AutoDA:
Automated Decision-based
Iterative Adversarial Attacks

Qi-An Fu, Yinpeng Dong,

Hang Su, Jun Zhu, Chao Zhang

Tsinghua University

Adversarial Examples

* DNNs have been integrated into security-critical applications.
e e.g., autonomous driving, healthcare, and finance.

* DNN classifiers are vulnerable to adversarial examples.
* Small adversarial perturbatlons can fool DNNs

Alps: 9439% Dog; 99.90%
Dong et al. 2018

Adversarial Attack & Defense

* Threat models
* Distance metrics: [, or [,.
» Attacker’s goal: targeted or untargeted.
» Attacker’s knowledge about the target model: white-box or black-box.

* Black-box attacks

e Scored-based.
* Transfer-based.

* |Decision-based. \ Attack with less knowledge about
e Defense the target model is usually more
* Adversarial training.

challenging and practical!

Automated Attacks?

* Developing adaptive attacks is necessary to evaluate defenses.
* Designed by expert case by case.
* Requiring lots of manual trial-and-error efforts.

* Decision-based black-box attack.
* Jacobian-based attacks.
* Boundary attack. — based on heuristics
* Evolutionary attack.
* HSJ attack.
* Sign-OPT attack. _

—
——

— based on zeroth-order optimization

Program Synthesis & AutoML

Program Synthesis Neural Architecture Search (NAS)

* Objective: find neural network

* Objective: find programs architectures achieving higher

satisfying some

fications/ fraint accuracy.
specifications/constraints.

P » Search space: constructed from
e Search space: programs. expert-designed layers.

e Use solvers: * Use advanced search method:

e e.g., reinforcement learning, gradient-

* e.g., SAT solvers, SMT solvers. based methods

L\/Iore “Logical” More ”NumericaI:

The Problem of Automatically
Discovering Decision-based Attacks

AutoDA

e Automated Decision-based Iterative Adversarial Attacks.
* For simplicity, focus on untargeted attacks.

* Intuition: Boundary attack & Evolutionary attack.
* Their implementations share a quite similar control flow.

* Their main difference lies i -free code segment.
* This code use only a dozen of mathemm

Fix the control flow using \ Search for the loop-free
an algorithm template code segment

Define Define Define
> >

Search Space Search Method Evaluation Method

Random-walk Framework for
[, Decision-based Attacks

* Proposed in the Boundary attack.

* Used by many later decision-based attacks.

Data: original example x(, adversarial starting point X1;
Output: adversarial example x such that the /, distortion
||Xx — Xo||2 is minimized;
Initialization: x < X1; dpin < ||X — Xo||2;
while query budget is not reached do

x' < generate (X,Xp);

if X" is adversarial and ||x’ — Xg||> < dyin then

X < X'; dpin < ||X —X0|2;

end if

Update the success rate of whether x’ is adversarial;

Adjust hyperparameters according to the success rate;
end while

Input Dimension 1

starting image

¢ steps of the algorithm

y
/
{
*
original image

classified correctly

classified incorrectly
(adversarial)

>
>

Input Dimension 2
Brendel et al. 2018

Search Space

* Only search for the generate() function.

* Define the search space as programs expressed in a DSL.

* 10 basic scalar and vector mathematical operations.

* Loop-free, SSA form programs.
* Accept 3 arguments x, xg, n.

* Adequate expressiveness:

* Enough to express the
Boundary attack’s
generate() function.

» Affordable complexity.

ID Notation Description

1 ADD.SS scalar-scalar addition

2 SUB.SS scalar-scalar subtraction

3 MUL.SS scalar-scalar multiplication

4 DIV.SS scalar-scalar division

5 ADD.VV vector-vector element-wise addition
6 SUB.VV vector-vector element-wise subtraction
7 MUL.VS vector-scalar broadcast multiplication
8 DIV.VS vector-scalar broadcast division

9 DOT.VV vector-vector dot product

10 NORM.V vector /> norm

Search Method

* Random search combined with two pruning techniques and two
priors.

* Pruning techniques:
* Inputs check: meaningful attacks should use all 3 inputs arguments.
* Distance test: generate() should reduce the distance between adversarial
example x and original example x;.
* Priors:

* Compact program: generate less unused statements.
* Predefined statements: the distance d and the angle u between x and x,.

Program Evaluation Method

e Use a small and fast EfficientNet classifier on class 0 & 1 from CIFAR-

10.
* Can process more than 60,000 images/second on a single GTX 1080 Ti GPU.

