box_type) as Tainted, and
trace their propagation in the program. In contrast to tradi-

1 if (input > 0) {
2 state_var = CONST_VAL_1;
3 } else {
4 state_var = CONST_VAL_2;
5 }
6 if (state_var == CONST_VAL_1) {
7 tmp_var = …;
8 }

Figure 3: An control dependency example.

tional taint analysis, our approach tracks the propagation of
symbolic inputs instead of concrete ones. Specifically, we
record the taint information as a specific type of data con-
straints on the symbolic inputs, so the taint tags are naturally
propagated with the proceeding of symbolic execution, intro-
ducing no extra overhead. A variable is marked as InputDe-
termined if it receives a Tainted symbolic expression. In the
given example, box_size, box_type, and saved_size are
InputDetermined.

Apart from the explicit data dependencies, control depen-
dencies, depicted in Figure 3, may also help identify state-
describing variables. However, dynamic taint analysis gen-
erally does not cover control dependencies [81]. Actually,
considering such dependencies is a double-edged sword. Al-
though it augments the coverage, many irrelevant variables
(false positives) could be falsely introduced. Thus, our anal-
ysis only considers the first-level control dependencies, that
is, only the variables control-dependent on the others which
are explicitly data-dependent on inputs are tainted. For ex-
ample, in Figure 3, state_var is tainted since it is control-
dependent on input which is explicitly dependent on inputs;
while tmp_var is no more tainted since its guard condition
checks state_var, which is control-dependent on inputs.

As revealed in Section 2.3, a program takes different branch
directions in different states. Thus, for each conditional state-
ment in the program, we record all the variables it accesses
when checking the corresponding conditions, and tag them
with BranchRelated. If an InputDetermined variable is used in
a conditional statement, which means it is also BranchRelated,
we mark it as StateDescribing. For example, saved_size in
Figure 1 is StateDescribing because it is accessed by the
conditional statement in line 9.
Identifying Invalid State-describing Variables. As men-
tioned in Section 2.3, variables have liveness durations and
state transition happens when state-describing variables are
released. For example, in Figure 4, opcode is state-describing.
Supposing it is a local variable on stack, a function’s local
stack becomes invalid once the function returns. To avoid
incorrectly recognizing program states with such expired vari-
ables, Ferry introduces two optimizations. First, the call to the
free() function is regarded to be an SDVO instruction if the
freed object contains state-describing variables. Second, once
a function call is returned, we examine the state-describing
variables, and discard the ones within the stack frame of the re-
turned function. Besides, if any of the variables are discarded,

USENIX Association 31st USENIX Security Symposium 4369

SDVO: UNDEF

s0

L102

L102

opcode: == 1
SDVO: L102

s2

opcode: != 1
SDVO: L102

s3

L106

SDVO: L106

L106 s4

1 void caller(){
…

15 subfunc();
16 …
17 }

…
100 void subfunc(){
101 int opcode = read_input();
102 if(opcode == 1)
103 do_something();
104 else
105 do_others();
106 return;
107 }

expired state-describing
variable: opcode

Figure 4: Removal of expired state-describing variable op-
code.

we consider the return instruction as an SDVO instruction,
and check whether a new state is introduced.

3.3 Program-state-aware Symbolic Execution

We now explain how to guide symbolic execution with the
recognized state-describing variables. As introduced in Chal-
lenge 2, it is difficult to determine whether a given program
is executed in an explored program state. To tackle this chal-
lenge, our solution is based on the following insight:
Insight 2: The state transitions in a program depend on
the constraints on state-describing variables.

Symbolic execution engines record the constraints on sym-
bolic inputs for every execution path, and ensure that any
inputs that satisfy the same constraints will definitely take the
same execution path. Besides, the program state information
is captured by Ferry as state-describing variables. Thus, if two
executions have the same constraints on every state-describing
variable, they should follow the same state transitions.

As mentioned in Section 2.3, state transitions occur with
the execution of certain SDVO instructions. In real-world
programs, an instruction is an SDVO one under the following
circumstances:

• Initialization. A new state-describing variable is initiated;
• Data constraint alteration. The constraints on a state-

describing variable are changed by assignment or updated
to take certain branch direction;

• Variable release. The release of a state-describing variable
occurs with the end of its liveness.

Apart from state-describing variables, Ferry records where the

latest state transition happens (i.e., the address of the SDVO
instruction it last met). Two execution paths are considered to
explore different program states if either their state transition
locations or their constraints on the state-describing variables
are different.

Then, once a state transition occurs, Ferry compares the
current state with explored records. If a new unexplored state
is observed, we record its SDVO instruction address and the
constraints on the state-describing variables. Otherwise, we
rollback the symbolic execution to explore different program
states.

4 Algorithm of Program-state-aware Symbolic
Execution

Algorithm 1: Program-state-aware Symbolic Execu-
tion

Input: Initial location l0, initial program state s0, instruction
decoder instrAt

Data: Worklist W , program state store Ω, path predicate Π,
symbolic store ∆

1 W ←{(l0,s0, true, /0)};
2 while W ̸= /0 do
3 ((l,s,Π,∆),W)← pickNext(W);
4 switch instrAt(l) do

// handle assignment
5 case v := e do
6 if isTainted(e) then
7 s← updateState(s,v,e);
8 if (succ(l),s) ∈Ω then
9 break;

10 Ω←Ω∪ (succ(l),s);
11 S←{(succ(l),s,Π,∆[v→ eval(∆,e)])};

// handle conditional statement
12 case if (e) goto l′ do
13 s_true← s;
14 s_ f alse← s;
15 foreach state-describing variable m in eval(∆,e) do
16 s_true← updateState(s_true,m,Π∧ e);
17 s_ f alse← updateState(s_ f alse,m,Π∧¬e);
18 end
19 if isSat(Π∧ e) then
20 Ω←Ω∪ (l′,s_true);
21 S← S∪{(l′,s_true,Π∧ e,∆)};
22 if isSat(Π∧¬e) then
23 Ω←Ω∪ (succ(l),s_ f alse);
24 S← S∪{(succ(l),s_ f alse,Π∧¬e,∆)};

// handle function return
25 case return do
26 foreach state-describing variable m in current stack frame do
27 s← updateState(s_true,m,UNDEF);
28 end
29 Ω←Ω∪ (succ(l),s);
30 S←{(succ(l),s,Π,∆[v→ eval(∆,e)])};
31 case halt do continue;
32 end
33 W ←W ∪S;
34 end

The algorithm of program-state-aware symbolic execution
is depicted in Algorithm 1. We maintain the state of symbolic

4370 31st USENIX Security Symposium USENIX Association

∅

v1:“tx3g"
SDVO: L6

v1:“trak"
SDVO: L6

L6

L6
s0

s1

s2

∅

v1:“tx3g"
SDVO: L6L6

s0

s1

BranchRelated: { v1, v2 }
InputDetermined: { v1 }
StateDescribing: { v1 }

∅

v1:“tx3g"
SDVO: L6

v1:“trak"
SDVO: L6

L6

L6

s0

s1

s2

v1:“trak"
v2:UNDEF
SDVO: L21

L21

s3

∅

v1:“tx3g"
SDVO: L6

v1:“trak"
SDVO: L6

L6

L6
s0

s1

s2

v1:“trak"
v2:UNDEF
SDVO: L21

L21

s3

v1:“trak"
v2:UNDEF
SDVO: L6

s4

L6 L21

v1:“tx3g"
v2:UNDEF
SDVO: L6

L6

s5

v1:“tx3g"
v2: < 0

SDVO: L9
L9

v1:“tx3g"
v2: >= 0

SDVO: L9
L9

s6

s7

BranchRelated: { v1, v2 }
InputDetermined: { v1, v2 }
StateDescribing: { v1, v2 }

L6

L6

L6

L6

BranchRelated: { v1, v2 }
InputDetermined: { v1 }
StateDescribing: { v1 }

BranchRelated: { v1, v2 }
InputDetermined: { v1, v2 }
StateDescribing: { v1, v2 }

v1: box_type
v2: saved_size

(c) State: s2, after execute
line 21

(b) State: s2, before execute
line 21

(a) Previous State: s0, after
execute line 6 and 7

(d) A thorough exploration of program states

L6

L6

v1:“tx3g"
v2: < 0

SDVO: L6

v1:“tx3g"
v2: >= 0

SDVO: L6

L6 v1:“trak"
v2: >= 0

SDVO: L6

v1:“trak"
v2: < 0

SDVO: L6

L6

L6

L21

L21 L6

L9

L6

L9

L9

L9

s8

s9 s10

s11

Figure 5: An example to illustrate our program-state-aware symbolic execution.

executor with (l,Π,∆), in which a code location l records the
address of the currently executing instruction, a path predi-
cate set Π which stores the path constraints, and a symbolic
store dictionary ∆, which maps runtime variables to concrete
values or symbolic expressions. In addition, we introduce a
state variable s, which stores the program state of current
execution path, and a global state store Ω, which records the
explored program states (including the address of latest SDVO
instruction and state s). The program state s tracks three sets
of variables as we illustrate in Section 3.2: BranchRelated,
InputDetermined and StateDescribing.

