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Adversarial Examples

* DNNs have been integrated into security-critical applications.
e e.g., autonomous driving, healthcare, and finance.

* DNN classifiers are vulnerable to adversarial examples.
* Small adversarial perturbatlons can fool DNNs

Alps: 9439% Dog; 99.90%
Dong et al. 2018



Adversarial Attack & Defense

* Threat models
* Distance metrics: [, or [,.
» Attacker’s goal: targeted or untargeted.
» Attacker’s knowledge about the target model: white-box or black-box.

* Black-box attacks

e Scored-based.
* Transfer-based.

* |Decision-based. \ Attack with less knowledge about
e Defense the target model is usually more
* Adversarial training.

challenging and practical!




Automated Attacks?

* Developing adaptive attacks is necessary to evaluate defenses.
* Designed by expert case by case.
* Requiring lots of manual trial-and-error efforts.

* Decision-based black-box attack.
* Jacobian-based attacks.
* Boundary attack. — based on heuristics
* Evolutionary attack.
* HSJ attack.
* Sign-OPT attack. _

—
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— based on zeroth-order optimization




Program Synthesis & AutoML

Program Synthesis Neural Architecture Search (NAS)

* Objective: find neural network

* Objective: find programs architectures achieving higher

satisfying some

fications/ fraint accuracy.
specifications/constraints.

P » Search space: constructed from
e Search space: programs. expert-designed layers.

e Use solvers: * Use advanced search method:

e e.g., reinforcement learning, gradient-

* e.g., SAT solvers, SMT solvers. based methods

L\/Iore “Logical” More ”NumericaI:

The Problem of Automatically
Discovering Decision-based Attacks



AutoDA

e Automated Decision-based Iterative Adversarial Attacks.
* For simplicity, focus on untargeted attacks.

* Intuition: Boundary attack & Evolutionary attack.
* Their implementations share a quite similar control flow.

* Their main difference lies i -free code segment.
* This code use only a dozen of mathemm

Fix the control flow using \ Search for the loop-free
an algorithm template code segment

Define Define Define
> >

Search Space Search Method Evaluation Method




Random-walk Framework for
[, Decision-based Attacks

* Proposed in the Boundary attack.

* Used by many later decision-based attacks.

Data: original example x(, adversarial starting point X1;
Output: adversarial example x such that the /, distortion
||Xx — Xo||2 is minimized;
Initialization: x < X1; dpin < ||X — Xo||2;
while query budget is not reached do

x' < generate (X,Xp);

if X" is adversarial and ||x’ — Xg||> < dyin then

X < X'; dpin < ||X —X0|2;

end if

Update the success rate of whether x’ is adversarial;

Adjust hyperparameters according to the success rate;
end while

Input Dimension 1

starting image

¢ steps of the algorithm

y
/
{
*
original image

classified correctly

classified incorrectly
(adversarial)

>
>

Input Dimension 2
Brendel et al. 2018



Search Space

* Only search for the generate() function.

* Define the search space as programs expressed in a DSL.

* 10 basic scalar and vector mathematical operations.

* Loop-free, SSA form programs.
* Accept 3 arguments x, xg, n.

* Adequate expressiveness:

* Enough to express the
Boundary attack’s
generate() function.

» Affordable complexity.

ID Notation Description

1 ADD.SS scalar-scalar addition

2 SUB.SS scalar-scalar subtraction

3 MUL.SS scalar-scalar multiplication

4 DIV.SS scalar-scalar division

5 ADD.VV vector-vector element-wise addition
6 SUB.VV vector-vector element-wise subtraction
7 MUL.VS vector-scalar broadcast multiplication
8 DIV.VS vector-scalar broadcast division

9 DOT.VV vector-vector dot product

10 NORM.V vector /> norm




Search Method

* Random search combined with two pruning techniques and two
priors.

* Pruning techniques:
* Inputs check: meaningful attacks should use all 3 inputs arguments.
* Distance test: generate() should reduce the distance between adversarial
example x and original example x;.
* Priors:

* Compact program: generate less unused statements.
* Predefined statements: the distance d and the angle u between x and x,.



Program Evaluation Method

e Use a small and fast EfficientNet classifier on class 0 & 1 from CIFAR-

10.
* Can process more than 60,000 images/second on a single GTX 1080 Ti GPU.

* Evaluate programs on a handful of examples to save GPU time.
“x_xOHZ

Hx1—on2

* The extra ||x1 — x0||2 is for reducing the impact of the starting points.

* [, distortion ratio.

* Two rounds evaluation:

* 15t round: evaluate programs with 100 steps, only keep the best program in
each batch.

e 2" round: evaluate programs with 10,000 steps.



Implementation

e m e e e e e e e e e e e ===

Program Generator

ye

P

Random Programs
(SSA form)

Inputs Check

A 4

Distance Test

!

SSA to TAC Compiler

Random Programs
(TAC form)

Program Evaluator

“ » We implemented a prototype of AutoDA
. from scratch.