* Evaluate programs on a handful of examples to save GPU time.
“x_xOHZ

Hx1—on2

* The extra ||x1 — x0||2 is for reducing the impact of the starting points.

* [, distortion ratio.

* Two rounds evaluation:

* 15t round: evaluate programs with 100 steps, only keep the best program in
each batch.

e 2" round: evaluate programs with 10,000 steps.

Implementation

e m e e e e e e e e e e e ===

Program Generator

ye

P

Random Programs
(SSA form)

Inputs Check

A 4

Distance Test

!

SSA to TAC Compiler

Random Programs
(TAC form)

Program Evaluator

“ » We implemented a prototype of AutoDA
. from scratch.

Program Evaluation Loop

TAC form Program
Interpreter

A

 About 4,000 lines of C++.
e About 2,000 lines of Python.

° Program generator generates programs with

A 4

Classifier on GPU

...........................

Evaluation Metrics
Log

the two priors, and filters bad programs.

* Program evaluator evaluates programs
against the classifier on GPU.

e Communications between CPU and GPU
tasks are done asynchronously in large
batches.

Searching for Programs Experiments

* 50 runs. Each run allows 500 million queries to the classifier.

* About 125 billion random programs are generated.
* 45.475% of them failed in the inputs check.
* 54.497% of them failed in the distance test.
* Only 0.028% of them survived both.

* Distribution of the lowest [, distortion ratios found in each of the 50
runs: average at O 01797 Wlth a standard deV|at|on of 0. 00043

. 0‘ .‘g i i |

i [i. ‘ ® . '.. i ® i .i
‘e . 7. oo | "*-. *!®
| ® e i
° o ° e o °

0.01700 0.01725 0.01750 0.01775 0.01800 0.01825 0.01850 0.01875 0.01900
¢5 Distortion Ratio

AutoDA 1st & 2nd: The top-2 programs
with lowest I, distortion ratios

O
Hyperparameter

Adversarial example
riginal example X

X0

def AutoDA_istTEO, vli, v2, v3):

10 statements —

— v4 = SUB.VV(vl, v2)
s5 = NORM.V(v4)
v6 = DIV.VS(v4, sb)
v8 = MUL.VS(v3, s0)

vil = MUL.VS(v8, sb)

v17 = ADD.VV(v8, v6)
s18 = DOT.VV(v17, v8)
v21 = MUL.VS(v4, s18)
v22 = ADD.VV(v21l, v2)
| v23 = SUB.VV(v22, vil)

return v23

Next point to walk to
!/

X

si1l
vi2
v17
v20
v21
v23

n

Random noise

SUB.VV(vl, v2))

NORM.

V(v4)

DIV.VS(v4, s5)
MUL.VS(v3, s0)
ADD.VV(v7, v6)

NORM.
MUL.
DOT.

DIV

SUB.
return v23

V(v2)
VS(v8, sb)
VV(v10, v7)

.VS(v6, s9)
ADD.
MUL.
ADD.

VV(v6e, v12)
VS(v17, si11)
VV(vl, v20)

def AutoDA 2nd(sO, vi, v2, v3):

—13 statements

VV(v21, v10) |

Benchmark Experiments

* Expert-designed baselines
* Boundary attack.

* Evolutionary attack.

* HopSkipJump attack (HSJA). (S&P 2020)
* HSJA (default) & HSJIA* (grid search). - SOTA

* Sign-OPT attack. (ICLR 2020)

* Benchmark metrics
* Median l, distortion vs. queries curve.
* Attack success rate vs. queries curve.

Random-walk based. Inspired our method.

Benchmark Experiments on
CIFAR-10 models

—— Boundary —— Evolutionary —— Sign-OPT —— HSJA HSJA* ===-- AutoDA 1st ~ +==-- AutoDA 2nd

DLA

ResNetb0 DenseNet
10

10

10

0.5 1%

/5 Distortion
—

/5 Distortion
—

{5 Distortion

/5 Distortion
—

0.1 ;

; ; / 0.1 ; ; ; i 0.1 ; ; 0.1 ; ; /
0 5k 10k 15k 20k 0 5k 10k 15k 20k 0 5k 10k 15k 20k 0 5k 10k 15k 20k
Queries Queries Queries Queries
e 1.00 - © : © —— - /,_
= o754 = = /
R~ 7] 2
g5 < g
= 0.50 = =
N o wn wn
o A o
§ 0.25 § E
= = =
0.00 -
0 5k 10k 15k 20k 10k 15k 10k 15k 20k
Queries
1.00
(<] (] (4] Q
= g = = =
B 0.75 1A H = ~ ~
wn 95} wn w0
&5 8 & &
£ 5 050 147/ 3 S g
s Y) =] =
N o wn wn wn
T A o o
S oo : :
= = = =
0.00 - .
0 5k 10k 15k 20k 0 5k 10k 15k 20k 0 5k 10k 15k 20k 0 5k 10k 15k 20k