By default, Ferry applies a breadth-first exploration strategy
and the pickNext() function returns the next execution path
to process. With a quad (l,s,Π,∆) maintained for each execu-
tion path, we keep the program state s updated when an SDVO
instruction is met. Specifically, a state-describing variable can
be initialized or altered when an assignment or conditional
statement occurs, and can be released when function returns.
updateState(s,v,e) function receives a original state s, the
assigned variable v and the new value (or constraints) e, and
returns an updated state. Besides, once we encounter a con-
ditional statement, we leverage an SMT solver to check the
satisfiability of its successors. Finally, only execution paths
of unexplored states are added to the work list W for future
process.

Figure 5 illustrates our symbolic execution with the motivat-
ing example. The first state-describing variable in our execu-
tion is the variable box_type, which is loaded from the input
in line 4 (InputDetermined). In line 6, a switch instruction
accesses it (BranchRelated), and our state-describing memory

recognition marks it as StateDescribing. Thus, line 6 is an
SDVO instruction, and by exploring its different branches,
two new states are recorded (s1 and s2). If the state s1 is first
explored, the second execution of line 6 can determine s1 as
an explored state, and avoid traversing it again.
saved_size is another state-describing variable. A condi-

tional statement in line 9 accesses it. However, not until the
content from the input sequences flows into it (line 21) can
we identify it as StateDescribing. Thus, the first execution of
line 9 does not introduce new program states. Later when any
execution path reaches line 21, saved_size is recognized as
StateDescribing, therefore introducing a new state s3. Then,
our further execution to line 6 can enter branch “tx3g”, since a
new state-describing variable is introduced. The constraint on
this memory location is further updated in the second execu-
tion of line 9. Thus, two new states (s6 and s7) are introduced.

5 Optimizations for Complex Real-world Pro-
grams

We notice that the complexity of real-world programs can
affect the effectiveness of Ferry mainly in two ways: (1) real-
world programs may have hundreds of even thousands of state-
describing variables, which leads to a high overhead in state-
describing variable tracking, and (2) real-world programs
can have multiple state-dependent branches on an execution
path reaching a “deep” vulnerability, accordingly, Ferry may
get stuck in exploring the earlier state-dependent branches,
and fail to explore the later ones. To tackle these practi-
cal problems, we further propose two optimizations, namely
State-reduction of Inactive State-describing Variables

USENIX Association 31st USENIX Security Symposium 4371

to reduce the unnecessary tracking of seldomly-accessed
state-describing variables, and Shortcut Symbolic Execu-
tion (SSE) which enables Ferry to explore the “deep” states.
It is worth noting that these two optimizations, although they
do not necessarily apply to every program, do not affect the
basic analysis proposed in Section 4.

5.1 State-reduction of Inactive State-describing Vari-
ables

To avoid exploring an already explored program state, Ferry
needs to constantly compare the range (i.e., the set of all
possible values) of each state-describing variable with the
exploration history, causing nonnegligible performance over-
head. To alleviate this problem, we propose an optimization,
named State-reduction of Inactive State-describing Variables,
which reduces the number of state-describing variables to
track.

Instead of tracking all the state-describing variables, we set
a number limit and only focus on those which are recently
accessed (i.e., assigned new values or checked in conditional
statements). Our investigation shows that state-describing
variables are accessed with different frequencies. We monitor
the execution of seven programs listed in Table 1 and focus on
their access frequencies of different state-describing variables.
Among all the state-describing variables used in these pro-
grams, 72% are checked less than five times, and the top 4%
variables take up over 85% of all the variable accesses. This
observation is also supported by our motivating example. The
skewed distribution indicates that for many state-describing
variables in a program, their values will remain unchanged
for a long period of time. If an execution path does not access
a state-describing variable, its value remains unchanged and
it cannot cause a state transition.

The number of the tracked variables should be carefully
selected. Tracking a low number may falsely ignore state-
describing variables, causing different states to be recognized
as the same one (thus paths are falsely pruned). And a high
limit increases the number of variables to track, thus wasting
time on constraint solving instead of path exploration. We
conduct an experiment on the seven programs in Table 1 and
try to figure out how different numbers of tracked variables
affect the number of execution paths. We start from the limit
of one state-describing variable to track, and find that we
quickly run out of exploration paths on most of the programs
within 30 minutes. On the other hand, a limit of over five
state-describing variables has almost no effects on limiting
number of comparisons between states. Finally, we find that
tracking three variables helps us reduce the comparisons be-
tween states and reach deep program states, so we make it the
default configuration in the following experiments.

box_size
8

box_type
trak

box_size
0xFFFFFFF8

box_type
tx3g

payload
...

payload
...

Input for
Branch
Group A

Input for
Branch
Group B

buf:

Boundary of
Branch Group A and B

raw input:

swap
operation

Figure 6: Our input partitioning on an example payload.

5.2 Shortcut Symbolic Execution with Input Partition-
ing

The execution path to the “deep” states in real-world pro-
grams is guarded by many state-dependent branches. Similar
to path explosion, the number of program states grows rapidly
with an increase in the number of state-dependent branches.
Fortunately, we find that instead of trying to conquer all these
branches, we can divide them into independent groups, which
can be handled separately.

In real-world programs, developers do not handle the whole
input sequence in one function, instead, the different parts of
input sequence are handled by different groups of functions.
For example, the input-handling loop in our motivating ex-
ample only parses the box_type and box_size of each data
box. The payload data, on the other hand, is read into the
constructed buffer buf in line 18 and left to be processed by
another function. Accordingly, the state-dependent branches
in these functions also depend on different parts of the input
sequence, and we can group these branches by the parts of
input sequence which are handled by the functions to which
they belong. Based on this observation, our idea is to bypass
early-stage groups of state-dependent branches by selectively
providing concrete program inputs.

When shortcut symbolic execution is enabled, manually-
provided seed files are needed. With given input seeds, our
shortcut symbolic execution proceeds as follows: First, SSE
automatically recognizes the boundaries of different input
parts which are handled by different groups of state-dependent
branches with symbolic emulation. Then, with inferred bound-
aries, SSE selectively makes certain input partitions symbolic
to symbolically execute the corresponding state-dependent
branch groups in a state-aware way. It is worth noting that
SSE proceeds on-the-fly during our state-aware symbolic exe-
cution. That is, Ferry with SSE first constrains the input data
with the given seed file contents and applies symbolic exe-
cution (i.e., symbolic emulation). During this process, Ferry
automatically recognizes the partition boundaries. Then, it
tries to explore certain group of state-dependent branches by
dynamically removing the constraints on the corresponding
input parts.
Input Partitioning. An important problem here is how to
automatically decide the boundaries in input sequence which
separate the parts handled by different state-dependent branch
groups. Let’s assume earlier branch group A and later branch

4372 31st USENIX Security Symposium USENIX Association

group B handle two adjacent parts of the input sequence.
When we locate the boundary between the two groups, we
leverage a particular relationship between the function f
which hosts group A and the function g which hosts group
B. In particular, we observe that in 73 out of the 91 programs
(80.22%) investigated by us, function f explicitly constructs a
buffer for function g, and copies (or moves) the (unprocessed)
data from its own buffer to the new one. Accordingly, we
first monitor I/O functions (e.g., fread()) and mark the des-
tination array as initial input buffer. Then, we recognize the
data copy or move operations (e.g., memcpy(), memmove())
from one buffer to another in analyzed programs. The part of
the input moved into new buffer is expected to be handled by
another group of branches, and we set the boundaries between
different parts. Figure 6 shows how our methodology works
in the motivating example, in which the program code explic-
itly constructs a new buffer buf, and copies the payload to
it (line 18). Then, a later state-dependent branch group uses
the new buffer as the input source. We set a boundary before
payload.
Shortcut Symbolic Execution. As illustrated above, an im-
portant property of input partitions is that they are handled by
independent branch groups. If we use concrete values for the
leading N−1 partitions, the corresponding early-stage branch
groups will be executed with no path forked (i.e., shortcut).
More importantly, the next move of the program is determin-
istic: it will read the Nth partition into buffer and use specific
branch group to process it, so if we make Nth partition sym-
bolic on-the-fly, we can target the corresponding branch group
and explore it. When determining in which order to symbolize
different partitions, we try to make the best use of provided
file contents to drive Ferry to explore as many deep program
logic as possible without path explosion, so we symbolize
input partitions backward in order. That is, we first symbolize
the last partition. When we are running out of execution paths,
we further symbolize one previous partition and repeat the
step.

6 Evaluation
In this section we evaluate the effectiveness of Ferry. Our
evaluation proceeds as follows:

• We first evaluate whether Ferry can outperform other tools
in code coverage, with 13 real-world programs and the
comprehensive test suite Google FuzzBench [56]. Our
evaluation shows that Ferry covers 38%/42% more basic
blocks and 42%/47% more branches than two widely-used
symbolic execution engines KLEE and angr. Given the
same input seeds, Ferry with SSE outperforms three popu-
lar fuzzers (AFL, Angora and QSYM) in block and branch
coverage. What’s more, 15% of its basic blocks have never
been reached by any fuzzer. Our further examination of the
results shows that Ferry achieves a higher code coverage
because it is able to explore deeper program logic than the
counterparts with inferred state-describing variables.

• Apart from achieving high code coverage, this paper fo-
cuses on exploring “deep” program logic depending on
program states. We have presented the prevalence of state-
dependent branches in Section 2.2. In this section, we fur-
ther reveal the importance of exploring deeper program
logic by collecting the program-state-dependent vulnerabil-
ities in the CVE database and evaluating whether Ferry and
other tools can reproduce them. We further construct a test
suite River, which facilitates our evaluation of the extent
to which a tool is able to explore state-dependent branches.
River consists of six programs with 160 manually-inserted
vulnerabilities which can only be triggered in certain pro-
gram states. Compared with two symbolic executors and
three fuzzers, Ferry manages to locate over 40% more
real-world vulnerabilities and 2.4 times as many manually-
inserted vulnerabilities.