Program Evaluation Loop

TAC form Program
Interpreter

A

 About 4,000 lines of C++.
e About 2,000 lines of Python.

° Program generator generates programs with

A 4

Classifier on GPU

...........................

Evaluation Metrics
Log

the two priors, and filters bad programs.

* Program evaluator evaluates programs
against the classifier on GPU.

e Communications between CPU and GPU
tasks are done asynchronously in large
batches.



Searching for Programs Experiments

* 50 runs. Each run allows 500 million queries to the classifier.

* About 125 billion random programs are generated.
* 45.475% of them failed in the inputs check.
* 54.497% of them failed in the distance test.
* Only 0.028% of them survived both.

* Distribution of the lowest [, distortion ratios found in each of the 50
runs: average at O 01797 Wlth a standard deV|at|on of 0. 00043
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AutoDA 1st & 2nd: The top-2 programs
with lowest I, distortion ratios

O
Hyperparameter

Adversarial example
riginal example X

X0

def AutoDA_istTEO, vli, v2, v3):

10 statements —

— v4 = SUB.VV(vl, v2)
s5 = NORM.V(v4)
v6 = DIV.VS(v4, sb)
v8 = MUL.VS(v3, s0)

vil = MUL.VS(v8, sb)

v17 = ADD.VV(v8, v6)
s18 = DOT.VV(v17, v8)
v21 = MUL.VS(v4, s18)
v22 = ADD.VV(v21l, v2)
| v23 = SUB.VV(v22, vil)

return v23

Next point to walk to
!/

X

si1l
vi2
v17
v20
v21
v23

n

Random noise

SUB.VV(vl, v2) )

NORM.

V(v4)

DIV.VS(v4, s5)
MUL.VS(v3, s0)
ADD.VV(v7, v6)

NORM.
MUL.
DOT.

DIV

SUB.
return v23

V(v2)
VS(v8, sb)
VV(v10, v7)

.VS(v6, s9)
ADD.
MUL.
ADD.

VV(v6e, v12)
VS(v17, si11)
VV(vl, v20)

def AutoDA 2nd(sO, vi, v2, v3):

—13 statements

VV(v21, v10) |



Benchmark Experiments

* Expert-designed baselines
* Boundary attack.

* Evolutionary attack.

* HopSkipJump attack (HSJA). (S&P 2020)
* HSJA (default) & HSJIA* (grid search). - SOTA

* Sign-OPT attack. (ICLR 2020)

* Benchmark metrics
* Median l, distortion vs. queries curve.
* Attack success rate vs. queries curve.

Random-walk based. Inspired our method.




Benchmark Experiments on
CIFAR-10 models
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Benchmark Experiments on
CIFAR-10 models

Model ResNet50 DenseNet Model ResNet50 DenseNet
Queries 2,000 4,000 20,000 | 2,000 4,000 20,000 Queries 2,000 4,000 20,000 [ 2,000 4,000 20,000
Boundary 10.7% 28.4% 100.0% | 10.6% 28.5% 100.0%  Boundary 3.000 1.636 0.178 | 2.847 1.579 0.166
Evolutionary | 64.9% 96.3% 100.0% | 66.9% 95.8% 100.0% Evolutionary | 0.793 0.399  0.154 | 0.754 0378  0.142
Sign-OPT | 76.1% 98.8% 100.0% | 77.8% 98.9% 100.0%  Sign-OPT 0.611 0.288 0.131 | 0.586 0.273 0.123
HSJA 919% 96.6% 97.1% | 94.2% 97.9% 98.3% HSJA 0.399 0.252 0.149 | 0.361 0.228 0.137
HSJA* 674% 92.6% 100.0% | 71.7% 92.9% 100.0% HSJA* 0.732 0.402 0.162 | 0.680 0.376 0.152
AutoDA 1st {95.9% 99.7% 100.0% | 96.4% 99.5% 100.0% AutoDA 1st | 0.356 0.245 0.133 | 0.338 0.231 0.124
95.6% 99.5% 100.0% |96.5% 99.7% 100.0% AutoDA 2nd | 0.364 0.254 0.135 | 0.344 0.236 0.127

AutoDA 2nd

Attack success rate (€ = 1.0) vs. queries

Median L, distortion vs. queries

* Though our search space is based on the Boundary attack, AutoDA 1st
& 2nd are much stronger than it.

* AutoDA 1st & 2nd converge faster before ~7k queries, while converge
to slightly worse adversarial examples than Sign-OPT.



Benchmark Experiments on
Adv. Trained & ImageNet models

—— HSJA

Attack Success Rate

Attack Success Rate
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Conclusion

* A novel solution to automatically discover decision-based iterative
adversarial attacks.

* A way to construct a search space of decision-based iterative attacks.

* An effective random search algorithm to efficiently explore the search
space.

* A prototype of AutoDA
* The discovered attacks are simple yet powerful;
* They show comparable performance than SOTA expert-designed attacks;

* Suggesting these expert-designed attacks are near optimal in our search
space.



Thanks for listening!
Q&A

Contact: Qi-An Fu, fugoes.qa@gmail.com



