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MCU-based embedded devices are everywhere

Energy Conserving Real Time Low Cost (< $1)

18 hours

Cortex-A SoC

Cortex-M MCU

2 weeks

Real-Time Servo Motor Control

OS CPU Mem Storage

Linux > 520 MHz > 128 Mb > 256 Mb

RTOS 64 ~ 240 MHZ 128 ~ 512 Kb < 2Mb

Resource-

Constrained

https://lup.lub.lu.se/search/ws/files/4452427/546030.pdf
https://lup.lub.lu.se/search/ws/files/4452427/546030.pdf


Their firmware updates are delayed

Previous work[1] indicates that 28.25% (385,060 

/ 1,362,906) IoT devices with at least one N-Day  

vulnerabilties are exposed to the attackers.

[1]. A Large-scale Empirical Study on the Vulnerability of 

Deployed IoT Devices. Binbin Zhao et al. TDSC 2020.
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The obstacles of patching these devices

Too many patches need to be tested on 

the framgement devices

Need to reboot for installing the updates
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Our solution: new patching workflow

RapidPatch Workflow: one patch for all the heterogeneous devices with the same vulnerability.  
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Obstacle-1: Patch Writing

Obstacle-2: Patch Propagation

Obstacle-3: Patch Testing

Obstacle-4: Patch Deploy

Solutions for patch development

Now: Use a single 

eBPF bytecode patch 

for all the devices

Previous: Merge C 

source code patch to 

generate binary patch 

for each type of device



Binary Patch vs Bytecode Patch
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Need to prepare patchs with different architectures.
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The runtime supports multiple platforms.

Why use eBPF as the VM-based 

language? Why not Lua, Python, 

Javascript, …? 

1. Simple and efficient

2. Flexible, use C grammar



The basic idea of eBPF patch
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Obstacle-1: Patch writing

Obstacle-2: Patch Propagation

Obstacle-3: Patch Testing

Obstacle-4: Patch Deploy

Solutions for patch testing

Verifier
has

side-effect?

No

Yes Manually test

Can waive 

tests

The safety is ensured by software fault 

isolation (SFI) of the patch runtime.

eBPF Patch

Traditional Patch

Should be 

tested on each 

type of devices



Which patches have no side effects?

No. It calls C functions.

Code-Replace Patch:

Fitler Patch:

Yes. It only reads the memory.



Patch Verifier and SFI

Add loop limitation for code with 

unbounded loops.

eBPF Patch

1. Contain write instructions？
2. Contain C function callings?

NoYes

Code-Replace Patch

Need Tests Filter Patch

SFI:

Prevent write 

Restrict loop iterations

Waive Tests



Obstacle-1: Patch writing

Obstacle-2: Patch Propagation

Obstacle-3: Patch Testing

Obstacle-4: Patch Deploy

Solutions for patch deploy

Live Patch without 

reboot or delay the 

real-time tasks.
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Challenges for hotpatching embedded devices

Approach-1: A/B Scheme Approach-2: Inline Hook

Old Firmware New FirmwareStorage

Switch to new firmware

Limitations:

1. The storage is insufficient.

2. Still need to reboot during switch.

Buggy Function

Fixed Function

Modify the first 

instruction to a jmp 

trampoline.

Limitation:

The code of embedded devices are stored in ROM 

(nor-flash) and modifying is time consuming which 

break the real-time constraint. 



What is real-time constraint?
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Patch Deploying under real-time constranit

Method-1: Compile-time instrument

Method-2: MCU patching feature

Method-3: hardware breakpoint based KPorbe

int buggy_function() {

check_has_patch();

// ...

}

The patch task should not block the 

motor control task.



Put it together

Directly use the upstream bytecode patch for 

heterogeneous devices. 

2. Merge code to 

firmware codebase

3. Generate binary 

patch via diffing

1. Get source 

code patch

Bytecode Patch

Waive test and can deploy at any 

time with Live Patch Technology.

4.Test patch on 

devices

5. Reboot devices 

to update

Patch Verifier Hotpatching



RapidPatch Implementation

Source Code:

https://github.com/IoTAccessControl/RapidPatch

Module #LoC

Patch Control ~ 1200 C

Patch Core ~ 2200 C

Libebpf ~ 3400 C

Patch Tool ~ 700 Python

Patch Verifier ~ 1200 Python

STM32-F429

STM32-L475 nRF52840-DK

ESP32

IoT Development Kits:

https://github.com/IoTAccessControl/RapidPatch


Usability Evaluation

Failed Cases:

1. change too many functions.

2. change the marco or inline functions.

Can be used for MCUs with different 

architectures, such as Cortex-M, Xtensa, 

RISC-V

Support various RTOSs, such as NuttX, 

FreeRTOS, Zephyr, and LiteOS

90% of the CVEs can be patched.  

56% of them do not need test.

76% of the patches for high risk CVEs do 

not need test



Patch Runtime Performance Evaluation

Delays incurred by different hotpatching 

strategies is about 1 ~ 4 us

The average delays incurred by eBPF 

patch execution is less than 5 us



End-to-end Latency Evaluation

The overall request latency incurred by patch (KProbe) is 

less than 0.6% (JIT mode). Compile-time instrument all the 

posssible patching functions can 

bring 0.5% ~ 19% delay. 



Limitations and Future Works

1. Can we automatically generate eBPF patch from C source patch?

2. Can we automatically identify the vulnerable function rather than manually verify 

the target Library version?

3. How to tolerate patches with logic bugs (incorrect patch)?

Test cases with fork execution?

Future work: Implement fault isolation for all patches and used 

RapidPatch in real products  (arm Linux). 



★ It is challenging to hotpatch MCU-based embedded devices

○ need to prepare patches for too many heterogeneous devices

○ need to test patch on every types of devices

○ hotpatching without break the real-time constraint

★ RapidPatch: a new patch workflow for patching embedded 

devices

○ one patch for all the devices with the same vulnerability

○ multiple hotpatching strategies for different MCUs

○ most of the patches can waive tests

○ negligible overhead ( < 0.6%)

Conclusion



★ IoT Firmware Update
○ Over-The-Air Update [ATC 19], [ICDCS 19], [ACSAC 20]

★ Hotpatching
○ HERA [NDSS 21], Android Live Patch [Security 17], [NDSS 18]

★ eBPF based system enhancement
○ System Observability [ATC 16], Performance Profiling [ATC 19]

○ Container Security [ATC 20]

○ JIT Implementation Formal Verification [OSDI 20]

Related Work

We propose the first eBPF based architecture-independent 

patching mechanism.  
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