Queries Queries Queries Queries

Benchmark Experiments on
CIFAR-10 models

Model ResNet50 DenseNet Model ResNet50 DenseNet
Queries 2,000 4,000 20,000 | 2,000 4,000 20,000 Queries 2,000 4,000 20,000 [2,000 4,000 20,000
Boundary 10.7% 28.4% 100.0% | 10.6% 28.5% 100.0% Boundary 3.000 1.636 0.178 | 2.847 1.579 0.166
Evolutionary | 64.9% 96.3% 100.0% | 66.9% 95.8% 100.0% Evolutionary | 0.793 0.399 0.154 | 0.754 0378 0.142
Sign-OPT | 76.1% 98.8% 100.0% | 77.8% 98.9% 100.0% Sign-OPT 0.611 0.288 0.131 | 0.586 0.273 0.123
HSJA 919% 96.6% 97.1% | 94.2% 97.9% 98.3% HSJA 0.399 0.252 0.149 | 0.361 0.228 0.137
HSJA* 674% 92.6% 100.0% | 71.7% 92.9% 100.0% HSJA* 0.732 0.402 0.162 | 0.680 0.376 0.152
AutoDA 1st {95.9% 99.7% 100.0% | 96.4% 99.5% 100.0% AutoDA 1st | 0.356 0.245 0.133 | 0.338 0.231 0.124
95.6% 99.5% 100.0% |96.5% 99.7% 100.0% AutoDA 2nd | 0.364 0.254 0.135 | 0.344 0.236 0.127

AutoDA 2nd

Attack success rate (€ = 1.0) vs. queries

Median L, distortion vs. queries

* Though our search space is based on the Boundary attack, AutoDA 1st
& 2nd are much stronger than it.

* AutoDA 1st & 2nd converge faster before ~7k queries, while converge
to slightly worse adversarial examples than Sign-OPT.

Benchmark Experiments on
Adv. Trained & ImageNet models

—— HSJA

Attack Success Rate

Attack Success Rate

ResNet50 (/5 adversarially trained) WRN (/.. adversarially trained

—— Boundary

=
.2
g
)
&
A
&
1
0 5k 10k 15k 20k
Queries
0.75
]
=
o]
~ 0.50 7
o [
= g
I =
< 0.25 =
ﬂ " — §
e | <
0.00 + ¥
0 5k 10k 15k 20k
Queries
0.30
<]
=
o]
~ 0.20 7
0]
e g
~0.10 RSN = 4
0.00 f
0 5k 10k 15k 20k
Queries

——— Evolutionary

—— Sign-OPT

~—

=
10 £
3
g 5 A z
= A
% <
A E
3 =
- :
1 t t (ZJ
0 k 10k 15k 20k
Queries

0.75
]
=
—rena] S
et el
! @
]
=
n
// 4
Q
=
=

Attack Success Rate

10k
Queries

15k

20k

HSJA*

WRN (ImageNet)

AutoDA 1st

0.2 . 5
B \ 3
| 5
V00T TR T

0.001 3] \\ {—3‘
ETTNETST g
B] =
re———
* g
[5)
0.002 Z

0 5k 10k 15k 20k

Attack Success Rate

10k

Queries

15k

DO
o
=

—~
o
—

""" AutoDA 2nd
ResNet101 (ImageNet)
0.2
VG001 k \
0.001 7~ 0\ -
V0.001 N \\
2 Ry -
° . ! :\
0.002 f f
0 5k 10k 15k 20k
Queries
---------- E //
/ /
5k 10k 15k 20k
Queries

10k

Queries

15k 20k

Conclusion

* A novel solution to automatically discover decision-based iterative
adversarial attacks.

* A way to construct a search space of decision-based iterative attacks.

* An effective random search algorithm to efficiently explore the search
space.

* A prototype of AutoDA
* The discovered attacks are simple yet powerful;
* They show comparable performance than SOTA expert-designed attacks;

* Suggesting these expert-designed attacks are near optimal in our search
space.

Thanks for listening!
Q&A

Contact: Qi-An Fu, fugoes.qa@gmail.com

