

Teacher Model Fingerprinting Attacks Against Transfer Learning

Yufei Chen^{1,2}, Chao Shen¹, Cong Wang², Yang Zhang³

¹Xi'an Jiaotong University ²City University of Hong Kong ³CISPA Helmholtz Center for Information Security

Huge Success of Deep Learning

GPT-3:

Parameters: 175B **Estimated Cost: \$12M**

Data Hungry (ImageNet ~14M)

High **Computational Cost** (~355 years on a single NVIDIA Tesla V100 GPU*)

Experts

*Source: https://lambdalabs.com/blog/demystifying-gpt-3/

Reality: A DL Model is Expensive 🦓

Transfer Learning -- An Affordable Solution

Pretrained components
Newly trained components
Fine-tuned components

Transfer Learning -- A **SAFE** Solution?

Transfer Learning -- A **SAFE** Solution?

Transfer Learning -- A **SAFE** Solution?

Transfer Learning -- A Sector Solution? Most part of the black box is exposed! Vulnerabilities exposure (from the teacher)

Downstream attacks

Threat Model

1) Black-box access: Unknown student architecture/parameters Only <u>top-1</u> classification label returned

- (2) Attacker's knowledge/power: □ Candidate teacher models
- **D** <u>Public</u> datasets (e.g., ImageNets, CIFAR10)
- □ Limited query budget

Overview: Teacher Fingerprinting Attack

Attack Stage 1: Synthetic Input Generation

 $\tanh(\mathbf{w}) = \frac{2\tilde{\mathbf{x}}}{255} - 1$

Solving constrained optimization

Adam optimizer Learning rate: 0.001 #Iterations: 30,000

Original problem (Constrained) Converted problem (Unconstrained)

Attack Stage 2: Teacher Model Inference

- Inference Metric
 - □ Matching proportion:

#Matched Responses Inference: VGG19 **#Fingerprinting Pairs** Actual Threshold?

Y

Ν

AlexNet Provide NobileNet ResNet 18 VG16 VG19 AlexNet Denselvet NobileNet ResNet 18 VG16 VG19 teacher model NULL Candidate teacher model set

Effectiveness of Our Proposed Attack

• Basic setup

fingerprinting pairs: 100 for each candidate

student models: 6 datasets * 7 teacher models * 3 student FCN architectures

Effectiveness of Our Proposed Attack

• Basic Results

Correctly inferred	Inferred as "NULL"					
w/ kown teacher model	w/ unknown teacher model	w/o transfer learning				
100% (126/126)	72.2% (13/18)	86.1% (31/36)				

Effectiveness of Our Proposed Attack

• Impact of Query Budget |#Fingerprinting pairs for each candidate

100% inference accuracy

100% matching proportion

(False matching)

• Supporting Set

Remove <u>the most frequently matched</u> elements

• Supporting Set

Remove <u>the most frequently matched</u> elements

• Supporting Set

Remove <u>the most frequently matched</u> elements

$$|$$
 Supporting Set $| \geq \left[\log_2 \frac{1}{\alpha} \right] + \left[\frac{\left[\log_2 \frac{1}{\alpha} \right]}{c-1} \right]$

Most inference results are indeed invalid when #query is small

Query Budget	probing: VOCSegmentation		probing: MNIST		probing: CelebA		probing: Random Noise					
	inference acc.		#robust	inferer	inference acc.		inference acc.		#robust	inference acc.		#robust
	original	robust	#original	original	robust	#original	original	robust	#original	original	robust	#original
1	39.68% (50/126)	- (0/0)	0 (0/126)	42.06% (53/126)	- (0/0)	0 (0/126)	45.24% (57/126)	- (0/0)	0 (0/126)	19.84% (25/126)	- (0/0)	- (0/126)
2	61.11% (77/126)	- (0/0)	0 (0/126)	57.94% (73/126)	- (0/0)	0 (0/126)	57.94% (73/126)	- (0/0)	0 (0/126)	29.37% (37/126)	- (0/0)	- (0/126)
5	84.13% (106/126)	- (0/0)	0 (0/126)	69.84% (88/126)	- (0/0)	0 (0/126)	80.95% (102/126)	- (0/0)	0 (0/126)	42.06% (53/126)	- (0/0)	- (0/126)
10	95.24% (120/126)	100.00% (32/32)	25.40% (32/126)	80.95% (102/126)	100.00% (19/19)	15.08% (19/126)	89.68% (113/126)	100.00% (3/3)	2.38% (3/126)	50.79% (64/126)	- (0/0)	- (0/126)
20	97.62% (123/126)	100.00% (97/97)	76.98% (97/126)	(84.92% (107/126)	100.00% (52/52)	41.27% (52/126)	96.83% (122/126)	100.00% (87/87)	69.05% (87/126)	57.14% (72/126)	100.00% (16/16)	12.70% (16/126)
50	100.00% (126/126)	100.00% (125/125)	99.21% (125/126)	90.48% (114/126)	100.00% (96/96)	76.19% (96/126)	99.21% (125/126)	100.00% (117/117)	92.86% (117/126)	62.70% (79/126)	100.00% (36/36)	28.57% (36/126)
100	100.00% (126/126)	100.00% (126/126)	100.00% (126/126)	96.03% (121/126)	100.00% (114/114)	90.48% (114/126)	100.00% (126/126)	100.00% (122/122)	96.83% (122/126)	65.08% (82/126)	100.00% (41/41)	32.54% (41/126)

Enhanced Model Stealing Attack

Enhanced Model Stealing Attack

• Best performance if starting from a matched teacher model

Feasible Countermeasures

- Input distortion
- □ Perturb the patterns in synthetic inputs
- Injecting neuron distances [Wang et al. 2018]
 Deviate the student model's feature map from the teacher model's

[Wang et al. 2018] With Great Training Comes Great Vulnerability: Practical Attacks against Transfer Learning, USENIX Security '18.

Conclusion

- □ We propose a simple and efficient attack to infer the teacher model used by transfer learning
- Our attack can efficiently identify the teacher model
- Our attack can help perform further advanced attacks

Thanks! Q&A

Yufei Chen <u>yufeichen8-c@my.cityu.edu.hk</u>