AutoDA: Automated Decision-based Iterative Adversarial Attacks

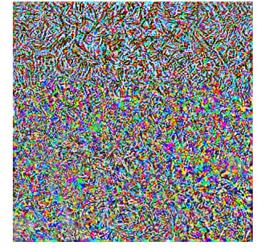
Qi-An Fu, Yinpeng Dong, Hang Su, Jun Zhu, Chao Zhang

Tsinghua University

Adversarial Examples

- DNNs have been integrated into security-critical applications.
 - e.g., autonomous driving, healthcare, and finance.
- DNN classifiers are vulnerable to adversarial examples.
 - Small adversarial perturbations can fool DNNs.

Alps: 94.39%



Dog: 99.99%

Dong et al. 2018

Adversarial Attack & Defense

• Threat models

- Distance metrics: l_2 or l_{∞} .
- Attacker's goal: *targeted* or *untargeted*.
- Attacker's knowledge about the target model: *white-box* or *black-box*.
- Black-box attacks
 - Scored-based.
 - Transfer-based.
 - Decision-based.
- Defense
 - Adversarial training.

Attack with less knowledge about the target model is usually more challenging and practical!

Automated Attacks?

- Developing adaptive attacks is necessary to evaluate defenses.
 - Designed by expert case by case.
 - Requiring lots of manual trial-and-error efforts.
- Decision-based black-box attack.
 - Jacobian-based attacks.
 - Boundary attack.
 - Evolutionary attack.
 - HSJ attack.
 - Sign-OPT attack.

- based on heuristics
- based on zeroth-order optimization

Program Synthesis & AutoML

Program Synthesis

- Objective: find programs satisfying some specifications/constraints.
- Search space: programs.
- Use solvers:
 - e.g., SAT solvers, SMT solvers.

Neural Architecture Search (NAS)

- Objective: find neural network architectures achieving higher accuracy.
- Search space: constructed from expert-designed layers.
- Use advanced search method:
 - e.g., reinforcement learning, gradientbased methods.

More "Logical"

More "Numerical"

The Problem of Automatically Discovering Decision-based Attacks

AutoDA

- Automated Decision-based Iterative Adversarial Attacks.
- For simplicity, focus on untargeted attacks.
- Intuition: Boundary attack & Evolutionary attack.
 - Their implementations share a quite similar control flow.
 - Their main difference lies in a loop-free code segment.
 - This code segment use only a dozen of mathematical operations.

 Fix the control flow using an algorithm template
 Search for the loop-free code segment

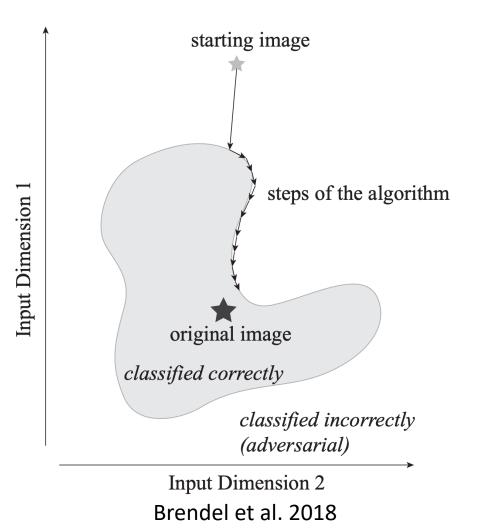
 Define Search Space
 Define Search Method

Random-walk Framework for l_2 Decision-based Attacks

- Proposed in the Boundary attack.
- Used by many later decision-based attacks.

Data: original example \mathbf{x}_0 , adversarial starting point \mathbf{x}_1 ; **Output:** adversarial example \mathbf{x} such that the ℓ_2 distortion $\|\mathbf{x} - \mathbf{x}_0\|_2$ is minimized; **Initialization:** $\mathbf{x} \leftarrow \mathbf{x}_1$; $d_{\min} \leftarrow \|\mathbf{x} - \mathbf{x}_0\|_2$; while query budget is not reached do $\mathbf{x}' \leftarrow \text{generate}(\mathbf{x}, \mathbf{x}_0)$; if \mathbf{x}' is adversarial and $\|\mathbf{x}' - \mathbf{x}_0\|_2 < d_{\min}$ then $\mathbf{x} \leftarrow \mathbf{x}'$; $d_{\min} \leftarrow \|\mathbf{x} - \mathbf{x}_0\|_2$; end if Update the success rate of whether \mathbf{x}' is adversarial; A divide hyperparameters according to the success rate.