• To understand the performance baseline of Ferry, we use
another comprehensive dataset LAVA-M [31], in which the
vulnerabilities are state-irrelevant. In the worst case, Ferry
performs almost the same as angr with BFS strategy except
that it avoids exploring some duplicated paths. We further
discuss the limitations of Ferry in Section 6.7.

Implementation. Ferry is built upon the angr framework [19]
with 5070 lines of Python code. We use Z3 [50] to solve SMT
queries and compare program states. Unicorn engine [4] is
applied to accelerate the emulation of concrete file contents
in shortcut symbolic execution.
Vulnerability Detection. In symbolic execution, how to drive
the execution to reach a vulnerability-carrying branch and
how to trigger/exploit a vulnerability (after the corresponding
security vulnerability is reached through symbolic execution)
are two separate issues. Since the second issue has not been
well-addressed in the field of symbolic execution, this work
has to leave it out of the scope. It should be noted that sani-
tizers [27], which work well together with software fuzzing,
cannot be used to resolve the second issue. A native combina-
tion of symbolic execution engines and sanitizers cause severe
path explosion because sanitizers introduce extra checks (i.e.,
conditional statements) on input data.
Experiment Setup. All our evaluations process on a Ubuntu
16.04 server, with a single 3.9GHz Intel i5-8600K CPU and
64GB of RAM. Ferry and most of the compared tools are
single-threaded, except for QSYM which has a fuzzing pro-
cess and a symbolic execution process. All tools are given
the same timeout of six hours. We repeat the experiments
for three times and report the average results. Basically, our
program-state-aware symbolic execution technique is based
on a BFS exploration strategy to recognize InputDetermined
and BranchRelated variables. In our evaluation, we compare
our approach against other symbolic executors under different
exploration strategies including BFS and DFS. For KLEE,
we further evaluate its unique random path strategy. Input
seeds are needed for Ferry with SSE and fuzzers, our seed

USENIX Association 31st USENIX Security Symposium 4373

files3 are collected from AFL testcases [54] and FuzzBench.
Following the performance recommendation from AFL [61],
we exclude the large seeds from FuzzBench (they will also
overwhelm the taint analysis of Angora), and limit the num-
ber of seeds. We apply the configurations above in all the
following experiments.

6.1 Code Coverage

Benchmarks. To evaluate the code coverage of Ferry, we
collect two classes of programs. Specifically, we use the com-
prehensive dataset FuzzBench from Google to evaluate the
path exploration ability of Ferry and other tools. FuzzBench
is an ever-changing benchmark. At the time of writing, it con-
tains 49 programs [57]. We successfully analyse 20 programs
in FuzzBench. The reason why we fail to include the others
is two-fold. First, the FuzzBench is designed to be fuzzed
by Google OSS-Fuzz [60], and most of our evaluated tools
are not officially supported since Google only provides an
adaptor for AFL-based tools. We list the reason why non-AFL
tools fail to analyze the 25 programs as follow:

• Compiler and linker errors. The Google OSS-
Fuzz (powered by libFuzzer [58]) requires cus-
tomized target programs. Specifically, The pro-
grams need to override libFuzzer-provided in-
terfaces like LLVMFuzzerTestOneInput() and
LLVMFuzzerInitialize(), which are not supported
by other fuzzers and symbolic executors, causing build
failure. We have tried our best to rewrite the programs by
providing wrappers for these interfaces and revise build
scripts to adapt them to other tools, but sill fail to run 15
of them.

• Environmental modeling limitations. We observe that 10
out of the 25 programs implement complicated logic in
their LLVMFuzzerInitialize() which cannot be handled
by our environmental model. Among them, curl driver [21]
introduces an extra HTTP 2.0 library [59] to construct
HTTP requests, and the construction progress can cause
path explosion in symbolic executors; the rest of them ei-
ther dynamically create temporary files with unmodeled
functions like mkstemp(), or depend on multithread func-
tionalities which are not support by any of the symbolic
executors.

Second, 4 programs fail to be built because FuzzBench does
not follow the changes of the upstream codebases. For exam-
ple, the files in stb [47] needed by FuzzBench have already
been removed in its latest version and FuzzBench does not
update related scripts. We further collect 13 real-world pro-
grams, with over 2 million LOCs in total. They are of concern
to security researchers [68,73,74,90,96] and cover a variety of
categories including processing of image, video/audio, PDF
and binary. What’s more, many of them, e.g., libjpeg [32]

3Available at https://drive.google.com/file/d/
1QPp6n4RNfEPH58tGvYkZy6_Od4QbZiyM/view?usp=sharing

and libtiff [14], serve as the building blocks for important
real-world projects including Chromium, Android and iOS.
0-day Vulnerabilities. Interestingly, during our evaluation,
Ferry locates two unreported null-dereference bugs in lib-
stagefright. We further analyzed them and found that they
were internally fixed by Google [2, 3]. What’s more, by feed-
ing the inputs generated by Ferry to the programs instru-
mented by sanitizers, we find that Ferry found three 0-day
vulnerabilities in jhead. Specifically, Ferry successfully lo-
cates four heap-buffer-overflow vulnerabilities, three of them
are 0-day and one has been reported [11] yet not fixed.
Responsible Disclosure. We reported all the three 0-day vul-
nerabilities to the jhead author following responsible dis-
closure. Specifically, we collected the email address from
author’s home page [15], and then shared all the details about
vulnerabilities including the vulnerable commits, code loca-
tions and PoC exploits. Finally, they have all been fixed in the
latest version [55].

Table 2 reveals the block coverage and branch coverage of
different tools. Noted that 7 programs in FuzzBench explicitly
mark KLEE as “unsupported”. We further find that KLEE
fails to analyze PoDoFo, libav, ffmpeg, FreeImage, mupdf and
libtiff, and the reason is the same: it requires compiling the an-
alyzed programs to LLVM Intermediate Representation [40]
and then symbolically executes on the LLVM IR, but it fails
to support all the LLVM intrinsic functions generated dur-
ing compilation, thus crashes at the beginning of symbolic
execution. Besides, only Ferry and angr manage to analyze
libstagefright. We analyze it and find that only they have cor-
rectly modeled the Android bionic [5] library, which is a build
dependency of libstagefright.

We divide the evaluated tools into two groups, based on
whether seed files are a necessary requirement. Specifically,
only Ferry with SSE and fuzzers require seed files, while
Ferry without SSE and other symbolic executors do not. For
fair comparison, we compare their code coverage respectively.
That is, in the first group, we compare Ferry with other two
symbolic executors. We only keep the best results of angr and
KLEE under different searching strategies. KLEE achieves ex-
tremely low coverage when analyzing file. Our manual check
shows that this is due to the fact that KLEE’s modeling of
filesystem prevents it from loading a list of signatures to rec-
ognize file formats. And we exclude this abnormal data during
our comparison with KLEE for a fair evaluation. Ferry (with-
out SSE) covers 38%/42% more basic blocks and 42%/47%
more branches than KLEE and angr, respectively.

In the second group, we compare Ferry with SSE to three
famous fuzzers (we also present the basis code coverage intro-
duced by seed files). We observe that Ferry with SSE performs
bad on jsoncpp, libarchive, libxml2, re2 and zlib, meanwhile
the hybrid fuzzer QSYM, which is based on AFL, also shows
no improvements on them compared to raw AFL. Our investi-
gation reveals that this is because the string matching logic
(e.g., regex processing in re2) in jsoncpp, libxml2 and re2,

4374 31st USENIX Security Symposium USENIX Association

https://drive.google.com/file/d/1QPp6n4RNfEPH58tGvYkZy6_Od4QbZiyM/view?usp=sharing
https://drive.google.com/file/d/1QPp6n4RNfEPH58tGvYkZy6_Od4QbZiyM/view?usp=sharing

Table 2: Code coverage of Ferry with/without SSE compared with symbolic execution engines (KLEE and angr) and fuzzers (AFL, Angora and QSYM). For symbolic executors with different exploration techniques, we
show the best result for each program.

