

MAGE: Mutual Attestation for a Group of Enclaves without Trusted Third Parties

Guoxing Chen

Yinqian Zhang

Shanghai Jiao Tong University Southern University of Science and Technology

饮水思源·爱国荣校

Trusted execution environment (TEE)

Q1: Is the attester an enclave?

TEE Platform Root secret Attestation Key Report Report Attester Enclave

Q2: What is the attester enclave's identity?

Enclave measurement: the cryptographic hash of the initial code and data of an enclave, as the identity of the enclave.

Q3: Is the identity trusted?

Q3: Is the identity trusted?

Enclave measurement =?

Trusted enclave's measurement

Verifier enclave

7

Mutual attestation with TTPs

• Trusting multi-enclave applications via **mutual attestation**

• TTPs increase the TCB and might incur extra costs for running PKIs

Trusted third parties (TTPs)

Mutual attestation without TTPs

Circular dependency

Measurement calculation

The measurement calculation (e.g., SHA-256) is deterministic and sequential

Measurement calculation

Key observation: knowing the intermediate hash and information to perform subsequent measuring operations would be sufficient to derive the final output

Implementation for Intel SGX

- MAGE library:
 - Reserve a read-only data section, named .sgx_mage
 - Provide APIs for deriving measurements from .sgx_mage

Implementation for Intel SGX

- Modified enclave loader:
 - Load .sgx_mage section after all other enclave code and data

Implementation for Intel SGX

- Modified signing tool:
 - Extract intermediate hashes from enclaves.
 - Insert intermediate hashes into .sgx_mage section

Performance

- Memory overhead
 - Linear with the number of trusted enclaves
 - 48 bytes to store auxiliary information (e.g., intermediate hashes, page metadata) for deriving one enclave measurement
 - One 4KB page could support 85 enclaves

- Measurement derivation efficiency
 - Linear with the size of .sgx_mage section
 - 21.7 microseconds to derive one measurement when .sgx_mage section consists of one page

Discussion

- Alternative designs
 - Extending MAGE with untrusted storage for better scalability.

- Extensions to other TEEs
 - Even between different types of TEEs.

• Supporting enclave updates/private code

Thank You!

GitHub repo <u>https://github.com/donnod/linux-sgx-mage</u>

Guoxing Chen Yinqian Zhang guoxingchen@sjtu.edu.cn yinqianz@acm.org