Adjust hyperparameters according to the success rate; end while



Search Space

- Only search for the generate() function.
- Define the search space as **programs** expressed in a DSL.
 - 10 basic scalar and vector mathematical operations.
 - Loop-free, SSA form programs.
 - Accept 3 arguments x, x₀, n.
- Adequate *expressiveness*:
 - Enough to express the Boundary attack's generate() function.
- Affordable *complexity*.

ID	Notation	Description
1	ADD.SS	scalar-scalar addition
2	SUB.SS	scalar-scalar subtraction
3	MUL.SS	scalar-scalar multiplication
4	DIV.SS	scalar-scalar division
5	ADD.VV	vector-vector element-wise addition
6	SUB.VV	vector-vector element-wise subtraction
7	MUL.VS	vector-scalar broadcast multiplication
8	DIV.VS	vector-scalar broadcast division
9	DOT.VV	vector-vector dot product
10	NORM.V	vector ℓ_2 norm

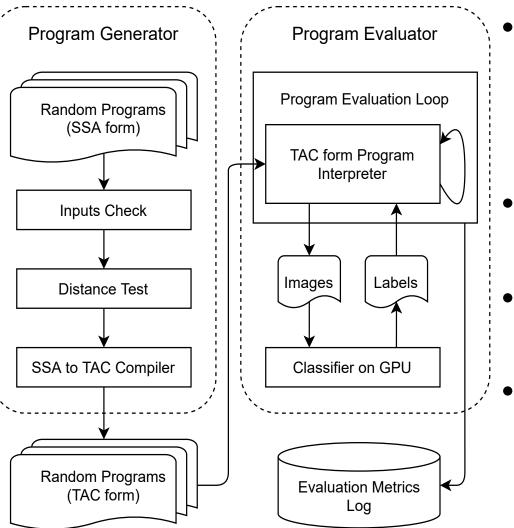
Search Method

- Random search combined with two pruning techniques and two priors.
- Pruning techniques:
 - Inputs check: meaningful attacks should use all 3 inputs arguments.
 - Distance test: generate() should reduce the distance between adversarial example x and original example x₀.
- Priors:
 - Compact program: generate less unused statements.
 - *Predefined statements*: the distance d and the angle u between x and x_0 .

Program Evaluation Method

- Use a small and fast EfficientNet classifier on class 0 & 1 from CIFAR-10.
 - Can process more than 60,000 images/second on a single GTX 1080 Ti GPU.
- Evaluate programs on a handful of examples to save GPU time.
- l_2 distortion ratio. $\frac{||x-x_0||_2}{||x_1-x_0||_2}$
 - The extra $||x_1 x_0||_2$ is for reducing the impact of the starting points.
- Two rounds evaluation:
 - 1st round: evaluate programs with 100 steps, only keep the best program in each batch.
 - 2nd round: evaluate programs with 10,000 steps.