Program Ver. Block Coverage Branch Coverage Block Coverage Branch Coverage

KLEE angr Ferry KLEE angr Ferry seed AFL Angora QSYM Ferry w/. SSE seed AFL Angora QSYM Ferry w/. SSE

bloaty [20] 2020-05-25 N/A 2235 2530 N/A 519 756 9850 10466 11375 11402 11280 1387 2025 2234 2242 2435
freetype2 [24] 2017 1525 1725 2215 875 962 1327 4393 8611 7226 10253 9675 2593 6839 5909 8682 8763
harfbuzz [28] 1.3.2 N/A 1525 1732 N/A 765 856 2213 6291 8734 9716 8675 759 3372 4565 4968 4785
jsoncpp [30] 2020-02-13 N/A 318 320 N/A 96 96 1469 2036 1960 1991 1678 128 554 545 555 462
libarchive [12] 2019-05-03 1023 1017 1235 548 543 594 1453 3974 N/A 4037 3778 735 3179 N/A 3263 3125
libhevc [7] 2019-09-06 17645 19230 22322 6436 6846 7344 3659 29627 19591 30564 30872 2096 9324 7119 9382 9410
libhtp [13] 2019-09-14 1213 1210 1432 1125 1123 1334 1201 2084 2090 2062 2435 791 1835 1841 1834 2122
libjpeg-turbo [33] 2017-06-28 972 978 1132 642 645 875 1090 1996 1962 2302 3014 650 1559 1504 1826 2203
libpcap [34] 2020-02-12 N/A 760 772 N/A 465 525 780 1562 1730 1652 1725 235 1148 1325 1270 1518
libpng [36] 1.2.56 258 398 512 247 302 468 588 987 1252 1283 1209 400 760 943 1007 1056
libxml2 [38] 2.9.2 375 412 875 214 246 569 1028 3821 3084 3845 2065 668 3662 3294 5345 1765
Little-CMS [39] 2017-03-21 728 826 872 413 525 571 796 1853 2450 2417 2630 395 1107 1658 1778 1834
mbedtls [41] 2020-02-11 N/A 509 514 N/A 297 312 2318 2625 2520 2622 2854 1375 1586 1495 1582 1725
muparser [42] 2020-08-19 932 933 1231 681 684 912 1771 2702 2407 2687 3124 254 915 692 907 1025
openh264 [16] 2019-10-22 7112 7264 9312 5623 5812 7412 2559 11462 6106 10137 13245 1560 8974 7021 8965 10023
openthread [44] 2019-12-23 N/A 684 765 N/A 257 334 3885 4708 4812 4752 4620 1190 1748 1770 1757 1782
re2 [46] 2014-12-09 873 871 1346 327 327 548 2554 6336 5710 6396 4280 648 2930 2576 2932 2230
vorbis [51] 2017-12-11 N/A 625 642 N/A 458 472 888 1251 1190 1236 1642 635 1048 990 1059 1246
woff2 [52] 2016-05-06 1679 1875 2129 746 761 965 4032 4934 5183 4816 5431 824 1567 1575 1634 1725
zlib [53] 2020-05-06 249 258 265 142 149 184 132 527 433 522 318 70 416 317 413 267

libstagefright [37] 5.1.1 N/A 1043 2196 N/A 965 1765 1432 N/A N/A N/A 2577 1025 N/A N/A N/A 2232
libjpeg [32] 9c 458 386 695 213 175 363 1123 2016 2246 2289 2325 674 1677 1782 1790 1810
PoDoFo [45] 0.9.6 N/A 3862 4131 N/A 1864 2235 2570 5024 5436 5535 5726 1256 2234 2578 2630 2789
giflib [17] 5.2.1 285 343 446 179 212 235 852 1217 1375 1340 1324 672 853 969 978 1025
libav [6] 12.3 N/A 360 2297 N/A 297 1678 2575 5875 6233 6425 6472 2132 5325 5734 5864 6078
ffmpeg [23] 4.2.1 N/A 1057 1288 N/A 654 843 5685 7124 7756 8132 8079 3764 5513 5843 6012 6287
FreeImage [10] 3.18.0 N/A 629 2075 N/A 426 1297 4632 8023 8225 8234 8170 3347 5512 5615 5613 5724
ImageMagick [29] 7.0.1 787 817 848 514 532 617 4232 4758 5230 5133 5432 3756 4231 4482 4475 4875
jhead [8] 3.04 96 140 181 67 97 121 162 262 642 593 942 120 218 532 445 812
mupdf [43] 1.16.1 N/A 454 536 N/A 298 324 4672 5032 5335 5420 5624 1875 2021 2229 2394 2576
libtiff [14] 4.1.0 N/A 192 537 N/A 114 347 2124 3327 3576 3276 3234 1827 3016 3121 2748 2835
file [9] 5.37 *69 373 802 *40 375 725 1279 1525 1920 1837 1842 1165 1462 1899 1802 1825
readelf [26] 2.33.1 708 377 844 523 213 578 5438 7112 8125 7223 7429 3976 5602 7003 5642 5835

* We exclude the abnormal result of file when compared with KLEE.

and compression logic in libarchive and zlib create compli-
cated path constraints which block the solver and cause state
explosion in Ferry. We further discuss the limitations of Ferry
in Section 6.7. Given the same seed files, Ferry shows bet-
ter branch coverage on most of the benchmarks. Apart from
the five program above, Ferry covers 18%/21%/8% more
basic blocks and 22%/21%/8% more branches than AFL/An-
gora/QSYM, respectively. What’s more, the distribution of
Ferry’s block coverage is significantly different from others.
Specifically, 15% covered blocks by Ferry have never been
reached by any fuzzer. We believe such a result indicates the
capability of Ferry to cover hard-to-reach code.

Our manual inspection further reveals that Ferry is able to
reach deeper logic of these programs while the others cannot.
For example, when analyzing ffmpeg, only Ferry manages to
explore the code in the underlying video decoder, and angr
gets stuck in exploring repeatedly visited states (i.e., angr
repeats the same instructions hundreds of times, and all the
executions of these instructions are in the same valid state
recognized by Ferry).

6.2 Reproducibility of Program-state-dependent Vulner-
abilities

In this section, we evaluate whether Ferry can locate more
program-state-dependent vulnerabilities than previous works.
Vulnerability Collection. A vulnerability is considered
program-state-dependent if the path to it involves at least
one state-dependent branch. We collect the program-state-
dependent vulnerabilities in three steps. First, we determine
the version of each program in concern to reduce the search

scope. We set their versions to the ones with the most reported
vulnerabilities in CVE database. Then we gather the infor-
mation about each vulnerability, including its code location
and the input sequences to trigger it. Specifically, we collect
the vulnerabilities details via three ways: (1) we follow the
reference links of each vulnerability in the CVE database, (2)
we search them in Exploit Database [22], which provides the
proof-of-concept exploits of many vulnerabilities, and (3) we
try to find the patches that fix the vulnerabilities and learn
from them. At last, we manually filter the ones which do not
depend on program states. As depicted in Table 3, we finally
collect 15 vulnerabilities from CVE database.

As mentioned above, symbolic executors cannot automati-
cally trigger the vulnerabilities. Thus, we manually replace
these vulnerabilities with assert(0) guarded by required
triggering conditions so we can be notified as soon as the
executors reach them. These vulnerabilities cover various
vulnerability types, including heap and stack overflow, inte-
ger overflow, double-free, use-after-free, divided-by-zero and
uninitialized pointer reference.

The results are shown in Table 3. Among the successful
analyses of these tools, Ferry manages to reproduce 8 of the
15 vulnerabilities without enabling shortcut symbolic execu-
tion. After the shortcut symbolic execution is enabled, Ferry
can locate all the vulnerabilities. We explain the reasons why
other tools fail to locate the vulnerabilities as follow. For
symbolic executors, the main reason is path explosion. Our
manual check reveals that both KLEE and angr suffer from
severe path explosions. For example, angr forks over 10 times
more execution paths than Ferry within the six hours when

USENIX Association 31st USENIX Security Symposium 4375

Table 3: Vulnerability reproducibility of various tools. We
compare related approaches with Ferry with or without short-
cut symbolic execution (SSE).

Program CVE-ID KLEE angr Ferry AFL Angora QSYM
Ferry

w/. SSE

libstagefright
5.1.1

2015-3827 N/A No Yes N/A N/A N/A Yes
2015-3828 N/A No Yes N/A N/A N/A Yes
2015-3829 N/A No Yes N/A N/A N/A Yes
2015-3864 N/A No Yes N/A N/A N/A Yes
2016-3830 N/A No No N/A N/A N/A Yes

ffmpeg
3.1.3

2016-2213 N/A No No No No No Yes
2016-2329 N/A No No No No No Yes

2016-10190 N/A No Yes Yes Yes Yes Yes

ImageMagick
7.0.0

2016-7532 No No No Yes Yes Yes Yes
2016-7799 No No No Yes Yes Yes Yes

PoDoFo
0.9.5

2017-8378 N/A No No No No No Yes
2018-5783 N/A No No No No No Yes
2018-6352 N/A Yes Yes Yes Yes Yes Yes
2018-8000 N/A Yes Yes Yes Yes Yes Yes

2018-12982 N/A Yes Yes Yes Yes Yes Yes

analyzing libstagefright/ffmpeg/ImageMagick with BFS strat-
egy. For fuzzers, whether them can reach the vulnerabilities
is greatly affect by seed files. For example, no fuzzers are
able to reach the CVE-2016-2213 in ffmpeg since it can only
be triggered by video files containing special type of JPEG
2000 [1] payload. Unfortunately, such rare payload is not pre-
sented in any AFL testcase or FuzzBench seed, and hard to be
efficiently generated by fuzzers. In contrast, Ferry with SSE
only uses given seeds to avoid path explosion in early-stage
video processing logic, and successful reaches the vulnerabil-
ity after it makes corresponding input partitions symbolic.

