
PISTIS:
Trusted Computing Architecture for 

Low-end Embedded Systems

Michele Grisafi
University of Trento, Italy
michele.grisafi@unitn.it

Mahmoud Ammar
Huawei Research, Germany

mahmoud.ammar@huawei.com

Marco Roveri
University of Trento, Italy
marco.roveri@unitn.it

Bruno Crispo
University of Trento, Italy
bruno.crispo@unitn.it



Embedded systems are at risk

The issue at hand - embedded systems

2

Security Services 
(e.g., Remote Attestation)

Trusted Execution 
Environments (TEEs)

enabled by…

The issue: The solution:



Features 
and Security 
guarantees

SBAP, SWATT, 
SAKE, SCUBA

SμV

SGX

ARM 
TrustZone-M

VRASED

SANCUS

SMART

TrustLite
TyTAN

PISTIS

Hardware-based

Software based

Minimal Hardware

HW resources and HW modifications

GAP!

The state of the art

3

Remote Attestation and TEEs



A TEE to fill the gap

PISTISNo hardware
modifications

Trusted 
Applications

support

No security 
hardware

(e.g., MPU)

DMA
support

Interrupts
support

Untrusted 
Toolchain

4



When to use Pistis

PISTIS

Trusted Execution Environment (TEE) 
with a set of 

Trusted Applications (TAs)

Untrusted programmer with the 
source code of an application

Software-based remote 
adversary. 

DoS out of scope

Low-end MCU 
in an embedded system, 

CPS, OT or IoT environment

5



PISTIS

PISTIS 
toolchain

Untrusted 
source files

Untrusted 
Application

Runtime Library
Trusted 

Application
Trusted 

Application

Untrusted Application

Runtime Library

Secure Code 
Update

Remote 
Attestation

MCU

Untrusted Application

Malware

Corrupt 
toolchain

Inject
malware

Run-time attack

MitM

1

2

3

PISTIS 
toolchain

Memory 
Isolation

6

RoT

…



7

Untrusted 
Application

How?
1. Divide memory in regions
2. Deploy PISTIS and the 

application in different regions
3. Enforce Access Control Policy 

at runtime

Memory isolation - our policy

Software instrumentation and 
virtualization

Make sure all of the instructions 
of the application are compliant 
with our Access Control Policy



Custom untrusted toolchain

CALL appFun
MOV R10, R4
CALL vrtCall

CALL appFun
MOV R10, R4
CALL vrtCall

CALL appFun
MOV R10, R4
CALL vrtCall

vrtCall:
is *(R4) safe? STOP

CALL
CALL appFun
CALL R10

REJECT

Compile bypassing 

instrumentation

Run

Sample code

Deploy
.S .o

.o

Binary verification Run-time checks

8

A software-based approach
CALL appFun
CALL R10

Custom untrusted toolchain

.S

Replaces unsafe instructions 
with virtual calls to the TCB

Rejects applications with 
unsafe instructions

Check safety of virtual calls



Evaluated on a TI MSP430F5529 MCU with a set of 13 embedded applications, 
including CPU, I/O and memory intensive operations, and an official TI benchmark.

9

Performance evaluation



10

To recap PISTIS

michele.grisafi@unitn.it
github.com/CybersecurityUnitn/PISTIS

Why do we need it?

What is it?

How does it work?

Q&A Check it 
out!

To bridge the security gap 
for low-end embedded 

systems

Need for feature-rich and 
strong security solutions 

PISTIS might be the 
cheapest available option

Trusted Execution 
Environment (TEE)

Support for TAs
(e.g., Remote Attestation)

Support for secure DMA 
and Interrupts operations

Policy-based 
Memory Isolation

Software-based 
Trusted Computing Base

Software instrumentation
and virtualisation