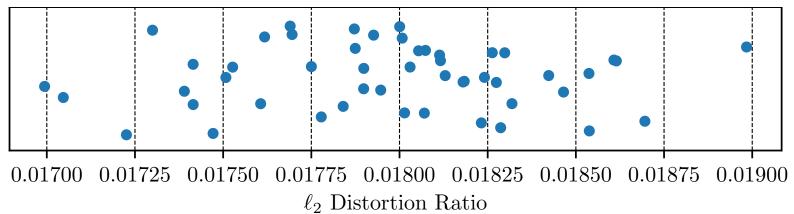
Implementation



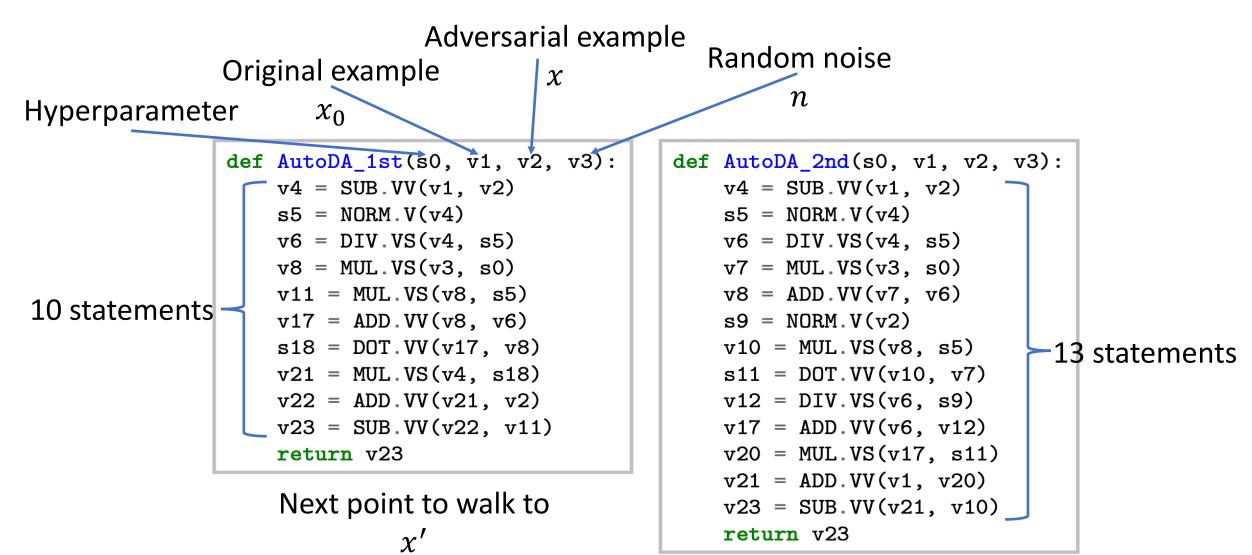
- We implemented a prototype of AutoDA from scratch.
 - About 4,000 lines of C++.
 - About 2,000 lines of Python.
- Program generator generates programs with the two priors, and filters bad programs.
- Program evaluator evaluates programs against the classifier on GPU.
- Communications between CPU and GPU tasks are done asynchronously in large batches.

Searching for Programs Experiments

- 50 runs. Each run allows 500 million queries to the classifier.
- About 125 billion random programs are generated.
 - 45.475% of them failed in the *inputs check*.
 - 54.497% of them failed in the *distance test*.
 - Only 0.028% of them survived both.
- Distribution of the lowest l_2 distortion ratios found in each of the 50 runs: average at 0.01797 with a standard deviation of 0.00043.



AutoDA 1st & 2nd: The top-2 programs with lowest l_2 distortion ratios



Benchmark Experiments

- Expert-designed baselines

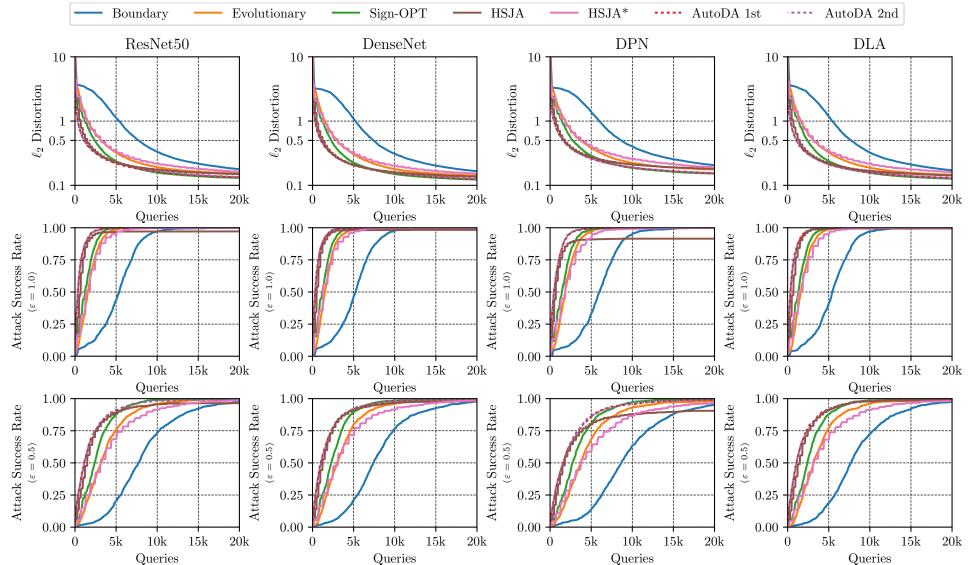
 - Boundary attack.
 Evolutionary attack.
 Random-walk based. Inspired our method.