6.3 “Deep” Program State Exploration

We propose a test suite River to facilitate us to evaluate the
extent to which a dynamic analysis tool can explore state-
dependent branches. River is different from other datasets,
such as LAVA-M, in that it meant to evaluate a tool’s ability
to explore “deep” states, which is orthogonal to the block
coverage criterion concerned by others. It bears the following
characteristics: (1) all the inserted vulnerabilities are program-
state-dependent, which means they can only be triggered by
certain input sequences; (2) vulnerabilities are distributed over
various state depth, i.e., the least number of state-dependent
branching decisions it takes to reach the vulnerability. The
ones with greater state depth have more constraints on input
sequences, thus are harder to reach. We manually annotated
all the inserted vulnerabilities and recorded their state depth
information. Because River is meant to evaluate a tool’s abil-
ity to explore “deep” states, the corresponding metric must
take state depth into consideration. Accordingly, instead of
measuring the total number of program states that have been
explored, we argue that the most appropriate metric should
focus on measuring how many “deep” states have been ex-
plored. In order to implement this idea, we let state depth be
a key attribute of each inserted vulnerability. In this way, the
corresponding (vulnerability ID, state depth) pair tells us not
only that a new program state has been explored, but also
whether the state is a “deep” state or not. It should be no-
ticed that whether the metric of (vulnerability ID, state depth)

pair can systematically measure a tool’s ability to explore
deep states largely depends on whether there is a vulnerability
inserted at a representative set of reachable deep states.
Test Suite Construction. We construct the benchmark in two
steps. First, we use program-state-aware symbolic execution
to analyze the programs for six hours and record the necessary
information for vulnerability injection including the code
locations of each state transition, i.e., SDVO addresses, and
path constraints to reach them. Second, we manually insert
vulnerabilities after each SDVO. Note that we skip the SDVOs
whose path constraints are too complicated for the human
program analysts to understand. Each inserted vulnerability is
a call to assert(0 && state_depth && vul_id) guarded
by path constraints so it can be unconditionally exploited.
The vul_id is unique and serves as the index to get detailed
vulnerability information.
Program State Exploration Ability Evaluation. We use
River to evaluate all the symbolic executors and fuzzers. We
present the detailed vulnerability reproduction results in Ap-
pendix A and the distribution of inserted bugs reached by
different tools over depth in Figure 7. Our results show that
existing symbolic executors and fuzzers can only locate bugs
with shallow depth. Specifically, when the depth is less than
20, the counterparts manage to locate 46% (51 out of 110) of
the injected bugs. While only angr with DFS and KLEE with
RP are able to locate 5, respectively, out of the 17 vulnerabili-
ties with a depth greater than 40.

6.4 Accuracy of Inferred SDVO instructions.

To the best of our knowledge, there is no ground truth about
the SDVO instructions of the given programs, preventing
us from comprehensively evaluating the precision of SDVO
instruction inference. Instead, we checked the SDVO instruc-
tions of libjpeg as an example. After 10 hours’ code audit, we
pointed out 49 SDVO instructions. Meanwhile, Ferry recog-
nized 88 SDVO instructions, covering all the manually labeled
ones. Our further manual verification confirmed that all the
rest 39 recognized instructions are truly SDVO ones. Our
code auditing omitted them because their code resides in the
deep logic of the program, after multiple function calls and
variable assignments, which hinders the tracking of inputs
with human effort.

6.5 A Case Study

CVE-2016-3830 in libstagefright. CVE-2016-3830 is a re-
ported vulnerability of libstagefright. Among all the eval-
uated symbolic execution engines, only Ferry with shortcut
symbolic execution can automatically locate this vulnerability.
Our manual inspection reveals the difficulties to uncover it:

• The vulnerability occurs in the audio decoder of AAC
format, which is “protected” by at least two earlier state
machines. That is, a first state machine which initializes the
audio decoder and extracts the audio header and tracks, and
the second state machine which leverages the audio header

4376 31st USENIX Security Symposium USENIX Association

10 20 30 40 50 600

9

18

27

36

45
libjpeg

2 4 6 80
4
8

12
16
20
24 PoDoFo

10 20 30 400
4
8

12
16
20
24 giflib

10 20 30 40 50 600
4
8

12
16
20
24 jhead

Ferry KLEE-BFS KLEE-DFS KLEE-RP angr-BFS angr-DFS AFL QSYM Angora
10 20 30 40 50 600

5

10

15

20

25
libpng

5 10 15 200

6

12

18

24

30
ffmpeg

Figure 7: The cumulative distribution of inserted bugs reached by different tools over depth. The x-axis shows the state depth of
injected bugs and the y-axis shows the number of bugs reached by each tools.

to configure the decoder. The vulnerability resides in the
third state machine which decodes the audio tracks. Our
experiment shows that angr suffers path explosion in the
first state machine, and if shortcut symbolic execution is
disabled, Ferry suffers severe path explosion in the second
state machine.

• The vulnerability can only be exploited in a deep pro-
gram state of the third state machine. Specifically, in
a state after a mismatch between an expected payload
size adtsHeaderSize and a calculated result stored in
aac_frame_length. To measure the efficiency of state-of-
the-art symbolic execution, we further applied this case to
angr, by manually assigning the entry point of the third
state machine to it. Our evaluation reveals that angr still
fails to locate this vulnerability.

6.6 Performance Baseline

In the section, we try to find out the performance baseline
of Ferry when exploring code logic with no state-dependent
branches. We achieve this with dataset LAVA-M, since LAVA
only inserts vulnerabilities at the locations that input bytes “do
not determine control flow” (i.e., the control flow statements
involved in the paths arriving at these locations are indepen-
dent of the input bytes). That is, the execution paths towards
these vulnerabilities involve no state-dependent branch. We
present the detailed results in Appendix B. The results show
that in the worst case, Ferry performs almost the same as
angr with BFS strategy except that it avoids exploring some
duplicated paths.

6.7 Discussion

Our experiments show that Ferry provides an effective sym-
bolic execution engine for exploring state-dependent branches,
and achieves a first step towards solving the challenging prob-
lem for symbolic execution: how to handle the programs with
state-dependent branches. In this section, we discuss the lim-
itations of Ferry and under what circumstances Ferry may
fail.
State Explosion. Table 2 shows that the efficiency of Ferry is
limited on certain program logic (e.g., string searching and
compression algorithm). On one hand, they are common chal-
lenges for symbolic executors since such logic will generate
complicated path constraints which can overwhelm the con-

straint solver. On the other hand, such program logic causes
state explosion. For example, compression programs have
huge internal state space, and any changes to an input byte
will lead to different program states and change the way in
which all subsequent inputs are processed. In such cases, Ferry
suffers state explosion (which further causes path explosion).
Our optimizations, which help alleviate the state explosion,
cannot completely solve this problem.

As a first attempt to systematically tackle programs with
state-dependent branches for symbolic execution, our tech-
nique works for the programs that bear the similar intrinsic
characteristic explained in Section 2.3. However, it is cur-
rently not yet a general-purpose approach. A major challenge
that still hinders the symbolic execution engines is how to
identify state-describing variables in an arbitrary program.
We leave this issue as our future work on Ferry.

7 Related Work
This section discusses two classes of dynamic analysis ap-
proaches: first, other works on symbolic execution; then, the
fuzzing tests known as alternatives to symbolic execution
engines in bug finding. We further discuss the related works
which explore the state space in real-world programs, oper-
ating systems and network protocols and explain their differ-
ences with this paper.

7.1 Symbolic execution

Ferry is the first symbolic execution engine that systemati-
cally handles state-dependent branches of programs. Since
the appearance of the first symbolic execution engine, several
decades have passed with tens of symbolic execution engines
proposed [70]. Based on their ways of achieving high code
coverage, they can be characterized into three categories.
Mixing concrete and symbolic execution. Replacing part
of symbolic values with concrete ones [64, 68, 69, 71, 75, 90]
can significantly alleviate the path explosion, thus improving
performance. For example, S2E [75] proposes an automatic
bidirectional symbolic-concrete state conversion that enables
execution to seamlessly and correctly weave back and forth be-
tween symbolic and concrete mode. In this paper, we propose
a shortcut symbolic execution which also mixes a preceding
concrete execution with a following symbolic one. However,
unlike traditional concolic testing which randomly reverts

USENIX Association 31st USENIX Security Symposium 4377

branch taking, our core problem here is how to automatically
determine the boundaries of input partitions and explore the
corresponding state-dependent branch groups. This problem
is solved based on our unique observations.
Compositional execution. Compositional testing analyzes
elementary units (i.e., a method or a procedure) in the pro-
gram separately, and stores the analysis results in summaries
encoding the input-output transformation of the units. It is
first proposed by Dart [80], and several optimizations were
proposed to improve compositional testing [79, 88]. Gener-
ally, a fundamental assumption of compositional execution is
the loose coupling between functions, thus they can improve
scalability by directly checking elementary units, rather than
whole programs. However, in programs with state-dependent
branches, the behavior of each elementary unit may vary, de-
pending on the runtime program state.
Selective symbolic execution. Selective symbolic execution
(also referred to as guided symbolic execution) [66–68,83,91,
94] applies heuristic policies to guide the selection of execu-
tion paths to follow, expecting to execute paths that are most
likely to cover new code in the immediate future. For example,
the heuristic of KLEE [68] is a combination of the minimum
distance to an uncovered instruction, the call stack of the
process, and whether the process has recently covered new
code. Li et al. [84] use subpath program spectra to systemati-
cally approximate full path information, and guide symbolic
execution to less traveled paths; Chopper [92], on the other
hand, allows users to specify uninteresting parts of the code
to exclude during the analysis. Ferry also applies a selective
symbolic execution, by leveraging the insight that reached
program states should not be explored again. While instead if
prioritizing certain paths, Ferry automatically prunes redun-
dant paths that explore reached program states.

7.2 Fuzzing

Fuzzing (or fuzz testing) is an automated testing technique
that provides invalid, unexpected, or random data as inputs
to a program, and monitors the program for its unexpected
behaviors. Mutation-based fuzzers [65,72] generate inputs by
modifying (referred to as mutating) the provided reference
inputs (seeds). They assume that the unexplored program
behavior can be triggered by simple mutation of program
inputs. However, such an assumption does not hold in pro-
grams with many state-dependent branches, since a mutated
program input is difficult to trigger a serial of state-transitions.
Generation-based fuzzers [93, 95] usually generate inputs
based on a provided input model (or format). They usually re-
quire human efforts to specify the data template. Even worse,
it is challenging to infer a program’s states. Thus, modeling
the inputs for a program with state-dependent branches could
be time-consuming.

Besides, guided fuzzers [18, 73, 85, 89, 91] apply heuris-
tics to select test cases that are likely to reach unexplored
code. For example, AFL [18] uses program instrumentation

to understand which inputs explore new program branches,
and keeps these inputs as seeds for further mutation. Sev-
eral optimizations [73, 85, 89] add new heuristics to increase
branch coverage by solving various path constraints. Besides,
Driller [91] relies on selective concolic execution to generate
seeds for fuzzing. Although these tools are capable to handle
single input checks, state machines in the real world usually
contain a series of complicated checks, which can overwhelm
them. Besides, they focus on exploring new paths, and are
unaware of the program states discussed in our paper. As a
result, their heuristics cannot drive them to explore program
states efficiently.

7.3 Program and System State Exploration

Apart from Ferry, some related works also try to explore the
state space in real-world programs, operating systems and
network protocols. We explain their differences with this pa-
per as follows. IJON [62] explores the deep state spaces of
programs. It enables human experts to provide feedbacks to
fuzzers to help explore state machines, while our work auto-
matically infers the state-describing variables and requires no
human efforts. The real-world programs analyzed in our work
contain tens or even hundreds of state-describing variables,
which can overwhelm human analysts.

In terms of exploring the state space in operating systems,
state-aware kernel fuzzing techniques [63,82,86] monitor the
states of operating systems during the exploration of kernel
logic. Unlike program states concerned in this paper, oper-
ating system states are described by well-defined metadata,
and state transitions happen when well-defined events (e.g., a
syscall is invoked, an interrupt happens) happen. Accordingly,
neither identifying state-describing variables nor recogniz-
ing runtime states is a major challenge in state-aware kernel
fuzzing. In contrast, they are the major challenges in program-
state-aware symbolic execution as shown in Section 2.1.

The stateful network protocols are another class of promis-
ing analysis targets since the outbreak of several severe vulner-
abilities like Heartbleed [49]. The input sequences in network
protocol are divided into individual messages between client
and server. When a message is processed by server, a response
with status code, which explicitly shows the server state, is
replied. Current stateful protocol fuzzing works utilize these
prior knowledge about network protocols (e.g., message struc-
ture and status code) when analyzing them. AFLNet [87],
for example, uses protocol-specific information of message
structure to extract individual messages, reads status code to
determine server’s state and reorders messages with heuris-
tics to explore protocol states. And MACE [76] relies on
user-provided state-machine model abstraction, and uses the
information to guide concolic execution. In contrast, Ferry
assumes no prior knowledge about analyzed programs and in-
put structure. From Ferry’s perspective, the status code bears
no difference from other state-describing variables, and it
tries to automatically recognize all the variables that describe

4378 31st USENIX Security Symposium USENIX Association

program state.

8 Conclusion
In this work, we make the first attempt to achieve program-
state-aware symbolic execution on an important class of real-
world programs where date dependency exists between in-
put data and state-describing variables. We propose Ferry, a
new symbolic execution engine which focuses on real-world
programs with state-dependent branches. We demonstrate
the effectiveness of our approach by applying Ferry to two
comprehensive test suites, 13 real-world programs and 15
reported vulnerabilities. The experiment results show that
Ferry clearly outperforms the existing approaches. Our evalu-
ation also reveals that Ferry covers more code (basic blocks)
and branches that other techniques and locates 2.4 times as
many program-state-dependent vulnerabilities as state-of-the-
art symbolic executors and fuzzers. Our research provides a
successful experience for the following works on achieving
general-purpose program-state-aware symbolic execution.

Acknowledgement
We would like to thank the anonymous reviewers for their
insightful comments that helped improve the quality of the
paper. This work was supported in part by the National Nat-
ural Science Foundation of China (U1736208, U1836210,
U1836213, 62172104, 61972099, 61902374), Natural Science
Foundation of Shanghai (19ZR1404800). Min Yang is the
corresponding author, and a faculty of Shanghai Institute of
Intelligent Electronics & Systems, Shanghai Institute for Ad-
vanced Communication and Data Science, and Engineering
Research Center of Cyber Security Auditing and Monitoring,
Ministry of Education, China.

References
[1] JPEG 2000. https://en.wikipedia.org/wiki/JPEG_

2000, 1997.

[2] MPEG4Extractor: more NULL derefernce
fixes in parseChunk. https://android.
googlesource.com/platform/frameworks/av/+/
202fbed96db40ec5fb43d633fc97601a15a6dd7a, 2014.

[3] MPEG4Extractor: null check in
MPEG4Source::parseChunk. https://android.
googlesource.com/platform/frameworks/av/+/
1391f933b49cfb56da9aa63f723de83b076cf888, 2014.

[4] Unicorn: The ultimate CPU emulator. https://www.
unicorn-engine.org/, 2017.

[5] Bionic. https://android.googlesource.com/platform/
bionic/, 2018.

[6] libav. https://libav.org/, 2018.

[7] android/platform/external/libhevc. https://android.
googlesource.com/platform/external/libhevc, 2019.

[8] Exif Jpeg header manipulation tool. https://www.sentex.
ca/~mwandel/jhead/, 2019.

[9] file. https://www.astron.com/pub/file/, 2019.

[10] FreeImage. http://freeimage.sourceforge.net/, 2019.

[11] heap-buffer-overflow detected in function process_dqt.
https://bugs.launchpad.net/ubuntu/+source/jhead/
+bug/1857521, 2019.

[12] libarchive. https://github.com/libarchive/
libarchive, 2019.

[13] LibHTP. https://github.com/OISF/libhtp, 2019.

[14] LibTIFF - TIFF Library and Utilities. http://www.libtiff.
org/, 2019.

[15] Matthias Wandel’s (old) Home page. https://www.sentex.
ca/~mwandel/index.html, 2019.

[16] OpenH264. https://github.com/cisco/openh264, 2019.

[17] The GIFLIB project. https://http://giflib.
sourceforge.net/, 2019.

[18] American Fuzzy Lop. http://lcamtuf.coredump.cx/
afl/, 2020.

[19] angr. https://github.com/angr/angr, 2020.

[20] Bloaty McBloatface: a size profiler for binaries. https://
github.com/google/bloaty, 2020.

[21] curl_curl_fuzzer_http. https://github.com/google/
fuzzbench/tree/master/benchmarks/curl_curl_
fuzzer_http, 2020.

[22] Exploit Database. https://www.exploit-db.com/, 2020.

[23] FFmpeg. https://www.ffmpeg.org/, 2020.

[24] Freetype2. git://git.sv.nongnu.org/freetype/
freetype2.git, 2020.

[25] Fuzzing. https://en.wikipedia.org/wiki/Fuzzing,
2020.

[26] GNU Binutils. https://www.gnu.org/software/
binutils/, 2020.

[27] Google Sanitizers. https://github.com/google/
sanitizers, 2020.

[28] HarfBuzz. https://github.com/behdad/harfbuzz, 2020.

[29] ImageMagick. https://www.imagemagick.org/script/
index.php, 2020.

[30] JsonCpp. https://github.com/open-source-parsers/
jsoncpp, 2020.

[31] LAVA: Large Scale Automated Vulnerability Addition. https:
//github.com/panda-re/lava, 2020.

[32] libjpeg. https://www.ijg.org/, 2020.

[33] libjpeg-turbo. https://github.com/libjpeg-turbo/
libjpeg-turbo, 2020.

[34] LIBPCAP 1.x.y by The Tcpdump Group. https://github.
com/the-tcpdump-group/libpcap, 2020.

[35] libpng. http://www.libpng.org/pub/png/libpng.html,
2020.

[36] libpng. https://downloads.sourceforge.net/project/
libpng/libpng12/older-releases/1.2.56/libpng-
1.2.56.tar.gz, 2020.