 - HopSkipJump attack (HSJA). (S&P 2020)
 - HSJA (default) & HSJA* (grid search).
 - Sign-OPT attack. (ICLR 2020)
- Benchmark metrics
 - Median l_2 distortion vs. queries curve.
 - Attack success rate vs. queries curve.

- Sota

Benchmark Experiments on

CIFAR-10 models



Benchmark Experiments on CIFAR-10 models

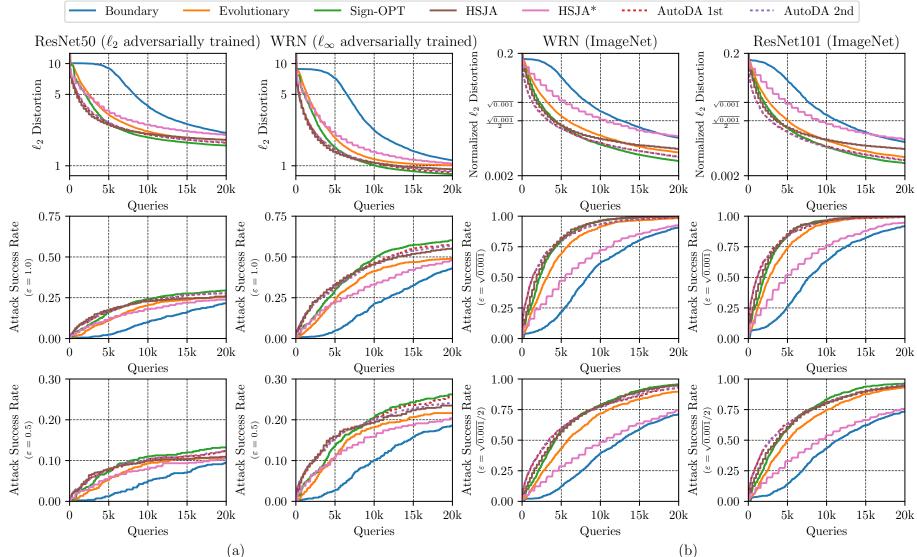
Model	ResNet50			DenseNet			Model	ResNet50			DenseNet		
Queries	2,000	4,000	20,000	2,000	4,000	20,000	Queries	2,000	4,000	20,000	2,000	4,000	20,000
Boundary	10.7%	28.4%	100.0%	10.6%	28.5%	100.0%	Boundary	3.000	1.636	0.178	2.847	1.579	0.166
Evolutionary	64.9%	96.3%	100.0%	66.9%	95.8%	100.0%	Evolutionary	0.793	0.399	0.154	0.754	0.378	0.142
Sign-OPT	76.1%	98.8%	100.0%	77.8%	98.9%	100.0%	Sign-OPT	0.611	0.288	0.131	0.586	0.273	0.123
HSJA	91.9%	96.6%	97.1%	94.2%	97.9%	98.3%	HSJA	0.399	0.252	0.149	0.361	0.228	0.137
HSJA*	67.4%	92.6%	100.0%	71.7%	92.9%	100.0%	HSJA*	0.732	0.402	0.162	0.680	0.376	0.152
AutoDA 1st	95.9%	99.7%	100.0%	96.4%	99.5%	100.0%	AutoDA 1st	0.356	0.245	0.133	0.338	0.231	0.124
AutoDA 2nd	95.6%	99.5%	100.0%	96.5%	99.7%	100.0%	AutoDA 2nd	0.364	0.254	0.135	0.344	0.236	0.127

Attack success rate ($\epsilon = 1.0$) vs. queries

Median l_2 *distortion* vs. *queries*

- Though our search space is based on the Boundary attack, AutoDA 1st & 2nd are much stronger than it.
- AutoDA 1st & 2nd converge faster before ~7k queries, while converge to slightly worse adversarial examples than Sign-OPT.

Benchmark Experiments on Adv. Trained & ImageNet models



Conclusion

- A novel solution to automatically discover decision-based iterative adversarial attacks.
- A way to construct a search space of decision-based iterative attacks.
- An effective random search algorithm to efficiently explore the search space.
- A prototype of AutoDA
 - The discovered attacks are simple yet powerful;
 - They show comparable performance than SOTA expert-designed attacks;
 - Suggesting these expert-designed attacks are near optimal in our search space.

Thanks for listening! Q&A

Contact: Qi-An Fu, fugoes.qa@gmail.com