USENIX Association 31st USENIX Security Symposium 4379

https://en.wikipedia.org/wiki/JPEG_2000
https://en.wikipedia.org/wiki/JPEG_2000
https://android.googlesource.com/platform/frameworks/av/+/202fbed96db40ec5fb43d633fc97601a15a6dd7a
https://android.googlesource.com/platform/frameworks/av/+/202fbed96db40ec5fb43d633fc97601a15a6dd7a
https://android.googlesource.com/platform/frameworks/av/+/202fbed96db40ec5fb43d633fc97601a15a6dd7a
https://android.googlesource.com/platform/frameworks/av/+/1391f933b49cfb56da9aa63f723de83b076cf888
https://android.googlesource.com/platform/frameworks/av/+/1391f933b49cfb56da9aa63f723de83b076cf888
https://android.googlesource.com/platform/frameworks/av/+/1391f933b49cfb56da9aa63f723de83b076cf888
https://www.unicorn-engine.org/
https://www.unicorn-engine.org/
https://android.googlesource.com/platform/bionic/
https://android.googlesource.com/platform/bionic/
https://libav.org/
https://android.googlesource.com/platform/external/libhevc
https://android.googlesource.com/platform/external/libhevc
https://www.sentex.ca/~mwandel/jhead/
https://www.sentex.ca/~mwandel/jhead/
https://www.astron.com/pub/file/
http://freeimage.sourceforge.net/
https://bugs.launchpad.net/ubuntu/+source/jhead/+bug/1857521
https://bugs.launchpad.net/ubuntu/+source/jhead/+bug/1857521
https://github.com/libarchive/libarchive
https://github.com/libarchive/libarchive
https://github.com/OISF/libhtp
http://www.libtiff.org/
http://www.libtiff.org/
https://www.sentex.ca/~mwandel/index.html
https://www.sentex.ca/~mwandel/index.html
https://github.com/cisco/openh264
https://http://giflib.sourceforge.net/
https://http://giflib.sourceforge.net/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://github.com/angr/angr
https://github.com/google/bloaty
https://github.com/google/bloaty
https://github.com/google/fuzzbench/tree/master/benchmarks/curl_curl_fuzzer_http
https://github.com/google/fuzzbench/tree/master/benchmarks/curl_curl_fuzzer_http
https://github.com/google/fuzzbench/tree/master/benchmarks/curl_curl_fuzzer_http
https://www.exploit-db.com/
https://www.ffmpeg.org/
git://git.sv.nongnu.org/freetype/freetype2.git
git://git.sv.nongnu.org/freetype/freetype2.git
https://en.wikipedia.org/wiki/Fuzzing
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/behdad/harfbuzz
https://www.imagemagick.org/script/index.php
https://www.imagemagick.org/script/index.php
https://github.com/open-source-parsers/jsoncpp
https://github.com/open-source-parsers/jsoncpp
https://github.com/panda-re/lava
https://github.com/panda-re/lava
https://www.ijg.org/
https://github.com/libjpeg-turbo/libjpeg-turbo
https://github.com/libjpeg-turbo/libjpeg-turbo
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
http://www.libpng.org/pub/png/libpng.html
https://downloads.sourceforge.net/project/libpng/libpng12/older-releases/1.2.56/libpng-1.2.56.tar.gz
https://downloads.sourceforge.net/project/libpng/libpng12/older-releases/1.2.56/libpng-1.2.56.tar.gz
https://downloads.sourceforge.net/project/libpng/libpng12/older-releases/1.2.56/libpng-1.2.56.tar.gz

[37] libstagefright. https://android.googlesource.
com/platform/frameworks/av/+/master/media/
libstagefright, 2020.

[38] libxml2. https://gitlab.gnome.org/GNOME/libxml2,
2020.

[39] Little CMS. https://github.com/mm2/Little-CMS, 2020.

[40] LLVM Language Reference Manual. https://llvm.org/
docs/LangRef.html, 2020.

[41] Mbed TLS. https://github.com/ARMmbed/mbedtls,
2020.

[42] muparser - Fast Math Parser 2.3.3. https://github.com/
beltoforion/muparser, 2020.

[43] MuPDF. https://www.mupdf.com/, 2020.

[44] OpenThread. https://github.com/openthread/
openthread, 2020.

[45] PoDoFo. http://podofo.sourceforge.net/, 2020.

[46] RE2. https://github.com/google/re2, 2020.

[47] stb_stbi_read_fuzzer. https://github.com/google/
fuzzbench/tree/master/benchmarks/stb_stbi_read_
fuzzer, 2020.

[48] Symbolic execution. https://en.wikipedia.org/wiki/
Symbolic_execution, 2020.

[49] The Heartbleed Bug. https://heartbleed.com/, 2020.

[50] The Z3 Theorem Prover. https://github.com/Z3Prover/
z3, 2020.

[51] Vorbis. https://github.com/xiph/vorbis, 2020.

[52] woff2. https://github.com/google/woff2, 2020.

[53] ZLIB DATA COMPRESSION LIBRARY. https://github.
com/madler/zlib, 2020.

[54] AFL starting test cases. https://github.com/google/AFL/
tree/master/testcases, 2021.

[55] Fix issue 24. jpgqguess could read a few bytes past what was al-
located. https://github.com/Matthias-Wandel/jhead/
commit/b711024c667382241fde92e201363689c60adbd2,
2021.

[56] FuzzBench: Fuzzer Benchmarking As a Service. https://
github.com/google/fuzzbench, 2021.

[57] fuzzbench/benchmarks. https://github.com/google/
fuzzbench/tree/master/benchmarks, 2021.

[58] libfuzzer – a library for coverage-guided fuzz testing. https:
//llvm.org/docs/LibFuzzer.html, 2021.

[59] nghttp2 - HTTP/2 C Library. https://github.com/
nghttp2/nghttp2, 2021.

[60] OSS-Fuzz: Continuous Fuzzing for Open Source Software.
https://github.com/google/oss-fuzz, 2021.

[61] Tips for performance optimization. https://github.com/
google/AFL/blob/master/docs/perf_tips.txt, 2021.

[62] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and
Thorsten Holz. Ijon: Exploring deep state spaces via fuzzing.
In 2020 IEEE Symposium on Security and Privacy (Oakland
2020), 2020.

[63] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN: Fuzzing
with Input-to-State Correspondence. In The Network and Dis-
tributed System Security Symposium 2019 (NDSS 2019), 2019.

[64] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and
David Brumley. Enhancing symbolic execution with veritest-
ing. In Proceedings of the 36th International Conference on
Software Engineering (ICSE 2014), 2014.

[65] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based greybox fuzzing as markov chain. Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS 2016), 2016.

[66] Suhabe Bugrara and Dawson Engler. Redundant State Detec-
tion for Dynamic Symbolic Execution. In Proceedings of the
2013 USENIX Conference on Annual Technical Conference
(ATC 2013), 2013.

[67] Jacob Burnim and Koushik Sen. Heuristics for scalable dy-
namic test generation. In Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2008), 2008.

[68] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI 2008), 2008.

[69] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill,
and Dawson Engler. EXE: automatically generating inputs of
death. ACM Transactions on Information and System Security
(TISSEC), 12(2):10, 2008.

[70] Cristian Cadar and Koushik Sen. Symbolic execution for soft-
ware testing: three decades later. Communications of the ACM,
56(2):82–90, 2013.

[71] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and
David Brumley. Unleashing mayhem on binary code. In IEEE
Symposium on Security and Privacy 2012 (Oakland 2012),
2012.

[72] Sang Kil Cha, Maverick Woo, and David Brumley. Program-
adaptive mutational fuzzing. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland 2015), 2015.

[73] Peng Chen and Hao Chen. Angora: Efficient Fuzzing by Prin-
cipled Search. In Proceedings of the 39th IEEE Symposium on
Security and Privacy (Oakland 2018), 2018.

[74] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka:
fuzzing deeply nested branches. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security (CCS 2019), 2019.

[75] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea.
S2E: A platform for in-vivo multi-path analysis of software
systems. In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2011), 2011.

[76] Chia Yuan Cho, Domagoj Babic, Pongsin Poosankam,
Kevin Zhijie Chen, Edward XueJun Wu, and Dawn Song.
MACE: Model-inference-Assisted Concolic Exploration for
Protocol and Vulnerability Discovery. In USENIX Security
Symposium, volume 139, 2011.

4380 31st USENIX Security Symposium USENIX Association

https://android.googlesource.com/platform/frameworks/av/+/master/media/libstagefright
https://android.googlesource.com/platform/frameworks/av/+/master/media/libstagefright
https://android.googlesource.com/platform/frameworks/av/+/master/media/libstagefright
https://gitlab.gnome.org/GNOME/libxml2
https://github.com/mm2/Little-CMS
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://github.com/ARMmbed/mbedtls
https://github.com/beltoforion/muparser
https://github.com/beltoforion/muparser
https://www.mupdf.com/
https://github.com/openthread/openthread
https://github.com/openthread/openthread
http://podofo.sourceforge.net/
https://github.com/google/re2
https://github.com/google/fuzzbench/tree/master/benchmarks/stb_stbi_read_fuzzer
https://github.com/google/fuzzbench/tree/master/benchmarks/stb_stbi_read_fuzzer
https://github.com/google/fuzzbench/tree/master/benchmarks/stb_stbi_read_fuzzer
https://en.wikipedia.org/wiki/Symbolic_execution
https://en.wikipedia.org/wiki/Symbolic_execution
https://heartbleed.com/
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://github.com/xiph/vorbis
https://github.com/google/woff2
https://github.com/madler/zlib
https://github.com/madler/zlib
https://github.com/google/AFL/tree/master/testcases
https://github.com/google/AFL/tree/master/testcases
https://github.com/Matthias-Wandel/jhead/commit/b711024c667382241fde92e201363689c60adbd2
https://github.com/Matthias-Wandel/jhead/commit/b711024c667382241fde92e201363689c60adbd2
https://github.com/google/fuzzbench
https://github.com/google/fuzzbench
https://github.com/google/fuzzbench/tree/master/benchmarks
https://github.com/google/fuzzbench/tree/master/benchmarks
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/nghttp2/nghttp2
https://github.com/nghttp2/nghttp2
https://github.com/google/oss-fuzz
https://github.com/google/AFL/blob/master/docs/perf_tips.txt
https://github.com/google/AFL/blob/master/docs/perf_tips.txt

[77] J. W. Duran and S. C. Ntafos. An Evaluation of Random
Testing. IEEE Transactions on Software Engineering, SE-
10(4):438–444, 1984.

[78] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiao-
jun Qin, Dong Wu, and Zuoning Chen. GREYONE: Data
Flow Sensitive Fuzzing. In 29th USENIX Security Symposium
(USENIX Security 2020), 2020.

[79] Patrice Godefroid. Compositional dynamic test generation. In
Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2007), 2007.

[80] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART:
directed automated random testing. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2005), 2005.

[81] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam,
and Dawn Song. Dta++: dynamic taint analysis with targeted
control-flow propagation. In NDSS, 2011.

[82] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin
Jang, Insik Shin, and Byoungyoung Lee. HFL: Hybrid Fuzzing
on the Linux Kernel. In The Network and Distributed System
Security Symposium 2020 (NDSS 2020), 2020.

[83] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and
George Candea. Efficient State Merging in Symbolic Execu-
tion. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI
2012), 2012.

[84] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li.
Steering symbolic execution to less traveled paths. ACM Sig-
Plan Notices, 48(10):19–32, 2013.

[85] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-
Wei Lin, Yang Liu, and Alwen Tiu. Steelix: Program-state
Based Binary Fuzzing. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (FSE 2017),
2017.

[86] Shankara Pailoor, Andrew Aday, and Suman Jana. Moonshine:
Optimizing OS fuzzer seed selection with trace distillation. In
27th USENIX Security Symposium (USENIX Security 2018),
2018.

[87] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury.
AFLNet: A Greybox Fuzzer for Network Protocols. In Proceed-
ings of the 13rd IEEE International Conference on Software
Testing, Verification and Validation : Testing Tools Track, 2020.

[88] David Ramos and Dawson Engler. Under-Constrained Sym-
bolic Execution: Correctness Checking for Real Code. In
Proceedings of the 24th USENIX Conference on Security Sym-
posium (USENIX Security 2015), 2015.

[89] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cris-
tiano Giuffrida, and Herbert Bos. VUzzer: Application-aware
Evolutionary Fuzzing. In The Network and Distributed System
Security Symposium 2017 (NDSS 2017), 2017.

[90] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick
Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, and Giovanni
Vigna. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In 37th IEEE Symposium on Security and
Privacy (Oakland 2016), 2016.

[91] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna. Driller: Augment-
ing Fuzzing Through Selective Symbolic Execution. In The
Network and Distributed System Security Symposium 2016
(NDSS 2016), 2016.

[92] David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian
Cadar. Chopped symbolic execution. In Proceedings of the
40th International Conference on Software Engineering, 2018.

[93] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire:
Data-driven seed generation for fuzzing. In Proceedings of
the 38th IEEE Symposium on Security and Privacy (Oakland
2017), 2017.

[94] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning,
and X Sean Wang. Appintent: Analyzing sensitive data trans-
mission in android for privacy leakage detection. In Proceed-
ings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security (CCS 2013), 2013.

[95] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing
Liao, Pan Bian, and Bin Liang. SemFuzz: Semantics-based
Automatic Generation of Proof-of-Concept Exploits. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS 2017), 2017.

[96] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo
Kim. Qsym: A practical concolic execution engine tailored for
hybrid fuzzing. In 27th USENIX Security Symposium (USENIX
Security 2018), 2018.

[97] Hong Zhu, Patrick AV Hall, and John HR May. Software
unit test coverage and adequacy. ACM Computing Surveys,
29(4):366–427, 1997.

A Vulnerability Coverage on River
We use River to evalute two symbolic executors KLEE and
angr, and three fuzzers AFL, Angora and QSYM. The results
are shown in Table 4. Since Ferry shares the techniques to
construct the benchmark, it is not surprising that it is able to
locate all the inserted vulnerabilities. We observe that QSYM
performs bad on River, and our manual investigation shows
that this is due to one specific optimization of QSYM, that
is, “QSYM attempts to detect repetitive basic blocks and then
prunes them from symbolic execution”, which makes it ignore
many branches in input-handling loops. Among the evaluated
tools, KLEE finds the most vulnerabilities (41%) and the
symbolic executors perform better than fuzzers because their
exploration techniques (especially BFS) and constraint solv-
ing abilities help them locate more shallow vulnerabilities.

B Reproducibility of LAVA-M Vulnerabilities
The LAVA-M dataset contains a total number of 2,265 au-
tomatically inserted vulnerabilities. Instead of inserting real
vulnerabilities such as out-of-bound memory accesses, the
“vulnerabilities” in LAVA-M are actually invocations of the
dprintf() function, so it requires no extra efforts as we have
previously discussed to trigger the vulnerabilities. We set the

USENIX Association 31st USENIX Security Symposium 4381

Table 4: Vulnerability coverage of Ferry, symbolic execution engines and fuzzers. #vul and %vul stands for the number and
percentage of reached vulnerabilities, respectively.

Program Ver. Ferry KLEE-BFS KLEE-DFS KLEE-RP angr-BFS angr-DFS AFL QSYM Angora

#vul %vul #vul %vul #vul %vul #vul %vul #vul %vul #vul %vul #vul %vul #vul %vul #vul %vul

libjpeg 9c 46 100% 23 50% 11 24% 27 59% 25 54% 11 24% 23 50% 15 33% 27 59%
PoDoFo 0.9.6 20 100% N/A - N/A - N/A - 0 0% 8 40% 1 5% 0 0% 1 5%
giflib 5.2.1 20 100% 10 50% 8 40% 10 50% 11 55% 8 40% 1 5% 1 5% 10 0%
jhead 3.04 20 100% 5 25% 5 25% 5 25% 7 35% 10 50% 1 5% 0 0% 4 20%
libpng 1.6.37 25 100% 24 96% 12 48% 24 96% 13 52% 15 60% 0 0% 0 0% 0 0%
ffmpeg 4.2.1 29 100% N/A - N/A - N/A - 0 0% 0 0% 0 0% 0 0% 0 0%

Total - 160 100% 62 39% 36 23% 66 41% 56 35% 52 33% 26 16% 16 10% 32 20%

Table 5: Number of vulnerabilities reported by Ferry, symbolic execution engines and fuzzers in LAVA-M.

Program Total Ferry FUZZER* SES* KLEE-BFS KLEE-DFS KLEE-RP angr-BFS angr-DFS AFL QSYM Angora

uniq 28 0 7 0 0 0 0 0 20 0 29 29
base64 44 44 7 9 44 42 44 44 39 0 48 48
md5sum 57 6 2 0 0 0 0 6 9 0 61 57
who 2136 311 0 18 321 324 324 311 311 0 1,225 1,541

* In the original paper of LAVA [31], the authors have evaluated unspecified coverage-guided FUZZER and unspecified symbolic execution engine SES. Since we use the same timeout and seed files as
LAVA, we directly quote its results; the results are also directly quoted in two other works [63, 73].

same timeout (i.e., six hours) for all the tools, and we use the
input seed files provided by LAVA-M. We present the detailed
results in Table 5.

Since LAVA only inserts vulnerabilities at the locations
that input bytes “do not determine control flow” (i.e., the con-
trol flow statements involved in the paths arriving at these
locations are independent of the input bytes), the execution
paths towards these vulnerabilities involve no state-dependent
branch. This is significantly different from the River test suite
in this paper, and it can explain why Ferry performs almost
the same as angr with BFS strategy except that it avoids ex-
ploring some duplicated paths. Symbolic executors achieve
a good coverage in base64 and who because they manage to
solve the constraints of the conditional statements that guard

the inserted vulnerabilities, and fail in md5sum and uniq due
to path explosion and complicated constraints introduced by
string comparisons. We observe that angr with DFS strategy
provides a different result on uniq compared with other sym-
bolic executors. Our manual investigation shows that this is
mainly because of the implementation of the DFS strategy
in angr: angr combines DFS with random path selection by
randomly choosing the next execution path after the previous
one is finished instead of always taking the longest one, thus
avoiding to get stuck in the string comparison loops of uniq.

In general, QSYM and Angora perform the best and are
able to report vulnerabilities not listed by LAVA. AFL, on
the other hand, only generates invalid inputs with random
mutation and fails to find any vulnerability.

4382 31st USENIX Security Symposium USENIX Association

	Introduction
	Problem Statement and Analysis
	Challenges to Conduct Program-state-aware Symbolic Execution
	Characteristics of Real-world Programs with State-dependent Branches
	Model of Ferry

	Design
	Overview of Ferry
	State-describing Variable Recognition
	Program-state-aware Symbolic Execution

	Algorithm of Program-state-aware Symbolic Execution
	Optimizations for Complex Real-world Programs
	State-reduction of Inactive State-describing Variables
	Shortcut Symbolic Execution with Input Partitioning

	Evaluation
	Code Coverage
	Reproducibility of Program-state-dependent Vulnerabilities
	``Deep'' Program State Exploration
	Accuracy of Inferred SDVO instructions.
	A Case Study
	Performance Baseline
	Discussion

	Related Work
	Symbolic execution
	Fuzzing
	Program and System State Exploration

	Conclusion
	Vulnerability Coverage on River
	Reproducibility of LAVA-M Vulnerabilities

